基于多源遥感数据估测林火参数的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
林火是森林生态系统主要的因子,在大气的化学循环和碳循环中起着重要作用。森林火灾尤其是特大森林火灾的频繁发生不但破坏森林生态系统,而且造成了碳温室气体的大量释放。森林火灾释放的碳主要是以CO2或CO的形式排放,其余的以CH4、多碳烃等有机氧化物形式排放到大气中,对全球气候环境影响巨大。开展林火强度、森林可燃物载量消耗及林火气体释放量等参数的研究是开展林火对大气环境所产生的影响研究的基础,对于了解林火对全球碳循环的影响和改进林火管理策略也有着重要意义。
     本文将以森林火灾基本信息为研究问题,基于MODIS、TM遥感数据、历史火灾数据和森林调查数据,针对森林火灾森林可燃物载量的消耗及污染气体的释放、构建林木可燃物载量估测、消耗模型及林火排放气体计算模型等问题展开研究,初步完成特大森林火灾的释放污染物量化估算。基于这些问题本文开展了如下研究:
     完成了遥感数据及其他资料的搜集工作,对遥感数据进行了包括几何校正和辐射校正等预处理,对多时相的遥感数据的进行了平滑处理,完成了正确获取遥感信息的基础工作。
     完成了基于MODIS多时相遥感数据进行森林可燃物分类的工作,证明选定合适的分类方法和必要的他源数据参与分类,可以获得较为理想的分类精度。研究结果说明利用决策树方法对MODIS植被指数数据分类,可以获得83.2%的精度,要高于利用TM数据进行监督分类的精度,这样的精度基本满足生产需要;使用决策树方法的关键在于获取地物判别阈值并制定好分类规则,TM、MODIS图像在各关键期的可获取性及数量在一定程度上也决定了可燃物的分类精度。
     完成了基于MODIS数据利用混合像元分解技术进行森林火灾面积估算的方法研究,像元分解后像元精度可以达到92%、总量精度可以达到90%左右,基本上杜绝了以前估测过火面积时对非植被区和火场边缘像元提取精度不高的问题。与传统的飞机航拍圈划面积的方法相比在大空间尺度上操作上更方便、且时效性更强,相比利用高分辨率数据而言又具有较高的时效性,且精度也满足生产的需要。完成了对2006年松岭798高地森林火灾过火面积进行估测,估测过火面积为242030公顷,其中重度火烧面积为23781公顷、中度火烧145408公顷、轻度火烧72964公顷,其中重度火烧、中度火烧、轻度火烧所占比例分别为9.82%、60.05%、30.13%。
     建立了基于TM图像估测森林可燃物载量的模型,并且利用模型反演大兴安岭地区森林可燃物载量,反演的精度基本符合要求,但还需要进一步提高。在估测可燃物载量的过程中,本文对比应用偏最小二乘估计模型和二阶最小二乘估计模型,通过对模型精度、决定系数及均方根差的误差评估比较,选择二阶最小二乘估计模型反演的可燃物载量,取得了比较准确的反演结果。但由于样地设置不多以及大兴安岭地区的特殊性,估测模型还需要进一步的修正,局部反演精度还需提高。得到的乔灌层、地表可燃物估测模型分别为:Y=4.542-3.226×B2+2.126×B3-1.524B5+0.432×Prin2+0.469×ent2+39.706×sec2+70.628×corr4+0.179×DBH、Y=8.975+0.043×B3-0.008×B4-0.256×homo1+0.144×cont6+0.692×DBH。
     完成了大兴安岭松岭798高地火灾可燃物消耗的估算,火灾中各类型森林火灾乔灌层损失可燃物载量为2946805.78t,其中落叶松林乔灌层损失1503946.10t,占总损失可燃物载量的51.04%左右;针阔混交林乔灌层损失872662.73t,占总损失可燃物载量的29.73%左右;阔叶混交林中乔灌层损失566631.95t,占总损失可燃物载量的19.23%左右。结果显示不同类型的森林火灾造成的可燃物载量损失的差别比较显著的,如重度森林火灾造成的可燃物载量损失为667515.03t,占总损失可燃物载量的22.65%,而中度火烧和轻度火烧造成的可燃物载量损失分别为1962732.38t、316557.36t,分别占总损失可燃物载量的66.61%、10.74%。
     完成了大兴安岭松岭798高地森林火灾地表可燃物载量消耗量的估测,火灾消耗地表可燃物载量2083668.65t,其中重度火烧、中度火烧、轻度火烧消耗地表可燃物载量分别为226286.75t、1427932.29t、429450.04t。
     本文采用排放因子法估算了森林火灾气体释放总量,得到较好的效果。经过计算大兴安岭松岭798高地森林火灾中森林可燃物释放共释放CO2气体量约为149187.66t,其中乔灌层可燃物释放CO2气体量约为88110.43t,地表可燃物释放CO2气体量约为61077.23t;共释放CO气体量约为21187.70t,其中乔灌层可燃物释放CO气体量约为12010.07t,地表可燃物释放CO气体量约为9177.63t;共释放CH气体量约为1925.41t,其中乔灌层可燃物释放CH-气体量约为1512.15t,地表可燃物释放CH气体量约为413.26t;共释放NO气体量约为470.76t,其中乔灌层可燃物释放NO气体量约为272.19t,地表可燃物释放NO气体量约为198.57t;共释放SO2气体量约为658.77t,其中乔灌层可燃物释放SO2气体量约为301.07t,地表可燃物释放SO2气体量约为357.70t。
Forest fire, as a main factor in forest ecosystem, played an important role in atmospheric chemical cycles and the carbon cycle. The high frequency of forest fire will not only detory the ecosystem but also result in massive release of carbon greenhouse gases. The forest fire estmissions is mainly in the form of CO2and CO, and others being emitted into atmosphere as CH4, multi-carbon hydrocarbons and volatile organic oxides. This will be breaking the balance of carbon in atmosphere, and then making a critical effect on the global climate environment. The research on the relationship between forest fire and carbon emission will contribute to understanding of how the impact that fire on global carbon cycle is and improvement of strategies of fire management. The estimation of composition and release of fire gas is a basic work for the research of atmosphere environment.
