小尺度森林火险等级预报模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林火险是多种自然因素和社会因素综合作用的结果,其等级的高低用于衡量林火发生概率、蔓延速度、释能强度、难控程度和损失大小。森林火险预测预报是林火管理的基础性工作之一,其准确性和时效性决定了森林防火工作的针对性和科学性。
     我国现有的森林火险等级预报方法是在大尺度上基于气象因子发布国家级森林火险气象等级,在中小尺度上单方面基于气象因子、可燃物含水率或可燃物燃烧性预测林火发生的可能性。可燃物因素、火环境因素和火源因素是森林燃烧的三个基本条件,任一因素的缺失都会局部性增强或弱化森林火险等级,进而影响森林火险预测预报的精度,综合考虑上述三方面因素建立森林火险等级预报模型是提高林火预报准确性的有效方式。由于我国森林资源分布具有明显的区域性和复杂的空间结构,自然和社会环境差异显著,亟需开展综合考虑林火燃烧三个基本条件的以小空间范围为研究单位的小尺度森林火险等级预报研究,以提高森林防火工作的精细化管理水平、有效利用森林防火资源、提高森林防火工作效率。随着大数据时代的来临,面向物联网的无线传感器网络为小尺度下各类林火影响因子数据的获取提供了新的途径,有利于提升森林火险预测预报的精准性和时效性。
     本研究从火环境因素、可燃物因素和火源因素三个方面归纳并分析各因子对森林火险的影响及因子间的相互关系,并以小尺度森林火险等级预报为指导分层构建了可燃物分类方法,研究了各火险影响因子的估测模型,提出了小尺度森林火险等级预报模型的构建方法,并以北京市九龙山区华北林业实验中心为研究区域,实现了小尺度森林火险等级的预报。主要研究结果和结论有:
     (1)森林火险的影响因子众多,因子的选取从本质上决定着所建立的火险等级预报模型的准确性。本研究对森林火险的影响因子进行分类,从机理方面详细分析各因子对森林火险的影响方式,并探讨了各因子间的相互作用关系,为小尺度森林火险等级预报模型构建的因子选取提供理论依据。
     (2)火环境因子即是林火的孕灾环境,又是林火其他影响因子的差异性基础。本研究基于DEM数据及森林资源二类调查数据,综合应用GIS、RS和数理统计理论建立小尺度地形信息提取方法。利用ENVIS梯度气象站采集的气象数据,结合获取的地形因子数据,修订山地小气候模拟模型MTCLIM中的关键参数,并应用该模型模拟山地小环境的温度和湿度;应用WindNinja软件的模拟算法获取小班的平均风速。实现了山地小环境气象信息的模拟,为火环境因子的计算提供方法依据。
     (3)建立森林可燃物的分类方法,为小尺度森林火险等级预报模型的因子计算提供依据。提出基于森林可燃物理化性质的内特性的小班燃烧性指标计算方法,并测定可燃物的初始引燃含水率,为小尺度森林火险等级预报模型提供因子数据。
     (4)建立了基于多元回归分析的乔木型灌木生物量估测模型、地表枯落物未分解层和半分解层载量估测模型,基于遗传算法优化的BP(GA-BP)神经网络构建了典型灌木的生物量估测模型,实现了大范围灌木生物量的快速估测,有效避免了灌木生物量估测模型构建时自变量选取和模型选取的繁琐工作。提出了小班乔木层、灌木层及地表枯落物未分解层、半分解层载量的计算方法,为小尺度的森林火险等级的可燃物载量计算提供方法依据。
     (5)基于时间序列分析理论,应用多元逐步回归分析方法分树种构建地表枯落物未分解层和半分解层的含水率预测模型,提出小班可燃物含水率计算方法,结合山地小环境气象数据实现可燃物含水率动态预测。
     (6)建立小尺度森林火险等级预报模型构建方法。综合考虑小尺度森林火险影响因素,选取小尺度森林火险等级预报模型因子,应用因子分析方法消除因子多重共线性并提取因子主成分,基于主成分得分函数计算各小班的森林火险指标值,应用聚类分析将各小班的森林火险等级聚类,应用GA-BP神经网络建立研究区域的小尺度的森林火险等级预报模型。
Forest fire is a damage which is comprehensively caused by a variety of natural and socialfactors, and its grade level is utalized to measure the mutiple characteristics of the forest fireincluding the probability of occurrence, spread rate, release energy intensity, the difficultdegree of control and the damage loss. Forest fire forecasting is a fundmental work of forestfire management, and the direction and scientificity of forest fire prevention are always decidedby the accuracy and timeliness of forest fire forecasting.
