长白山森林地被可燃物载量及林火行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长白山林区已连续29年未发生重大森林火灾,一般性森林火灾的发生率也有所下降。长白山林区属于较难燃的天然林区,随着无重大森林火灾年份不断延长,林下积累了大量森林可燃物,在长期干旱气候条件作用下,长白山林区火灾隐患逐年增大。本文分析了长白山林区不同气候条件(如湿度、风速等)下,森林可燃物负荷量动态;以美国林火行为可燃物模型划分方法为基础,采用罗瑟梅尔模型分析了长白山林区林火行为可燃物模型。研究结果为准确预测长白山林区森林火灾发生可能性,增加了森林火灾发生的可预见性;为合理制定森林林火预防规划、预防措施以及相应的灭火作战措施奠定了理论基础。具体研究结果简述如下:
     森林可燃物输入量动态分析表明:次生林(次生杨桦林、次生针阔混交林)与原始阔叶红松林中,阔叶类、针叶类及小枝类可燃物输入主要发生在9、10月份,可燃物输入量一般在9月下旬至10月中旬出现峰值。次生林(次生杨桦林、次生针阔混交林)与原始林(原始阔叶红松林)内森林可燃物输入量顺序均为:阔叶类可燃物>针叶类可燃物>小枝类可燃物。2006-2007年阔叶类、针叶类、小枝类森林可燃物年输入量顺序均为:原始阔叶红松林>次生针阔混交林>次生杨桦林。不同林型中森林可燃物年总输入量(阔叶类+针叶类+小枝类)顺序均为:原始阔叶红松林高于次生林(次生针阔混交林及次生杨桦林),次生针阔混交林与次生杨桦林中可燃物年总输入量则差异不大。森林可燃物年总输入量在5.2hm~2次生林监测样地中具有较强的空间异质性。不同林型中灰分含量、粗脂肪含量、热值顺序为:次生杨桦林>原始阔叶红松>次生针阔混交林。
     长白山主要林型林火行为研究显示:长白山林区不同林型林火蔓延速率、单位面积热量随着湿度的增加而减小。在研究的13个林型中,低湿度条件下,最大火焰平均风速均大于8m/s;中湿度条件下,最大火焰平均风速均大于8m/s;高湿度条件下,岳桦成熟林中最大火焰平均风速为7.11m/s,白桦成熟林中最大火焰平均风速为7.35m/s,其它林型最大火焰平均风速均大于8m/s。无论在低湿度、中湿度或高湿度条件下,白桦近熟林着火后林火蔓延速率最大、落叶松近熟林最小;云冷杉中龄林和云冷杉-红松混交林中单位面积热量最大、岳桦成熟林最小。根据低、中、高湿度条件下不同林型林火行为特征,可将13个林型最终划分为八大类。
     八种可燃物类型、13种可燃物模型潜在林火行为分析显示:岳桦成熟林外,其它林型林火蔓延速率均随火焰平均风速增加而增大。林火蔓延速率受森林可燃物湿度影响,林火蔓延速率顺序为:低湿度>中湿度>高湿度。0-8m/s火焰平均风速范围内,单位面积热量、最大可靠风速均保持恒定。单位面积热量、最大可靠风速受森林可燃物湿度影响,大小顺序为低湿度>中湿度>高湿度。八类林型的火线强度、火焰长度均随着火焰平均风速增加而增大。白桦成熟林中林火蔓延速率最大,白桦幼龄林和落叶松近熟林次之。此类林型单位面积释放热量较低,林火火线强度较小,适于采取直接灭火法进行扑救。白桦中龄林和落叶松成熟林中林火蔓延速率最小,云冷杉中龄林和云冷杉-红松林次之。此类林型单位面积释放热量较高、林火火线强度较大,适于采取间接灭火法进行扑救。
There was no serious forest fire in the Changbai mountain forest region for 29 years and the general incidence of fires declined. This region belongs to an uninflammable virgin forest. With the extension of the years that there is no large fire happened and the accumulation of understory fuel loads, the fire risk in the region of Changbai mountain increased yearly under the effect of dry climate condition in a long time. The dynamic of forest fuel loads was analyzed in this paper combined with climatic conditions in Changbai Mountain forest region. Base on the partition method of U.S. Fire Behavior Fuel Model, the Rothermel model was used to evaluate the behavior fuel model in Changbai mountain forest regions. The results can provide the possibility to predict forest fires in Changbai Mountain forest accurately, increase the predictability of forest fires and lay a theoretical foundation for establishing the prevention programs, preventive measures and fire-fighting measures of forest fires reasonably. The main research results as follows:
     The temporal dynamics of input on fuel show that the input of broadleaf, needles and branchless in Secondary Populus davidiana-Betula platyphylla forests, Secondary conifer and broadleaved mixed forest and the original broad-leaved Korean pine forest were mainly concentrated in September and October, reached the peak in late September to mid-October. The order of input on fuel of different type in these forest stands were that the broadleaf > needles > branchless. The total input of broadleaf, needles and branchless in 2006 and 2007 were that Original broad-leaved Korean pine forest > Secondary conifer and broadleaved mixed forest > Secondary Populus davidiana-Betula platyphylla forests. The total input (including broadleaf, needles and branchless) of differential forest types in the year of 2006 and 2007 were that the original