     There are four main research aspects (RA) in this study based on MODIS, TM remote sensing data, historical fire and forest survey data RA (1) estimating the consumption of forest fuel, and emission of polluting gas emission; RA (2) establishing the estimation and consumption model of forest fuel load; RA (3) developing the model of emission of forest fire; RA (4) evaluating the loss of forest fire and estimating the emission of polluting gases. The detailed work as follows:
     Preprocessed the remote sensing data,Which includes geometic and radiometric correction. Smooth processed the multi-temporal remote sensing data and completed the basic work of getting remote sensing information.
     Completed forestfuel classification based on MODIS and proved that appropriate classi-ficationmethodsand the participation of other necessary data can obtain more satisfact-ory resolution of classification. The results showed that the resolution based ondecision tree methodis83.2%, higher than supervised classification in terms of TM data.This resolution can meet the production needs. The keys ofdecision tree method are getting the threshold of surface features and developing a suitable rule of classification.However, accessibility and quantity of TM and MODIS images are able to affect the classification accuracyofthe com-bustibles.
     In this study, we estimated the burned area using mixed-pixel decomposition techni-que based on MODIS data. After pixel decomposition, the resolution of pixel can reach about92%, and the total precision can get90%, basically putting an end to the problem that extracting pixel accuracy of non-vegetated areas and the fire edge is low. Compared with conventionalaircraft, this method is more convenient in operation on large spatial scales and more time-sensitive also. Furthermore, it has high level of timeliness and can meet the production needs better than high-resolution data.Estimated the burned area of forest fire in798highland of Songling, which is242,030hectares totally, including severe fire (23,781ha), moderate fire (145,408ha) and low-intensity fire (72,964ha) and the percentage is9.82%.60.05%、30.13%correspondingly.Established a TM image-based estimation model of forest fuel load, then deducted the fuel load of entire Daxing'an mountains based on the model. We obtained a resasonable resolution; however, a further improvement is still needed. The Partial Least Squares and Second-order Least Squares models have been used to deduct the forest fuel load in this study.We made a comparison between these two models in terms of different statistics and the results indicated that Second-order Least Squares model is superior over Partial Least Squares and the function of estimation models of thearbor, shrub layer, surface fuel are as follows:Y=4.542-3.226×B2+2.126×B3-1.524×B5+0.432×Prin2+0.469×ent2+39.706×sec2+70.628×corr4+0.179×DBH、Y=8.975+0.043×B3-0.008×54-0.256×homo1+0.144×cont6+0.692×DBH.