     The features of the existing forest fire danger rating prediction methods are: the nationalforest fire weather rating is forecasted based on the meteorological factors data on thelarge-scale, the likelihood of fires occurring is predicted by exploiting meteorological factorsand wildland fuel moisture content and the forest fire behavior is prognosised by unilaterallyconsidering the combustion characteristics of fuel on the mesoscale and the small-scale.According to statistics, the man-caused fire is one of the main reason in forest fires, and thesmall area of forest, which are always distirbuted near the human settlesments and withfrequent human activities, are the places of the high incidence of forest fires. However, it is noteffective to deduct the results of the large-scale and mesoscale forest fire danger ratingpredition to the small-scale, meanwhile the difference of natural and social environment issignificant in forest resource subcompartments which is a typical representative of thesmall-scale. Forest fire impact factors in forest resource subcompartment includingmeteorology, fuel combustion resistance and moisture content, terrain and the man-made factorare tightly related, and the absence of any one factor will locally strengthen or weaken theforest fire danger rating, thereby the accuracy of prediction of forest fire will be affected. Withthe advent of the era of big data, it is a new way for the data acquisition of various forest firesfactors on small-scale by making use of the wireless sensor networks for the internet of thingsto help improve the accuracy and timeliness of forest fire prediction.
     Fire environmental factors, combustible materials factors and fire sources factors weresummarized, and the influence of these three factors acting on the forest fire danger rating andthe relationship between factors were analyzed. Then, the wildland fuel classification methodwas hierarchically builded to meet the requirement of small-scale forest fire danger ratingprediction. Meanwhile, the estimation model of various fire impact factors were constructed,and then the construction method of a Small-scale Forest Fire Danger Rating PredictionModel(SFFDRPM) was proposed. Finally, Jiulong mountain district forestry experiment centerof north China in beijing city was taken as the study area, and a small-scale forest fire dangerrating prediction of which was achieved. Thus, the main results and conclusions are as follows:
     (1) There are a great number of forest fire impact factors, and the accuracy of the firedanger rating prediction model was essentially determined by the selection of factors. Theimpact factors on forest fire were classified, and the way of these factors impacting on theforest fire was analyzed in detail. Then, the interaction relationship between each factor wereexplored. Thus, the factors selection theoretical basis for the SFFDRPM was provided.
     (2) Not only are forest fire environmental factors the pregnant disaster environment, butalso the differences basis of other forest fires impact factors. The small-scale topographicalinformation extraction methods were established by the integrated application of GIS, RS andstatistical theory based on the DEM data and forest resource inventory data. At the same time,the meteorological data of ENVIS gradient stations were collected and the acquiredtopographical factors data were combined to amend the key parameters in MTCLIM(MountainMicroclimate Simulation Model), which was utalized to simulate the small mountainenvironment temperature and humidity. Meanwhile, the average wind speed in forestsubcompartment were obtained by applying the simulation algorithm of WindNinja software.Ultimately, the weather information in mountain microenvironment were simulated to providethe method basis of the fire environment factors calculation.
     (3) The forest wildland fuel classification method was established to provide the basis ofthe factors calculation in the SFFDRPM.Then, the combustion index calculation method in forest subcompartment was proposed based on the intrinsic properties in physical and chemicalproperties of forest wildland fuel, and the moisture content of the initial ignition of forestwildland fuel was measured to provide factor data for the SFFDRPM.