broad-leaved Korean pine forest > Secondary conifer and broadleaved mixed forest =Secondary Populus davidiana-Betula platyphylla forests. The total input of fuel in a 5.2ha dynamic forest plots in Secondary conifer and broadleaved mixed forest show an obvious spatial heterogeneity. The content of ash content, crude fat content, heat value were in the same order that Secondary Populus davidiana-Betula platyphylla forests > Original broad-leaved Korean pine forest > Secondary conifer and broadleaved mixed forest.
     Base on the partition method of American fire behavior fuel model, we established the behavior fuel model in Changbai mountain forest regions. The results of fire fuel model displayed that the spread rate of forest fire and the heat per unit fire area in different stands of Changbai mountain were decrease with the increment of humidity; In the condition of low and middle humidity, the average wind speed of maximum flame in different stands were greater than 8m/s; In the high humidity, the average wind speed of maximum flame in the plot 2 of Betula ermanii forest and the plot 3 of Betula platyphlla forest were 7.11m/s and 7.35m/s separately , the average wind speed of maximum flame in other forest types are greater than 8m/s. In any situations of low, middle and high humidity, the spread rate after forest fire happened in near-mature stand of Betula platyphlla forest is the fastest and the lowest one is in near-mature stand of Larix olgensis forest; The heat per unit fire area in mid-age stand of Abies-Picea forest and mixed forest of Abies-Picea forest and Pinus koraiensis forest are the greatest, while the smallest one is in mature stand of Betula ermanii forest. According to the character of fire behavior in different stands under the low, middle and humidity condition, 13 forest types were finally divided into 8 classes.
     The analysis of potential forest fire behavior of 8 types of fuel and 13 fuel models show that in addition to mature stand of Betula ermanii forest, the spread rates of fire accelerated with increment of the average flame speed. The spread rates of fire were influenced by the forest fuel humidity, which were low humidity >middle humidity >high humidity in order. Within 0~8 m/s average wind speed of flame, the heat per fire area and maximum reliable wind speed were both keep constant. They were influenced by the forest fuel humidity, the order of which were low humidity >middle humidity >high humidity. The flame length and fire intensity of 8 forest types were also increased with the acceleration of the average flame speed. The spread rates of fire in mature stand of Betula platyphlla forest were greatest, followed by young stand of Betula platyphlla forest and near-mature stand of Larix olgensis forest. Their heats from per fire area were much lower and fire intensity was small, which was suitable to take fire direct extinguishing. The spread rates of fire in mid-age stand of Betula platyphlla forest and the mature stnad of Larix olgensis forest were the smallest, followed by mid-age stand of Abies-Picea forest and mixed forest of Pinus koriensis and Abies-Picea.The heats of per fire area from these types were higher and the fire intensity was greater, which was adopted to take fire indirect extinguishing.