     Completed the estimation the consumption of forest fuel in798high-land of Songling. The total loss of fuel load of canopy shrub is2946805.78t in different fire severity, in which Larch canopy shrub is1503946.10t accounting for51.04%;Mixed coniferous canopy shrub is872662.73t (29.73%);Broad-leaved mixed canopy shrub is566631.95t (19.23%).Besides, there is a significant distinction between different severity of fires, such as sever fire caused a667515.03t fuel load loss occupied22.65%; meanwhile,moderatefire and low intensity fire lead to1962732.38t and316557.36t respectively fuel load loss and accouting to66.61%.10.74%of total loss of fuel load. The consumption of surface fuel load in798high-land of Songling is2083668.65t, in which the number of burned fuel load by high intensity fire、 moderate fire、low intensity fire is226286.75t、1427932.29t、429450.04t respectively.
     This paper, the emission factor wasused to estimate the emission of gases from forest fires. The results revealed that there were149187.66tCO2emitted from forest fire, in which88110.43t come from canopy shrub fuel,61077.23tfrom surface fuel. The total amount of CO was12010.07t and canopy shrub fuel and surface fuel12010.07t and occupied9177.63trespectively.The total amount of CH was1925.41t, canopy shrub fuel1512.15t and surface fuel413.26t. The total amount of NO was470.76t, canopy shrub fuel272.19t and surface fuel198.57t. The total amount of SO2was658.77t, canopy shrub fuel301.07t and surface fuel357.70.
引文
[1]Weber M G,Flannigan M D.Canadian boreal forest ecosystem structure and function in a changing climate:impact on fire regimes.Environmental Reviews,1997(5):145-166
    [2]Bourgeau C,Alexander L L,Stocks M E,et al.Distribution of forest ecosystems and the role of fire in the North American boreal region,in:Fire,climate change and carbon cycling in the boreal forest.New York:springer,2000:111-131
    [3]郭福涛.基于空间分析和现代模型理论的大兴安岭地区林火分布与火险预测研究.东北林业大学博士论文,2010
    [4]Mouillot F,Field C B.Fire history and the global carbon budget:a 1 degrees 1 degrees fire history reconstruction for the 20th century.Global Change Biology,2005(11),398-420
    [5]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报,2000,18(5):733-740
    [6]Goldammer J G,Crutzen P J.Fire in the environment:scientific rational and summary of results of the Dahlem Workshop,in:fire in the environment:The Ecology,Atmospheric and Climtic Importance of Vegetation firse.New York:springer,1993,1-14
    [7]Crutzen P J,Andreae M O.Biomass burning in the tropics:impact on the atmospheric chemistry and biogeochemical cycles.Science,1990(250):1669-1678
    [8]田晓瑞,舒立福,王明玉等.林火与气候变化研究进展世界林业研究,2006,19(5):38-42
    [9]Deferis R S, Townshend J R G. NDVI derived Land Cover Classification at a Global Scale. International Journal of Remote Sensing,1994,15:3567-3586