     (4) The tree shrub biomass estimation model, surface litter undecomposed layer loadestimation model and semi-decomposed layer load estimation model were builded based onmultiple regression analysis. Meanwhile, the typical shrub biomass estimation model wasconstructed to achieve a quick biomass estimation in a wide range of shrub and effectivelyavoid the tedious process of independent variables and models selection in shrub biomassmodeling based on Genetic Algorithm optimized Back Propagation (GA-BP). And then, theload calculation methods of tree layer, shrub layer, surface litter undecomposed layer andhalf-decomposed layer in forest subcompartment were proposed for the fuel load computingmethods reference in the SFFDRPM.
     (5) The moisture content models of surface litter undecomposed layer andsemi-decomposed layer were proposed by exploiting multivariate stepwise regression analysisbased on time series analysis theory for each tree specie, and the wildland fuel moisturecalculation method in forest subcompartment was constructed to achieve the fuel moisturedynamic prediction by combining with meteorological data in mountain microenvironment.
     (6) The construction method of the SFFDRPM was established. The small-scale forest fireimpact factors were comprehensively considered to select input variables in the SFFDRPM,and the forest fire danger indexs were calculated based on the the principal component scorefunction, which was fitting by using factor analysis method to eliminate factorsmulticollinearity and extract principal components. Then, the forest fire danger rating in eachforest subcompartment was clustered by making use of cluster analysis method. Finally, theSFFDRPM in the study area was created by applying the GA-BP.
引文
[1]范维澄,王清安,姜冯辉等.《火灾学简明教程》.中国科学技术大学出版社,1995年,第一版,516-519.
    [2]罗永忠.祁连山森林可燃物及火险等级预报的研究.甘肃农业大学,2005.
    [3]宋志杰.林火原理和林火预报.气象出版社,1991.
    [4] Jack D C, John E D. The national fire danger rating system: Basic equations. USDA Forest Service.1985.
    [5] Robert E B. Revisions to the1978national fire danger rating system. USDA Forest Service.1988.
    [6] Stocks B J. Canadian Forest Fire Danger rating System Users' Guide. Canadia Forest Service Fire DangerGroup.1987.
    [7]邸学颖.林火预测预报.哈尔滨:东北林业大学出版社,1993.
    [8]舒立福,张小罗,戴兴安等.林火研究综述(Ⅱ)-林火预测预报.世界林业研究,2003,04:34-37.
    [9] Andrews P L, Bevins C D, Seli R C. BehavePlus Fire Modeling System Version2.0User' s Guide.Rocky Mountain Research Station, Forest Service, United States Department of Agriculture. GeneralTechnical Report RMRS-GTR-106,2003
    [10] John E D, Burgan R E, Jack D C. The National Fire Danger Rating System. U.S. Department ofAgriculture. Gen. Tech. Rep. INT-39. Ogden, UT: Intermountain Forest and Range Experiment Station,Forest Service,1977.
    [11] Bradshaw L S, Deeming J E, Burgan R E, et al. The1978National Fire-Danger Rating System:technical documentation. USDA, FS. Ogden, UT,1984.
    [12] Viney N R, Catchpole E A. Estimating Fuel Moisture Response Time from Field Observations.International of Wildland Fire.1991,1(4):211-214
    [13] Carlson J D, Robert E B, David M E, et al. The Oklahoma Fire Danger Model: An operational tool formesoscale fire danger rating in Oklahoma. International Journal of Wildland Fire,2002,1(1):183-191.
    [14] Robert E B. Use of Remotely Sensed Data for Fire Danger Estimation. Earsel Advances in RemoteSensing. Remote Sensing of Environment,1996,4(4):1-8.
    [15] Robert E B, Roberta A H. Estimation of Vegetation Greenness and Site Moisture Using AVHRR Data.The11thConference on Fire and Forest Meteorology at Missoula, M T,1991,4:16-19.
    [16] Robert E B, Roberta A H. Vegetation Condition and Fire Occurrence: A Remote Sensing Connection.The Interior West Fire Council Meeting and Symposium, Coeurd Alene,1994,11:1-3.