引文
1.陈存久,何宗明,陈东华等.37种针阔树种抗火性能及其综合评价的研究[J].林业科学,1995,31(2):135-143.
    2.陈芸芝,陈崇成,汪小钦,唐丽玉.基于遥感的漳平市杉松林地表可燃物负荷量估测[J].地球信息科学,2007,9(6):103-110.
    3.代力民.中国长白山阔叶红松林[M].沈阳:辽宁科学技术出版社,2004.
    4.单延龙,张敏,于永波.森林可燃物研究现状及发展趋势[J].北华大学学报,2004,5(3):264-270.
    5.邓湘雯,聂绍元,文定元,潘晓杰.南方杉木人工林可燃物负荷量预测模型的研究[M].湖南林业科技,2002,29(1):24.
    6.邓湘雯,田大伦,康文星,邓裕,吴彬.杉木人工林生态系统可燃物空间分布规律研究[J].火灾科学,2007,16(1):21-25.
    7.邸雪颖,王宏良,姚树人等.大兴安岭森林地表可燃物生物量与林分因子关系的研究[J].森林防火,1994(2):16-18.
    8.高国平,周志权,王忠友.森林可燃物研究综述[J].辽宁林业科技,1998(4):34-35.
    9.高颖义.吉林省林火分布图的研制与分析[M],吉林,1988.
    10.顾香凤,段秀英,崔亚非等.死可燃物含水量变化规律[J].林业科技,1995,20(2):44-46.
    11.关永光.地形因子与林火的相关知识[J].新疆林业.1996,6:32.
    12.郭利峰,牛树奎,阚振国.北京八达岭人工油松林地表枯死可燃物负荷量研究[J].林业资源管理,2007(5),53-58.
    13.郭利峰,牛树奎,阚振国.北京市八达岭林场不同林型林下可燃物调查分析[J].林业调查规划,2007,32(2):134-137.
    14.郭瑞红,叶功富,卢昌义,肖胜生,吴惠忠.不同生长发育阶段木麻黄人工林的凋落物动态[J].海峡科学,2008,22(10):11-18.
    15.何忠秋,张成钢,牛永杰.森林可燃物湿度研究综述[M].世界林业研究,1996,(5):27.
    16.何忠秋等.森林可燃物含水量模型的研究[J].森林防火,1995,(2):15-16.
    17.胡海清,王强.利用林分因子估测森林地表可燃物负荷量[J].东北林业大学学报,2005,33(6):17-18.
    18.胡海清.大兴安岭主要森林可燃物理化性质测定与分析[J].森林防火,1995(1):27-31.
    19.胡海清.林火生态与管理[M].北京:中国林业出版社,2005.
    20.姜萍,赵光,叶吉,崔国发,邓红兵.长白山北坡森林群落结构组成及其海拔变化[J].生态学杂志,2003,22(6):28-32.
    21.金森,李绪尧,李有祥.几种细小可燃物失水过程中含水率的变化规律[M].东北林业大学学报,2000,28(1):35.
    22.居恩德等.可燃物含水率与气象要素相关性的研究[J].森林防火,1993,(1):17-21.
    23.李建东等.吉林植被[M].吉林:吉林科学出版社,2001.
    24.李兆明.福建森林火险天气等级预测预报方法[J].福建林学院学报,1989,9(2):172-176.
    25.李振问等.杉木火力楠混交林燃烧性的研究[J].东北林业大学学报,1992,20(1):83-88.
    26.林其钊,舒立福.林火概论:第1版[M].合肥:中国科学技术大学出版社,2003.
    27.林贤松.马尾松人工林地表可燃物负荷量动态模型的研究[J].福建林业科技,2007,34(3):42-44.
    28.刘小平,林其钊.上山火加速过程的模拟计算与实验研究[J].燃烧科学与技术,2000,4:359.
    29.刘晓东,王军,张东升等.大兴安岭地区兴安落叶松林可燃物模型的研究[J].森林防火,1995(3):8-9.