    [10]Smith J.E,Heath L.S.Identifying in fluences on model uncertainty:an applieation using a forest carbon budget model.Environmental Management.2001(27):253-267
    [11]]周广胜.全球碳循环北京:气象出版社,2003,2-19
    [12]Tucker; C. J., Townshend, J. R. G. Goff, T. E. African land cover.-classification using satellite data. Science,4685,369-375
    [13]Lambin E F, Strahler A H. Indicators of Land-cover for Change-vectorAnalysis in Multitemporal Space at Coarse Spatial Scales.Remote Sensing of Environment,1994, 15(10):2099-2119
    [14]Joy S M, Reich R M, Reynolds R T. A Non-parametric, Supervised Classification of Vegetation Types on the Kaibab National Forest using decision trees. International Journal of Remote Sensing,2003,24 (9):1835-1852
    [15]Friedl M A, McIver D K, Hodges J C F, et al. Global Land Cover Mapping from MODIS: Algorithms and Early Results.Remote Sensing of Environment,2002,83:287-302
    [16]Muchoney D, Borak J, Borak H C, et al. Application of the MODIS GlobalSupervised Classification to Vegetation and Land Cover Mapping of Central America. International Journal of Remote Sensing,2000.21:1115-1138
    [17]Hanson M C, Dubayah R, DeFries R S. Classification Trees:An Alternative to Traditional Land Cover Classifers. International Journal of Remote Sensing,1996,17:1075-1081
    [18]Gowaard, S. N. Tucker, C. J. Dye, D. G. North American vegetationpatterns observed with the NOAA-7 advanced very high resolution radiometer
    [19]Loveland T R, Merchant J. w. Brown, J. F. Development of a land-cover characteristics database for the conterminous US. Photogrammetric Engineering&Remote Sensing.1991, 11:1453-1463
    [20]Defries, R., Hansen, M.,&Townshend, J. Global discrimination of land cover types from metrics derived from AVHRR Pathfinder data. Remote Sensing of Environment.1995,54: 209-222
    [21]Zhu,Z., Evans.D. L. U. S. Forest types and predicted percent forest cover from AVHRR data. Photogrammetric Engineering&Remote Sensing.1994,5:525-531
    [22]Tucker, C. J. Remote sensing of leaf water content in the near-infrared. Remote Sensing of Environment.1980,10:23-32
    [23]Liu J.,Zhuang D.,Ling, Y. Vegetation integratedclass-ification and mapping using remote sensing and GIS techniques in Northeast China.Journal of Remote Sensing.1998,4:285-291
    [24]盛永伟,陈维英,肖乾广,等.利用气象卫星植被指数进行我国植被的宏观分类.科学通报,1995,40(1):68-71
    [25]匡霞.专家系统在TM图像分类中的应用.环境遥感,1989,4(4):255-265
    [26]李晓兵,史培军.基于NOAA/AVHRR数据的中国植被类型NDVI变化规律研究.植物学报,1999,41(3):314-324
    [27]李俊祥.基于NOAA/AVHRR数据的中国东部地区植被遥感分类研究.植物生态学报,2005,29(3):436-443
    [28]王任华,霍宏涛,游先祥.人工神经网络在遥感图像森林植被分类中的应用.北京林业大学学报.2003,25(4):1-5
    [29]杜华强,周国模,葛洪立,等.基于TM数据提取竹林遥感信息的方法.东北林业大学学报,2008,36(3):35-38
    [30]刘旭升,张晓丽.基于BP神经网络的森林植被遥感分类研究.林业资源管理,2005,2(1):51-54
    [31]陈君颖,田庆久.高分辨率遥感植被分类研究.遥感学报.2007,15(2):1468-1472
    [32]刘世荣.兴安落叶松人工林群落生物量及净初级生产力的研究.东北林业大学学报,1990,18(2):40-46