    [17] Robert E B, Robert W K, Jacqueline M K. Fuel Models and Fire Potential from Satellite and SurfaceObservations. International Journal of Wildland Fire,1998,8(3):159-170.
    [18]Mark A F. Calculation of Fire Spread Rates Across Random landscapes. International Journal ofWildland Fire,2003,12:213-226.
    [19] Khan V. M. Long-range forecasting of forest fire danger based on the SLAV model seasonal ensembleforecasts. Russian Meteorology and Hydrology,2012,37(8):505-513.
    [20] WOTTON B M. Interpreting and using outputs from the Canadian forest fire danger rating system inresearch applications [J]. Environ Ecol Stat,2009,16:107-131.
    [21] Paltridge G W, Barber J. Monitoring grassland dryness and fire potential in Australia withNOAA/AVHRR data. Remote Sensing of Environment,1988,25:381394.
    [22]叶兵.国内外森林防火技术及其发展趋势.中国林业科学研究院,2000.
    [21]邸雪颖,宏良.林火预测预报.哈尔滨:东北林业大学出版社,1993:34-36.
    [22]宋志杰.林火原理和林火预报.北京:气象出版社,1991:44-48.
    [23]王瑞君,于建军,郑春艳.森林可燃物含水率预测及燃烧性等级划分.森林防火,1997,02:16-17.
    [24]易浩若,纪平,覃先林.全国森林火险预报系统的研究与运行.林业科学,2004,03:203-207.
    [25]覃先林.遥感与地理信息系统技术相结合的林火预警方法的研究.中国林业科学研究院,2005.
    [26] Zhou W Q, Zhou Y, Wang S X, et al. Early Warning For Grassland Fire Danger In North China UsingRemote Sensing. IEEE,2003,3:25052507.
    [27] Wang L T, Zhou Y, Wang S X, et al. Monitoring for Grassland and Forest Fire Danger Using RemoteSensing Data. IEEE,2004,2:2095-2098.
    [28] Zhou Y, Chen S R, Zhou W Q, et al. Early Warning and Monitoring System For Forest and GrasslandFires by Remote Sensing Data. lEEE,2004,2:47994802.
    [29]郭广猛. MODIS数据处理及其在林火预警中的理论与方法研究.中国科学院,2004.
    [30] Dubois C. Systematic fire protection in the California forests. USDA For. Serv., Washington, D.C.1914,99.
    [31] Sparhawk W N. The use of liability ratings in planning forest fire protection. J. Agric. Res.192530(8):693-762.
    [32] Show S B, Kotok E I. Cover type and fire control in the National Forests of northern California. USDAFor. Serv. Bu11. Washington, D.C.1929,35.
    [33] Hornby L G. Fuel type mapping in Region One. J. For.1935,33(1):67-72.
    [34] Wendel G W. Fuel weights of pond pine crowns. USDA Forest Service, Southeastern Forest ExperimentStation Research Note1960:149.
    [35] Olson J S. Energy storage and the balance of producers and decomposers In ecological systems Ecology1963,44(2):322-330.
    [36] Brown J K. Estimating crown fuel Weights of redpine and jackpine. USDA Forest Serv. Res. pap,1965,12.
    [37] Rothermel R C, Charles W P. Fire in wildland management: predicting changes in chaparralflammability. J. For.1973,71(10):640-643
    [38] Brender E V, McNab W H. Precommercial thinning of loblolly pine by fertili zation. Res. Pap.90.Macon, GA: Georgia Forestry Research Council,1978,8.
    [39] Brown, J K. Weight sand density of downed woody fuel. USDA Forest Serv Res Note Rep INT-16,1978,24.
    [40]高国平,周志权,王忠友.森林可燃物研究综述.辽宁林业科技,1998,04:35-38.
