北京西山典型针叶林可燃物调控及其影响评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于北京西山林场典型针叶林可燃物分布特征,提出可燃物调控技术,并对调控后林下植被的生态环境效应进行研究。选取典型林分设置人工针叶林:油松(Pinus tabulaeformis)、侧柏(Platycladus orientalis)各4块样地。调查可燃物特征,包括可燃物种类、负荷量等,应用统计及对比分析方法对可燃物负荷量的分布特征进行研究,提出以修枝和割灌为主的可燃物调控技术,并针对不同调控后的林下植被进行光合作用以及生物多样性的研究。研究结果表明:
     (1)可燃物垂直分布特征。选取的四块油松样地可燃物主要分布在0-3m和4-6m层。其中,四块样地在0-3m层的可燃物负荷量分别为:851.7g/m2,898.92g/m2,1381.77g/m2,1072.24g/m2,主要可燃物类型:地表枯落物和乔木下层活枝;在4-6m层,主要可燃物为乔木活枝。四块侧柏样地可燃物均主要分布在0-3m层,分别为:1136.79g/m2,1670.80g/m2,1273.29g/m2,1119.33g/m2,主要可燃物类型为:地表枯落物和灌木。
     (2)油松林、侧柏林调控措施。针对油松林,我们选取四个不同调控措施,分别为CK(对照);P1:割灌:P2:修枝(3m以下)和割灌;P3:修枝(3.5m以下)和割灌。针对侧柏林,我们选取的四个不同调控措施,分别为CK(对照);P1:修枝(2.5m以下);P2:修枝(2.5m以下)和割灌:P3:修枝(3.5m以下)和割灌。
     (3)调控后林下植被光合特性。不同调控后,两类林分林下灌木光合特征指数呈现如下规律:①最大净光合速率、光饱和点、光补偿点、暗呼吸速率与对照相比均增大;②表观量子效率与对照相比均减小;存在个别情况与规律不一致。
     (4)调控后林下群落生物多样性研究。油松样地:可燃物调控改变了林下群落生物多样性,其中P3调控对林下灌木多样性影响明显,三种调控措施对林下草本多样性影响明显。侧柏样地:可燃物调控改变了林下群落生物多样性,其中P2和P3调控对林下草本多样性影响明显,三种调控对林下灌木多样性影响均不明显。
     本研究将可燃物调控技术与生态效应相结合,为研究地区针叶林可燃物调控技术规程的制定提供了一定的科学依据。
Based on the fuel distribution characteristics in Beijing West Mountains Forest Farm, the specific fuel adjustment and control measures were developed, and the impact assessment of these fuel management approaches were evaluated. The typical coniferous forest type were selected, including4Pinus tabulaeformis forest plots and4Platycladus orientalis forest plots under the stand terrain characteristics. The characteristics of sample were investigated such as fuel types and fuel load. The statistical methods and a comparison method were applied to study the distribution characteristics of the fuel Load, and the fuel control technology were put forwarded. The photosynthesis attributes and biodiversity of understory vegetation under different fuel management measures were studied, then the results of ecological impact were analyzed, the main conclusions can be summarized as follows:
     (1)Vertical Distribution Characteristics of fuel. Analyze Fuel Load of four Pinus tabulaeformis stands, the fuel are mainly distributed in the layer of0-3meter and4-6meter, the fuel load of0-3meters in these stands were:851.7g/m2,898.92g/m2,1381.77g/m2,1072.24g/m2respectively, and the mainly fuel type were surface death fuel and live branch fuel. In the layer of4~6meter, the live branch fuel have a relatively larger load. As to the Fuel Load of Platycladus orientalis, the fuel mainly distributed in the layer of0-3meters, the fuel load in the four stands were1136.79g/m2,1670.80g/m2,1273.29g/m2,1119.33g/m2, respectively, and the main fuel type were surface death fuel and shrub fuel, with the potential to easily cause the surface fire to crown fire.