    [33]丁美花,谭宗昆,何燕,等.基于MODIS数据提取广西甘蔗信息技术初步研究.西南大学 学报,2008,30(9):94-100
    [34]张霞,童庆禧,张兵,等.基于MODIS植被指数时间谱的华北平原土地分类.农业工程学报,2006,22(12):128-132
    [35]邓书斌,江涛,等.GIS辅助下的基于数据挖掘的林型遥感分类方法研究.测绘科学,2008,33(3):121-123
    [36]陈君颖,田庆久.高分辨率遥感植被分类研究.遥感学报,2007,11(2):221-227
    [37]刘勇洪,牛铮,王长耀.基于MODIS数据的决策树分类方法研究与应用.遥感学报,2005,9(4):405-412
    [38]国志兴,王宗明,宋开山,等.1985-2003年东北地区植被覆盖变化特征分析.西北植物学报,2008,28(1):155-163
    [39]夏露,柯长青,刘咏梅.基于SPOT4数据的黄土高原植被动态变化研究.遥感技术与应用,2008,23(1):67-71
    [40]朴世龙,方精云.最近18年来中国植被覆盖的动态变化.第四纪研究,2001,21(4):294-302
    [41]方精云,朴世龙,贺金生,等.近20年来中国植被活动在增强.中国科学(C辑),2003,33(6):554-565
    [42]覃先林,陈尔学,李增元,等.基于MODIS数据的森林覆盖变化监测方法研究.遥感技术与应用,2006,21(3):178-183
    [43]易浩若,覃先林.基于MODIS数据的森林可燃物分类方法-以黑龙江省为实验区.遥感技术与应用,2004,29(4):236-239
    [44]徐文婷,吴炳方,黄惠萍等.用SPOT-VGT数据制作中国2000年度土地覆盖数据.遥感学报,2005,9(2):204-214
    [45]杜子涛,占玉林,王长耀.基于NDVI序列影像的植被覆盖变化研究.遥感技术与应用,2008,23(1):47-50
    [46]袁金国.森林植被遥感分类研究.河北师范大学学报(自然科学版),1999,23(2):274-277
    [47]韩涛.用TM资料对祁连山部分地区进行针叶林、灌木林分类研究.遥感技术与应用,2002,17(6):317-321
    [48]李石华,王金亮,陈姚.独龙江流域TM图像的分区分类方法探讨.遥感信息,2006,3:40-43
    [49]黄建文,鞠洪波.山区林地多季相TM影像综合分类研究.福建林学院学报,2004,24(2):136-139
    [50]吕婷婷,孙晓宇,于伯华.基于MODIS数据的泰国林地资源提取.资源科学,2008,(30)7:1076-1083
    [51]Wang X K,Zhuang Y H,Feng Z W.Estimation of carbon-containing gases released from forestfire.Advances In Environmental Science,1998,6(4):1-15
    [52]方精云,刘国华,徐篙龄.中国森林植被生物量和净生产力.生态学报.1996,16(4):497-508
    [53]]赵英时.遥感应用分析原理与方法.北京:科学出版社,2003
    [54]Conard S G,lvanova G A.Wildfire in Russian boreal forests-potential impacts of fire regimecharacteristics on emissions and global carbon balance estimates.Environ Pollut,1997,98(3):305-313
    [55]易浩若,纪平.森林过火面积的遥感测算方法.遥感技术与应用,1998,13(2):10-14
    [56]苏力华,楼玫娟等.气象卫星遥感监测在森林防火中的应用.西北农林科技大学学报,2004(32):85-88
    [57]Riano D,Moreno J A.Global spatial patterns and temporal trends of burned area between 1981 and2000 using NOAA-NASA Pathfinder.Global Change Biology,2007(13):40-50
    [58]张春贵.MODIS数据在南方丘陵地区局地森林火灾面积评估中的应用.研究应用气象学报,2007(18):119-123
    [59]催学明,王林和等MODIS及ASTER卫星数据在林火面积估算中的应用.干旱区资源与环境,2008,22(1):198-200
    [60]Li Z,Nadon S,Cihlar J.Satellite mapping of Canadian boreal forest fires:Evaluation and comparison ofalgorithms.Remote Sense,2000(21):3071-3082
    [61]马延辉.南方针叶林遥感信息提取研究.中南林业科技大学硕士论文,2010
    [62]刘诚,李亚军,赵长海等.气象卫星亚像元火点面积和亮温估算方法.应用气象学报,2004,15(3):274-280
    [63]Potter C,Genovese V B,Klooster S.Biomass burning losses of carbon estimated from ecosystemmodeling and satellite data analysis for the Brazilian Amazon region. AtmosphereEnvironment,2001(35):1773-1781
    [64]Zhang Y H,Wooster M J.Monthly burned area and forest fire carbon emission estimates for theRussian Federation from SPOT VGT.Remote Sensing of Environment,2003,87(1):1-15
    [65]张顺谦.利用遥感监测亚像元分解遗传算法估算森林火灾面积.中国农业气象,2007,28(2):198-200
    [66]殷丽.大兴安岭林火释放碳量的估算.中国林业科学研究院硕士论文,2009
    [67]王效科.森林火灾释放的含碳温室气体量的估计环境科学进展,1998(6):1-15
    [68]田晓瑞,舒立福,王明玉.1991-2000年中国森林火灾直接释放碳量估算火灾科学,2003(12):6-10