    [41] Fransson J E, Israelsson H. Estimation of Stem Volume in Boreal Forests using ERS-1C and JERS-1L-band SAR data. International Journal of Remote Sensing,1999,20(1):213-238
    [42] Raison R J, Khana P K, Woods P V. Mechanisms of element transfer to the atmosphere duringvegetation fires. Canadian Journal of Forest Research,1985,15:132-140.
    [43] Ertugrul B. A Dynamic Fuel Model for Use in Managed Even-aged Stand. Wildland Fire,1994,4(2):177-185
    [44] Elane M B, Bridges R G. Recurrent Fires and Fuel Accumulation in Even-aged Blackbute Forests.Forest Ecology and Management,1989,29:59-79.
    [45] George E G. Fire and vegetation Trends in the Northern Rockies. Inter Pretations From1781-1982Photographs, General Technical Report INT-158,1983.
    [46] Conroy R. Fuel assessment guide for the Sydney region. The New National parks and wildlife serviceSydney,1988:16-18.
    [47]郑焕能.林火管理.哈尔滨:东北林业大学出版社,1988.
    [48]何忠秋,张成钢,王天辉.森林可燃物负荷量模型研究.森林防火,1993,03:11-18.
    [49]邸学颖,王宏良,姚村人等.大兴安岭森林地表可燃物生物量与林分因子关系的研究.森林防火,1994,02:16-18.
    [50]居恩德,何忠秋,刘艳红等.森林可燃物灰色verhulst模型动态预测.森林防火,1994,02:44-46+52.
    [51]刘晓东,王军,张东升等.大兴安岭地区兴安落叶松林可燃物模型的研究.森林防火,1995,03:8-32.
    [52]周志权.辽东3种主要林型地被可燃物载量的研究.东北林业大学学报,2000,01:32-34.
    [53]]袁春明,文定元.马尾松人工林可燃物负荷量和烧损量的动态预测.东北林业大学学报,2000,06:24-27.
    [54]邓湘雯,聂绍元,文定元等.南方杉木人工林可燃物负荷量预测模型的研究.湖南林业科技,2002,01:24-27.
    [55]张国防,欧文琳,陈瑞炎等.杉木人工林地表可燃物负荷量动态模型的研究.福建林学院学报,2000,02:133-135.
    [56]胡海清.大兴安岭主要森林可燃物理化性质测定与分析.森林防火,1995,01:27-31.
    [57]胡跃清.回归模型中的异方差性检验及分析.东南大学学报,1995,06:14-18.
    [58]黄树颜,胡小平.异方差性F的参数估计.统计研究,1990,03:52-54.
    [59]黄水生.山西太岳山林区阔叶林生物量和生产力的研究.北京林业大学,1999.
    [60]江希钿,王素萍,杨锦昌.马尾松人工林种群自然稀疏模型的研究.热带亚热带植物学报,2001,04:295-300.
    [61]蒋延玲,周广胜.兴安落叶松林碳平衡及管理活动影响研究(英文).植物生态学报,2002,03:317-322.
    [62]居恩德,陈贵荣,王瑞君.可燃物含水率与气象要素相关性的研究.森林防火,1993,01:17-21.
    [63]何忠秋,李长胜,张成钢等.森林可燃物含水量模型的研究.森林防火,1995,02:15-20.
    [64]马志贵.云南松林可燃物含水量动态研究.成都:四川民族出版社,1993.
    [65]马丽华,李兆山.大兴安岭6种活森林可燃物含水率的测试与研究.吉林林学院学报,1998,01:23-25.
    [66]金森,李绪尧,李有祥.几种细小可燃物失水过程中含水率的变化规律.东北林业大学学报,2000,01:35-38.
    [67]金森,姜文娟,孙玉英.用时滞和平衡含水率准确预测可燃物含水率的理论算法.森林防火,1999,04:12-14.
    [68]覃先林,张子辉,易浩若等.一种预测森林可燃物含水率的方法.火灾科学,2001,03:159-162.
    [69]罗永忠,车克钧,蒋志荣.祁连山林区森林可燃物含水率变化规律研究.甘肃农业大学学报,2005,02:239-244.