     (2)The fuel management measures of Pinus tabulaeformis and Platycladus orientalis forests. For the forest of Pinus tabulaeformis, four different fuel management measures were selected, the measures included CK(contrast),P1-cutting shrub,P2-pruning(less than3meters)and cutting shrub,P3-pruning(less than3.5meters)and cutting shrub. For the forest of Platycladus orientalis, the measures were CK(contrast),P1-pruning(less than2.5meters),P2-pruning(less than2.5meters)and cutting shrub,P3-pruning(less than3.5meters)and cutting shrub.
     (3)The photosynthesis characteristics of understory vegetation under different fuel management measures were measured and analyzed. the results of the photosynthesis characteristics index of the dominant shrub showed:①Compared with the contrast, the maximum net photosynthetic rate, light saturation point, light compensation point and dark respiration rate were greater than the contrast.②Generally speaking, compared with the contrast, the apparent quantum yield was reduced.
     (4)The biodiversity research of the understory communities. For the shrub layer of Pinus tabulaeformis, Compared with the contrast, the fuel management measures(treatment) of P3changed the biodiversity of shrub significantly, but the treatment of P1and P2less change the biodiversity of shrub. For the grass layer of Pinus tabulaeformis, Compared with the contrast, the treatment of P1,P2and P3change the biodiversity of shrub layer significantly. For the shrub layer of Platycladus orientalis, Compared with the contrast, the treatment of P1,P2and P3less change the biodiversity of shrub. For the grass layer of Platycladus orientalis, the control measures of P2and P3change the biodiversity of shrub significantly.
     This research conducted the fuel management technology and evaluated the ecological effects of fuel management measures. The results will provide a scientific basis for the fuel management.
引文
[1]陈宏伟,常禹,胡远满等.大兴安岭呼中林区森林死可燃物载量及其影响因子[J].生态学杂志,2008,27(1):50-55.
    [2]陈鹏飞,吕林昭,李继磊等.北京西山地区火烧迹地植被恢复研究[J].林业资源管理,2007,1:12-15.
    [3]邓湘雯,田大伦,康文星等.杉木人工林生态系统可燃物空间分布规律研究[J].火灾科学,2007,16(1):21-25.
    [4]邸学颖,王宏良,姚树人等.大兴安岭森林地表可燃物生物量与林分因子关系的研究[J].森林防火,1994,2:16-18.
    [5]高国平,周志权,王忠友.森林可燃物研究综述[J].辽宁林业科技,1998,4:34-37.
    [6]高贤明,黄建辉,万师强等.秦岭太白山弃耕地植物群落演替的生态学研究[J].生态学报,1997,17(6):619-625.
    [7]顾香凤,门志平,吴宝林等.营林用火对森林地表径流的影响[J].林业科技,2001,26(2):26-27.
    [8]郭富伟,王立明,牛树奎.十三陵林场森林可燃物分布特征与防灭火对策研究[J].林火研究,2008,4:9-12.
    [9]郭文霞.北京地区油松林抗火性综合分析及调控研究[D].北京林业大学,2009.
    [10]韩恩贤,薄颖生,韩刚.陕西针叶林下可燃物分布状况调查研究[J].陕西林业科技,2003,2:38-39.
    [11]贺红士,常禹,胡远满等.森林可燃物及其管理的研究进展与展望[J].植物生态学报,2010,34(6):741-752.
    [12]胡海清.利用林分因子预测森林地被可燃物载量的研究[J].林业科学,2005,41(5):96-100.
    [13]胡海清.林火生态与管理[D].中国林业出版社,2005,1:31-32.
    [14]胡海清等.大兴安岭森林可燃物理化特性测定与分析.森林防火[J].1995,1:27-31.
    [15]霍常富,孙海龙,王政权等.光照和氮营养对水曲柳苗木光合特性的影响[J].生态学杂志,2008,27(8):1255-1261.
    [16]江西军,柴一新.红花尔基樟子松林细小可燃物载量与林分因子关系研究[J].林火研究,2007,3:23-27.
    [17]姜金璞.北京西山地区风景游憩林抚育管理技术及效果评价研究[D].北京林业大学,2004.
    [18]金琳,刘晓东,任本才等.北京十三陵林场低山林区针叶林地表可燃物负荷量及影响因子[J].林业资源管理,2012,4(2):41-46.