    [69]Brender, E.V.; McNab, W.H. Precommercial thinning of loblolly pine by fertili nation. Res. Pap.90. Macon, GA:Georgia Forestry Research Council,1978.8 p
    [70]Brown J. K. Estimating crown fuel weights of red pine and jack pine. USDA Forest Serv. Res. pap.1965,12:12-13
    [71]E. A Catchpole.Estimating Fuel Response Time and Predicting Fuel Moisture Conte nt from Field Data.International Journalof Wildland Fire,2001,10(2):215-222
    [72]John W. Modeling Potential Erosion due to the Cerro Grande Fire with a GIS-base d Implementation of the Revised Universal Soil Loss Equation.International Journal of Wildland Fire,2000,12(1):85-100
    [73]Olson Js. Energy storage and the balance of producers and decomposers in ecological systems. Ecology,1963,44(2),322-330
    [74]金森.遥感估测森林可燃物载量的研究进展.林业科学,200642(12):63-67
    [75]Robert E. Keane. Mapping Wildland Fuels for Fire Management srcoss Multiple Scales: Intergrading Remote Sensing, GIS, and Biophysical Modeling. International Journal of Wildland Fire,2001,12,301-319
    [76]Kate Brandis. Estimation of Vegetative Fuel Loads using Landsat TMImagery in New South-Wales, Australia. International Journal of Wildland Fire,2003,12,185-194
    [77]Kelly Scott, Brian Oswald, Kenneth Farrish and Daniel Unger. Fuel loading prediction models developed from aerial photographs of the Sangre de Cristo and Jemez mountains of New Mexico, USA. International Journal of Wildland Fire,2002,11,85-90
    [78]王强,金森.利用RS和林分因子估测帽儿山林场森林可燃物负荷量.东北林业大学学报,2008,(9)35-39
    [79]魏云敏.森林可燃物载量研究综述.森林防火,2006(4):18-21
    [80]刘晓东,王军,张东升等.大兴安岭地区兴安落叶松林可燃物模型的研究.森林防火,1995(3):8-9
    [81]张国防,欧文琳,陈瑞炎等.杉木人工林地表可燃物负荷量动态模型的研究.福建林学院学报,2000,20(2):1-33
    [82]袁春明,文定元.森林可燃物分类与模型研究的现状与展望.世界林业研究,2001,14(2):29-33
    [83]邓湘雯,聂绍元,文定元等.南方杉木人工林可燃物负荷量预测模型的研究.湖南林业科技,2002,29(1):24
    [84]胡海清,王强.利用林分因子估测森林地表可燃物负荷量.东北林业大学学报,2005,33(6):17-18
    [85]赵宪文.森林资源遥感估测的重要进展.中国工程科学,2001,3(8):15-25
    [86]赵宪文.林业遥感定量估测.北京:中国林业出版社,1997
    [87]郑元润,周广胜.基于NDVI的中国天然森林植被净第一性生产力模型.植物生态学报,2000(1):38-42
    [88]王强.利用遥感图像估测林下可燃物负荷量的研究.东北林业大学硕士论文,2005
    [89]胡海清,魏云敏.利用林分因子估测森林地表可燃物负荷量.东北林业大学学报,2005.33(6):17-18
    [90]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力.北京:科学出版社,1999.
    [91]Steininger M K.Satellite estimation of tropical secondary forest above-ground biomas s:data from Brazil and Bolivia. International Journal of Remote Sensing,2000(21):11 39-1157
    [92]魏云敏.利用遥感影像估测塔河地区森林可燃物载量的研究.东北林业大学硕士论文,2007
    [93]Foody G M, Boyd S B, Cutler M E J.Predictive relations of tropical forest biota a ss from Landsat TM data and their transferability between regions.Remote Sensing of Environment,2003,(85):463-474
    [94]Nelson R F, Kimes D S,Salas W A. et al. Secondary forest age and tropical forest biomass estimation using Thematic Mapper Imagery. BioScience 2000(50):419-431