    [70]薛家翠,望胜玲,曾祥福等.鄂西林地可燃物含水率及火险等级的气象预报研究.华中农业大学学报,2006,06:679-682.
    [71]张广英,高永刚,曹晓波等.伊春市五营森林可燃物含水率预测模型初步研究.安徽农业科学,2007,36:1956-1958.
    [72]李世友,舒清态,马爱丽等.华山松人工林凋落物层细小可燃物含水率预测模型研究.林业资源管理,2009,01:84-88.
    [73]卢欣艳,牛树奎,任云卯.北京西山林场可燃物含水率与气象要素关系.林业资源管理,2010,03:79-86.
    [74]曲智林,李昱烨,闵盈盈.可燃物含水率实时变化的预测模型.东北林业大学学报,2010,06:66-71.
    [75]李昱烨.森林可燃物含水率模型的研究.东北林业大学,2010.
    [76]吴娟.森林可燃物含水率日变化预测模型的研究.东北林业大学,2012.
    [77]贾鹏超.可燃物含水率预测模型的改进.东北林业大学,2013.
    [78]刘昕.太阳辐射对死细小可燃物含水率的影响.东北林业大学,2013.
    [79]田甜.坡向坡位对地表可燃物含水率的影响及对FWI指数的修正.东北林业大学,2013.
    [80]田甜,邸雪颖.森林地表可燃物含水率变化机理及影响因子研究概述.森林工程,2013,02:21-25.
    [81]于宏洲,金森,邸雪颖.以小时为步长的大兴安岭兴安落叶松林地表可燃物含水率预测模型.应用生态学报,2013,06:1565-1571.
    [82]阐振国.林火基础理论.哈尔滨:黑龙江科学技术出版社,2002.
    [83]牛树奎,崔国发,雷鸣等.北京喇叭沟门林区森林燃烧性及防火区研究.北京林业大学学报,2000,04:109-112.
    [84]宋永昌.植被生态学.上海:华东师范大学出版社,2001.
    [85]王惠,周汝良,庄娇艳等.林火蔓延模型研究及应用开发.济南大学学报(自然科学版),2008,03:295-300.
    [86]单延龙.大兴安岭森林可燃物的研究.东北林业大学,2003.
    [87] Running S W, Nemani R, Hungerford R D. Extrapolation of meteorological data in mountain terrain,and its use for simulating forest evapotranspiration and photosynthesis. Canadian Journal of ForestResearch.1987,17:472-483.
    [88] Hungerford R D, Running S W, Nemani R R, et al. MTCLIM: A mountain microclimate extrapolationmodel. USDA Forest Service. Res. Paper INT-414,1989,52.
    [89] Parton W J, Logan J E. A model for diurnal variation in soil and air temperature. AgricultureMeteorology,1981,23:205-216.
    [90]傅抱璞.山地气候.北京:科学出版社,1983.
    [91] Murray F W. On the computation of saturation vapor pressure. Journal of Applied Meteorology.1967,6:203-204.
    [92] Kimball J S, Running S W, Nemani R R. An improved method for estimating surface humidity fromdaily minimum temperature. Agri. For. Meteorol.1997,85:87-98.
    [93] Kimball J S, Running S W, Nemani R R. An improved method for estimating surface humidity fromdaily minimum temperature. Agri. For. Meteorol.1997,85:87-98.
    [94]郑焕能.应用火生态.哈尔滨:东北林业大学出版社,1998.
    [95]牛树奎.北京山区主要森林类型火行为与可燃物空间连续性研究.北京林业大学,2012.
    [96]胡海清.林火生态与管理.北京:中国林业出版社,2005.
    [97]郑焕能,胡海清.森林燃烧环.东北林业大学学报,1987,05:1-6.
    [98]郭利峰.北京八达岭林场人工油松林燃烧性研究.北京林业大学,2007.
    [99]贺红士,常禹,胡远满等.森林可燃物及其管理的研究进展与展望.植物生态学报,2010,06:741-752.