    [19]金琳.北京十三陵林场低山针叶林可燃物分布及调控技术研究[D].北京林业大学.2012.
    [20]李春燕.森林可燃物含水率与火险等级关系的研究[J].林业调查规划,1994,4:37-41.
    [21]李俊清.森林生态学[M].高等教育出版社,2006,1:300-301
    [22]李昱烨.森林可燃物含水率模型的研究[D].东北林业大学,2010.
    [23]刘晓东等.大兴安岭地区兴安落叶松林可燃物模型的研究[J].森林防火,1995,3:8-10.
    [24]刘自强,王丽俊,王剑辉等.大兴安岭森林可燃物含水率、燃点、灰分的测定及其对易燃性和燃烧性的影响[J].森林防火,1993,4:16-18.
    [25]卢欣艳,北京西山森林火险影响因素时空规律研究[D].北京林业大学,2010.
    [26]罗德光.不同强度人为干扰对马尾松林分结构及物种多样性的影响[J].福建林业科技,2005,32(4):90-94.
    [27]吕秋萍,祝霞,赵伟明等.山核桃人工林生物多样性研究[J].广东林业科技,2009,25(4):24-30.
    [28]马爱丽,李小川.计划烧除的作用于应用研究综述[J].广东林业科技,2009,25(6):95-99.
    [29]马志贵,鄢武先,杨道贵等.云南松林计划烧除区水土流失量研究[J].森林防火,2000,1:41-43.
    [30]牛树奎,贺庆棠,陈锋等.北京山区主要针叶林可燃物空问连续性研究-可燃物水平连续性与树冠火蔓延[J].北京林业大学学报,2012,7(4):1-9
    [31]屈宇,于汝元,张延达等.营林防火的理论与实践[J].林业资源管理,2002,(4):13-16.
    [32]师生波,李慧梅,王学英等.青藏高原几种典型高山植物的光合特性比较[J].植物生态学报,2006,30(1):40-46.
    [33]舒立福,田晓瑞,吴鹏超等.火干扰对森林水文的影响[J].土壤侵蚀与水土保持学报,1999,5(6):82-85.
    [34]舒立福,田晓瑞.国外森林防火工作现状及展望[J].世界林业研究,1997,2:28-36.
    [35]孙建敏,鲍雨林,金国强等.杨梅园地生态调控技术试验[J].中国南方果树,2012,41(2):100-101.
    [36]孙尚伟,夏新莉,刘晓东等.修枝对复合农林系统内作物光合特性及生长的影响[J].生态学报,2008,28(7):3185-3192.
    [37]孙尚伟,尹伟伦,夏新莉等.修枝对复合农林系统内小气候及作物生长的影响[J].北京林业大学学报,2009,31(1):25-30.
    [38]唐伟.北京西山林场生物防火隔离带规划与布局[D].中国林业科学研究院,2012.
    [39]唐荣逸.云南松林可燃物载量的遥感估测研究[D].西南林学院,2007.
    [40]唐志尧,方精云.植物物种多样性的垂直分布格局[J].生物多样性,2004,01
    [41]田奇凡,阎海平,王铁柱.西山森林公园土壤元素环境背景值得研究[J].中南林学院学报.1995,15(2):13-16.
    [42]田晓瑞,舒立福,王明玉等.林火与气候变化研究进展[J].世界林业研究,2006,5:34-36
    [43]田晓瑞,宋光辉.我国天然林的火管理对策[J].林业资源管理,2000,3:14-17.
    [44]王刚,毕湘虹,骆介禹等.大兴安岭几种主要可燃物化学组成与燃烧性[J].森林防火.1999,3:21-23.
    [45]王梦君,李俊清.四川省王朗自然保护区地震干扰后大熊猫栖息地的恢复[J].生态学报,2008,28(12):5848-5855.
    [46]王明玉,舒立福,赵凤君等.北京西山可燃物特点及潜在火行为[J].林业科学,2010,46(1):84-90.
    [47]王明玉,周荣伍,赵凤君等.北京西山森林潜在火行为及防火林带有效宽度分布研究[J].火灾科 学,2008,17(4):209-215.