    30.马丽华,李兆山.大兴安岭6种活森林可燃物含水率的测试与研究[J].吉林林学院学报,1998,14(1):23.
    31.马志贵等.云南松林可燃物含水量动态研究.林火生态与计划烧除[M].成都:四川民族出版社,1993.
    32.单延龙.大兴安岭森林可燃物的研究[M].东北林业大学博士论文,2003.
    33.史振华,何宗明,谢建闽,范少辉,卢镜铭.5-7年生杉木幼林凋落物数量与月动态[J].福建农林大学学报(自然科学版),2006,35(3):278-282.
    34.舒立福,田晓瑞,李红等.我国亚热带若干树种的抗火性研究[J].火灾科学,2000,9(2):1-7.
    35.舒立福,王明玉,田晓瑞,张小罗,戴兴安.关于森林燃烧火行为特征参数的计算与表述[J].林业科学,2004,40(3):179-183.
    36.舒立福,张小罗,戴兴安,田晓瑞,王明玉.林火研究综述(Ⅱ)—林火预测预报[J].世界林业研究,2003,16(4):34-37.
    37.覃先林,张子辉,易浩若,纪平.一种预测森林可燃物含水率的方法[J].火灾科学,2001,10(3):159.
    38.王刚,杜嘉林.大兴安岭森林可燃物载量与林分因子关系的研究[J].林火研究,2004(2):17-19.
    39.王明玉,周荣伍,赵凤君,安玉涛,舒立福,田晓瑞,李涛.北京西山森林潜在火行为及防火林带有效宽度分布研究[J].火灾科学,2008,17(4):209-215.
    40.王强,金森.利用RS和林分因子估测帽儿山林场森林可燃物负荷量[J].东北林业大学学报,2008,36(9):35-37.
    41.王希才,安国善,张敏.长白山区发生重大森林火灾的可能性及预防对策[J].吉林林业科技,2003,3(2):44-47.
    42.王晓丽,牛树奎,马钦彦,刘艳红,阚振国.北京地区主要针叶林易燃可燃物垂直分布[J].北京林业大学学报,2009,31(2):31-35.
    43.文定元.森林防火基础知识[M].北京:中国林业出版社,1995.
    44.武耀祥,陈兆双.长白山自然保护区的林火特点及防火工作对策[J].吉林林业科技,2006,35(5):29-31.
    45.杨美和,高颖仪,孙文举.森林火灾与湿润系数关系的研究[J].吉林林学院学报,1997,13(1):10-14.
    46.杨美和,高颖仪.我省森林火灾的发生与气象因子关系的初步总结[J].吉林林业科技,1981(3).
    47.姚树人,文定元.森林消防管理学[M].北京:中国林业出版社,2002,97-127.
    48.于秀林,任雪松.多元统计分析[M].北京:中国统计出版社,1999.
    49.袁春明,文定元.马尾松人工林可燃物负荷量和烧损量的动态预测[J].东北林业大学学报,2000,28(6):24-27.
    50.袁春明,文定元.森林可燃物分类与模型研究的现状展望[J].世界林业研究,2001,14(12):29-31.
    51.臧伟运.白河林业局林火发生特点及对策的探讨[J].森林防火,1999,61(2):12-16.
    52.张东来,毛子军,朱胜英,周彪.黑龙江省帽儿山林区6种主要林分类型凋落物研究[J].植物研究,2008,28(1):104-108.
    53.张凤山,迟振文,裴铁鐇等.长白山高山冻原带夏季小气候[J].森林生态系统研究(创刊号), 1981,179-186.
    54.张国防,陈志平.杉檫混交林地表可燃物载量动态研究[J].江西农业大学学报,2004,26(2):178-180.
    55.张国防,欧文琳,陈瑞炎,陈钦.杉木人工林地表可燃物负荷量动态模型的研究[J].福建林学院学报,2000,20(2):133.
    56.张建列.火对可燃物的影响[J].森林防火,1986,(3):34-35.