    [100]王晓丽,牛树奎,阚振国.北京地区主要树种理化性质研究及易燃性初步分析.林业资源管理,2008,04:83-88.
    [101] Chuvieco E, Aguado I. Conversion of fuel moisture content values to ignition potential for integratedfire danger assessment. Canadian Journal of Forest Research,2004,34(11):2284-2911.
    [102] Cruza M G, Alexander M E, Wakimoto R H, et al. Modeling the likelihood of crown fire occurrencein conifer forest stands. Forest Science,2004,50(5):640-653.
    [103] Butler B W, Finney M A, Albini F A, et al. A radiat iondriven model for crown fire spread. CanadianJournal of Forest Research,2004,34(8):1588-1598.
    [104]李海奎,雷渊才,中国森林植被生物量和碳储量评估.北京:中国林业出版社,2010.
    [105]许景伟,王长宪,李琪等.立木、木材材积速查手册.济南:山东科学技术出版社,2009.
    [106] Whittaker R H. Estimation of net primary production of forest and shrub communities. Ecology,1961,42:177.
    [107] Whittaker R H. Net production relations of shrubs and forbs in the Great Smoky Mountains. Ecology,1962,43:357.
    [108] Catchpole W R,Wheeler C J. Estimating plant biomass: A review of techniques. Australian Journal ofEcology,1992,17:121.
    [109]姜凤岐,卢凤勇.小叶锦鸡儿灌丛地上生物量的预测模式.生态学报,1982,02:103-110.
    [110]张海清,刘琪璟,陆佩玲等.千烟洲试验站几种常见灌木生物量估测.林业调查规划,2005,05:43-49.
    [111] Harniss J H, Murray R B. Reducing bias in dry leaf weight estimates of big sagebrush. Journal of rangemanagement.1976,29:430.
    [112] Rittenhouse L R, Sneva F A. A technique for estimating big sagebrush production. Journal of rangemanagement.1977,30:68.
    [113] Bryant F C, Kothmann M M. Variability in predicting edible browse from crown volume. Journal ofrange management.1979,32(2):144.
    [114]王庆锁.油蒿、中间锦鸡儿生物量估测模式.中国草地,1994,01:49-51.
    [115]王蕾,张宏,哈斯等.基于冠幅直径和植株高度的灌木地上生物量估测方法研究.北京师范大学学报(自然科学版),2004,05:700-704.
    [116]郑海富.林下灌木生物量方程的验证和生物量分布格局研究.东北林业大学硕士论文,2010.
    [117]赵蓓.大岗山林区几种灌木生物量及其价值研究.北京林业大学硕士论文,2012
    [118]何列艳,亢新刚,范小莉等.长白山区林下主要灌木生物量估算与分析.南京林业大学学报(自然科学版),2011,05:45-50.
    [119]曾珍英,刘琪璟,曾慧卿.江西千烟洲几种灌木生物量模型的研究.福建林业科技,2005,04:68-72.
    [120]李凤山,张辅亭.用统计法测定杏灌丛产量的研究.中国草原,1987,02:12-15.
    [121]黄劲松,邸雪颖.帽儿山地区6种灌木地上生物量估算模型.东北林业大学学报,2011,05:54-57.
    [122]杨昆,管东生.森林林下植被生物量收获的样方选择和模型.生态学报,2007,02:705-714.
    [123]曾慧卿,刘琪璟,马泽清等.千烟洲灌木生物量模型研究.浙江林业科技,2006,01:13-17.
    [124] Northup B K, Ziter S F, Aieher S, et al. Above-ground biomass and carbon and nitrogen content ofwoodyspecies in a subtropical thomscrub parkland. Journal of Arid Environments,2005,62(1):23-43.
    [125]朱凯,王正林.精通MATLAB神经网络.电子工业出版社.
    [126]王小平,曹立明.遗传算法—理论、应用与软件实现.西安:西安交通大学出版社,2002.
    [127]罗永忠,车克钧,蒋志荣.祁连山林区森林可燃物含水率变化规律研究.甘肃农业大学学报,2005,02:239-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700