    [95]Shvidenko A, Nilsson S. Fire and the carbon budget of Russian forests.In:Kasischke ES,Stocks BJeds.Fire,Climate Change and Carbon Cycling in North American Boreal Forests,Ecological StudiesSeries,New York:Springer,2000,289-311
    [96]Lambin E F, Goyvaerts K, Petit C. Remotely-sensed indicators of burning efficiency of savannah andforestfires.2003,24(15):3105-3118
    [97]LevineJS,CoferⅢWR.BorealForestFireEmissionsandtheChemistryoftheAtmosphere.In:Ka sischkeES,StocksBJeds.Fire,ClimateChangeandCarbonCyclinginNorthAmericanBorealFor ests. EcologicalStudiesSeries,NewYork:Springer,2000:31-48
    [98]ConardSG,lvanovaGA.WildfireinRussianborealforests-potentialimpactsoffireregimecharacteristicsonemissionsandgloba carbonbalanceestimates.Environment Pollution,1997,98(3):305-313
    [99]FrenchNHF,KasischkeES,LeeBS.,etal.CarbonreleasedfromfiresinNorthAmericanborealfore sts.In:KasischkeES,StocksBJedsFire,ClimateChangeandCarbonCyclinginNorthAmericanB orealForests. EcologicalStudiesSeries,NewYork:Springer,2000:377-388
    [100]KasischkeES,O'Niel1KP,FrenchNHF.,etal. ControlonpatternsofbiomassburninginAlaskanborealforests.In:KasischkeES,StocksBJeds.F ire,ClimateChangeandCarbonCyclinginNorthAmericanBorealForests,EcologicalStudiesSer ies,NewYork:Springer,2000b:173-196
    [101]FearnsideP.M.FireinthetropicalrainforestoftheAmazonbasin,inFireinTheTropicalBiota. Ecology Study,1990,84:106-116
    [102]易浩若,纪平.森林过火面积的遥感测算方法遥感技术与应用,1998,13(2):10-14
    [103]Srivastava, R. K. Dhan Singh. Khanduri, V. P. Carbon sequestration and role of carbon emission from forest fire on climate change. Indian Forester,2003,129(7):844-852
    [104]Isaev, A. S. Korovin, G. N. Bartalev, S. A,. et al. Using remote sensing to assess Russian forest fire carbon emissions. Climatic Change,2002,55:235-249
    [105]Zhang, Y.H. Wooster, M. J. Tutubalina, O. Perry, G. L. W. Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOT VGT. Remote Sensing of Environment,2003,87:1-15
    [106]B.D. Amiro, J.I. MacPherson, R.L. Desjardins. BOREAS flight measurements of forest- fire effects on carbon dioxide and energy fluxes. Agricultural and Forest Meteorology, 1999, (96):199-208
    [107]Amiro, B. D. Stocks, B. J. Alexander, M. E. Flannigan, M. D. Wotton, B. M. Fire, climate change, carbon and fuel management in the Canadian boreal forest. International Journal of Wildland Fire.2001,10:3/4,405-413
    [108]Amiro, B. D. MacPherson, J. I. Desjarolin.,et al. Post-fire carbon dioxide fluxes in the western Canadian boreal forest:evidence from towers, aircraft and remote sensing. Agricultur al & Forest Meteorology,2003,115:1/2,91-107
    [109]Guido R. van der Werf, James T Randerson, G James Collatz., et al. Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biology,2003,9:547-562
    [110]Martin P,Girardin.Interannual to decadal changes in area burned in Canada from 1781 to 1982 and therelationship to Northern Hemisphere land temperatures.Global Ecology andBiogeography,2007(16):557-566