    57.张敏,刘东明.长白山林区落叶松林可燃物模型及火行为状况[J].自然灾害学报,2007,16(2):127-132.
    58.张明军.中国南方松杉林分可燃物类型的动态系统划分研究[M].中南林学院,硕士学位论文,1995.
    59.张清海,叶功富,林益明.海岸沙地木麻黄人工林凋落物归还量及其热值动态研究[J].林业科学研究,2006,19(5):600-605.
    60.张新平,王襄平,朱彪,宗占江,彭长辉,方精云.我国东北主要森林类型的凋落物产量及其影响因素[J].植物生态学报,2008,32(5):1031-1040.
    61.赵宪文.西南林区火灾预报方法研究.森林火灾遥感监测评价[M].北京:中国林业出版社,1995:76-86.
    62.郑焕能,居恩德编著.林火管理[M].哈尔滨:东北林业大学出版社,1988:1-8.
    63.郑焕能等.林火管理[M].哈尔滨:东北林业大学出版社,1988.
    64.郑焕能等.森林防火学[M].北京:农业出版社,1962.
    65.周广友.不同火场的扑救方法与扑火安全[J].森林防火,1998,57(2):39-41.
    66.周志权,高国平,曲艺.辽西主要林型地被可燃物与林火发生关系的研究[J].东北林业大学学报,1999,27(1):75-77.
    67.朱红革,李石.红星林业局自然保护区不同林型下可燃物调查分析[J].林业勘查设计,2008,145(1):89-90.
    68.朱双燕,王克林,曾馥平,曾昭霞,宋同清.桂西北喀斯特次生林凋落物养分归还特征[J].生态环境学报,2009,18(1):274-279.
    69.朱双燕,王克林,曾馥平,曾昭霞,宋同清.桂西北喀斯特次生林凋落物养分归还特征[J].生态环境学报,2009,18(1):274-279.
    70.Albini F A,Baughman,Robert G.Estimating windspeeds for predicting wildland fire behavior. Research Paper INT-221. Ogden, UT: U.S.Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 12 P. 1979.
    71. Albini F A. Estimating Wildfire behavior and effects. USDA For. Serv. Gen. Tech. Rep. INT-30, 92 p. Intermt. For. and Range Exp. Stn, Ogden, Utah. 1976.
    72. Anderson H E. Aids to Determining Fuel Models for Estimating Fire Behavior, USDA, Forest Service, General Technical Report, INT -122,1982.
    73. Blackmarr W H, W B Flanner. Seasonal and diurnal variation in moisture content of six species of Pocosin Shrubs. USDA.For. Serv. Res. Pap. Se-33,1968:11.
    74. Brender E V, McNab W H. Precommercial thinning of loblolly pine by fertili zation. Res. Pap. 90. Macon, GA: Georgia Forestry Research Council, 1978.8p.
    75. Brown J K.Weight sand density of downed woody fuel. USDA Forest Serv Res Note Rep INT-16,1978,24p.
    76. Butler B W, Finneym A, Albini F A, et al. A radiation driven model for crown fire spread [J]. Canadian Journal of Forest Research, 2004,34(8): 1588-1599.
    77. Carmen E P. kent's mechanical engineer handbooks [M]. Power Volume, Sec. Z, Combustion and fuels, 12thed. John Wiley&Sons, Inc. New York. 1950: 39-41.
    78. Chandle C, et al. Fire in Forestry 1 [M]. John Wiloy &Sens Inc. 1983: 35.
    79. Chuvieco E, Aguado I. Conversion of fuel moisture content values to ignition potential for integrated fire danger assessment [J]. Canadian Journal of Forest Research, 2004, 34(11): 2284-2293.
    80. Cruz M G, Alexander M E, Wakimoto R H, et al. Modeling the likelihood of crown fire occurrence in conifer foreststands [J]. Forest Science, 2004, 50(5): 640-658.
    81. Deborah L (2005). Regional-scale variation in litter production and seasonality in tropical dry forests of southern Mexico [J]. Biotropica, 37: 561-570.
    82. Deeming J, Lancaster J, Fosberg M. National fire-danger rating system. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 165 p. 1972.
    83. Deeming J E, Lancaster J W, Fosberg M A, Furman R W, Schroeder M J. The National Fire—Danger Rating System, USDA For. Serv. Res. Pap. RM-184, 1972.
    84. Deeming J E, Robert E B, Jack D C. The National Fire-Danger Rating System-1978, USDA Forest Service, General Technical Report INT-39,1977.
    85. Elane M B, Bridges R G. Recurrent Fires and Fuel Accumulation in Even-aged Blackbute Forests [J]. Forest Ecology and Management. 1989,29:59-79.
    86. Ertugrul B, etc. A Dynamic Fuel Model for Use in Managed Even—aged Stand [J]. Wildland Fire, 1994,4 (2): 177-185.
    87. Forestry Canada Fire Danger Group. Development and Structure of the Canadian Forest Fire Behavior Prediction System. Information Report ST-X3. Published by Forestry Canada Science and Susta inable Development Directorate. Ottawa, 1992.
    88. Fosberg M A, Lancaster J W, Schroeder M J. Drying relation and standard and field conditions [J]. For. Sci. 1970,16:121-128.
    89. Gyull G E, etc. Fire and vegetation Trends in the Northern Rockies. Interpretations From 1781-1982 Photographs, General Technical Report INT-158, 1983.
    90. Jamison D A. Diurnal and seasonal fluctuations in moisture content of pinyon pine and Juniper. USDA. For. Serv. Res. Note RM-67, 1966: 7.
    91. John T, Marcia J L. Litterfall and forest floor dynamics in Eucalyptus pilularis forests [J]. Austral Ecology, 2002,27: 192-199.
    92. Liu Q J. Structure and dynamics of the subalpine coniferous forest on Changbai Mountain, China [J]. Plant Ecology, 1997, 132: 97-105.
    93. Luke R H, McArthur A G. Heat yield and power out put in Bush fire in Australia. Australian Government publ. Serv. 1978:26.
    94. Mc Cammon, Bruce P. Suonpack influences on dead fuel moisture [J]. For. Sci. 1976, 22: 323-328
    95. Philpot C W. Diurnal fluctuation in moisture content of Ponderosa Pine and Whiteleaf Manzantia leaves. USDA. For. Serv. Res. Note Paw-67, 1965: 7.
    96. Rothermel R C. Predicting behavior and size of crown fires in the northern Rocky Mountains. USDA For. Serv. Res. Pap. INT-438.1991.
    97. Shan Y L Hu H Q, Liu B D, Li X F. Division of forest fuel type areas of Heilongjiang Province by using GIS [J]. Journal of Forestry Research. 2002,13(1): 61.
    98. Shao G, Zhao G. Protecting versus harvesting of old-growth forests on the Changbai Mountain (China and North Korea): a remote sensing application [J]. Natural Areas Journal, 1998, 18: 334-341.
    99. Sokal R R, Oden N L. Spatial autocorrelation in biology 1. Methodology [J]. Biological Journal of the Linnean Society, 1978a, 10:199-228.
    100. Sokal R R, Oden N L. Spatial autocorrelation in biology 2. Some biological implications and four applications of evolutionary and ecological interest [J]. Biological Journal of the Linnean Society, 1978b, 10:229-249.
    101. Stephen J P, Patricia L A, Richard D L. Introduction to wildland fire (2nd edn.) [M]. John Wiley &Sons Inc, 1996.
    102. Thuille A, Schulze E D (2006). Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps [J]. Global Change Biology, 12,325-342.
    103. Van Dyne G M, Payne G F, Thomas O O. Chemical Composition of individual range plants from the U.S.range station. Miles City. Montana. From 1955-1960. U.S. Atomic Energy Comm. ORNL-TM. 1279.1965:24.
    104. Wendel G W. Fuel weights of pond pine crowns. USDA Forest Service, Southeastern Forest Experiment Station Research Note No. 149,1960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700