    [111]Stefania Korontzi. Seasonal patterns in biomass burning emissions from southern African vegetation fires for the year 2000. Global Change Biology,2005,11:1680-1700
    [112]孙华生.利用多时相MODIS数据提取中国水稻种植面积和长势信息.浙江大学博士论文,2008
    [113]张春桂,林晶,吴振海,等.基于MODIS数据的水稻种植面积监测方法研究.自然资源学报,2006,22(1):1-8
    [114]李玉昆,邓光瑞等.大兴安岭三种森林类型地表可燃物燃烧气体排放量的研究.林业科技,2006,31(6):28-31
    [115]惠巍巍.高光谱混合像元的分解及地物分类的研究.东北林业大学硕士学位论文,2007
    [116]王明玉,舒立福,田晓瑞等.林火在空间上的波动性及其对全球变化的响应(Ⅰ)火灾科学,2003,12(3):165-170
    [117]舒立福,王明玉,田晓瑞等.我国大兴安岭呼中林区雷击火发生火环境研究.林业科学,2003,39(6):94-99
    [118]张喆.基于RS的森林可燃物类型划分的研究.东北林业大学硕士学位论文.2007
    [119]周以良等.中国大兴安岭植被.北京:科学出版社,1991:3-6
    [120]曲智林.黑龙江省潜在森林火灾危害程度预测的研究.东北林业大学博士学位论文.2007
    [121]郭怀成,周丰,刀胥.地统计方法学研究进展.地理研究,2008,27(5):1191-1202
    [122]徐涵秋.基于谱间特征和归一化指数分析的城市建筑用地信息提取.地理研究,2005,24(2):311-318
    [123]Foody G M.Land cover classification by an artificialneural network with ancillaryinformation.International Journal of Remote Sensing,1995,9:527-542
    [124]梅安新,秦其明,刘惠平.遥感导论.北京:高等教育出版社,2001
    [125]何应彬.基于MODIS与TM的冷害影响水稻产量评估研究.中国农业科学院博士论文,2007
    [126]张京红,景毅刚.遥感图像处理系统ENVI及其在MODIS数据处理中的应用.陕西气象,2004,(1):27-29
    [127]刘闯,葛成辉.美国对地观测系统(EOS)中分辨率成像光谱仪(MODIS)遥感数据的特点与应用,遥感信息,2000,(3):45-48
    [128]郑丽.混合像元分解及其应用研究.重庆交通大学硕士学位论文,2010
    [129]Price J.C. Comparing MODIS and TM+ data for regional and global land classifi cation. Remote Sensing of Environment,2003,86(4):491-499
    [130]刘忠,凌峰,张秋文.MODIS遥感数据产品处理流程与大气数据获取.遥感信息,2005,(2):52-57
    [131]赵英时.遥感应用分析原理与方法.北京:科学出版社,2003:205-208
    [132]党安荣,王晓栋,陈晓峰,等.ERDASIMAGINE遥感图像处理方法.北京:清华大学出版社,2002,97
    [133]赵英时.遥感应用分析原理与方法.北京:科学出版社,2003:374
    [134]寿敬文.陆地卫星7号ETM+图像数据缺行的修复与应用研究.哈尔滨工程大学硕士论文,2006
    [135]Xiangmingxiao,Stephen Bole,etal.Charaeterization of forestty pein Northeastern China, using multi-temPoral SPOT-4 VEGETATION sensor dat. Remote Sensing of Envirion-ment,2002,82:335-348
    [136]马延辉.南方针叶林遥感信息提取研究.中南林业科技大学硕士论文,2010
    [137]庞新华.基于决策树和混合像元分解的P6 AWiFS遥感影像小麦播种面积测量方法研究,北京师范大学硕士论文,2008
    [138]郑伟,李亚君,刘诚等.基于多源卫星遥感数据的森林过火区面积估算方法.林业科学,2011(8):192-195
    [139]范旻昊.基于MODIS遥感数据的混合像元分解技术与方法研究,南京信息工程大学博士论文,2007
    [140]卫建军,李新平,赵东波等.混合像元分离的研究进展.水土保持研究,2006(10):103-105
    [141]李海涛.基于小波变换和MNF变换的遥感影像融合.山东科技大学学报:自然科学版,2007(5):10-12
    [142]邹蒲.遥感混合像元分解技术在土地覆盖与生态环境变化中应用研究——以广州花都为例.中国科学院博士论文.2007
    [143]陶雪涛.线性模型下多通道遥感图像混合像元分解方法研究.复旦大学博士论文,2008
    [144]王强.利用遥感图像估测林下可燃物负荷量的研究.东北林业大学硕士论文,2005
    [145]李明泽.东北林区森林生物量遥感估算及分析.东北林业大学博士论文,2010
    [146]徐小军.基于LANDSATTM影像毛竹林地上部分碳储量估算研究.浙江农林大学硕士论文,2009
    [147]王娟.Jackknife估计与Bootstrap估计的理论与应用.扬州大学硕士论文,2007
    [148]张金辉.森林可燃物燃烧烟气成分及释放量分析.东北林业大学硕士论文,2007
    [149]郑焕能.林火灾变域值.火灾科学,1999,8(3):1-5
    [150]焦燕,胡海清.黑龙江省1980-1999年森林火灾释放碳量的估算.林业科学,2005(6):33-36
    [151]郭福涛.大兴安岭森林火灾气体释放量的估算.东北林业大学硕士论文,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700