    [48]王强,胡海清,金森.利用遥感图像估测下可燃物负荷量的研究[D].东北林业大学,2005.
    [49]王强,胡海清.基于岭回归和人工神经网络估测可燃物负荷量[J].林业科学,2012,48(9):108-114.
    [50]王晓丽,牛树奎,马钦彦等.北京地区主要针叶林易燃可燃物垂直分布[J].北京林业大学学报,2009,3(2):31-35.
    [51]王晓丽.北京山区森林燃烧性研究[D].北京林业大学,2010.
    [52]王月,魏振宏,高国平.辽东桤木防火林带内草本可燃物的动态变化分析[J].沈阳农业大学学报,2008,39(2):197-200.
    [53]王兆斌.棉花主要病虫害农业生态调控综合治理技术[J].现代农业科技,2013,5:156-157.
    [54]韦翠鸾.北京西山风景林抚育技术研究[D].北京林业大学,2004.
    [55]魏云敏,鞠琳.森林可燃物载量研究综述[J].林火研究,2006,4:18-21.
    [56]吴志伟,贺红士,梁宇等.丰林自然保护区森林可燃物模型的建立[J].应用生态学报,2012,6:1503-1510.
    [57]谢晨岚,朱晓东,李杨帆.景观生态调控:概念提出与方法研究[J].生态经济,2005,34-36.
    [58]杨淑香,王立明.北京十三陵林场公益林可燃物特征与经营[J].林火研究,2007(1):14-17.
    [59]郁亚娟,郭怀成.城市生态调控的智能办法[J].城市问题,2007,138(1):9-14.
    [60]张景群,王春雷,王得祥.树冠火与林分层间易燃可燃物分布关系研究[J].森林防火,1995,4:5-9.
    [61]张龙,张瑶,国庆喜等.1987年大兴安岭林火碳释放及火后NPP恢复[J].林业科学,2009,12:100-104.
    [62]张弥,吴家兵,关德新等.长白山阔叶红松林主要树种光合作用的光响应曲线[J].应用生态学报,2006,17(9):1575-1578.
    [63]张卫强,贺康宁,王正宁等.光辐射强度对侧柏油松幼苗光合特性与水分利用效率的影响[J].2006,4(2):108-113.
    [64]赵勋.越南安息香不同种源苗期光合特性研究[D].浙江农林大学,2011.
    [65]周宇锋,周国模,余树全等.木荷林分可燃物载量空间分布的研究[J].北京林业大学学报2008,30(6):99-106.
    [66]Agee J K, Skinner C N.Basic principles of forest fuel reduction treatments[J].Forest Ecology and Management.2005,211:83-96.
    [67]Brown RT,Agee J K.Forest restoration and fire:Principles in the context of place[J]. Conservation Biology,2004,18(4):903-912.
    [68]Chen Z,Grady K, Stephens K, et al. Fuel reduction treatment and wildfire influence on carabid and tenebrionid community assemblages in the ponderosa pine forest of northern Arizona, USA[J].Forest Ecology and Management,2006,225:168-177.
    [69]Dodson E K,Peterson D W, Harrod R J. Understory vegetation response to thinning and burning restoration treatments in dry conifer forests of the eastern Cascades, USA [J].Forest Ecology and Management,2008,255:3130-3140.
    [70]Duguy B, Alloza JA,Roder A,et al. Modeling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape(eastern Spain)[J].International Journal of Wild land Fire,2007.16(5):619-632
    [71]Finney M A. Design of regular landscape fuel treatment patterns for modifying fire growth and behavior [J].Forest Science,2001,47:219-228.
    [72]Grosby J.S. Litter and duff fuel in short leaf Pine stands in southeast Missouri[M].Washington: USDA Forest Service Lent States Forest Expstn Techpap,1961:178.
    [73]Hart S C, Classen A T, Wright R J. Long-term interval burning alters fine root and mycorrhizal dynamics in a ponderosa pine forest [J].Journal of Applied Ecology,2005,42:752-761.
    [74]Hurteau M, North M. Fuel treatment effects on tree-based forest carbon storage and emissions under modeled wildfire scenario[J].Front Ecology Environment,2009,7(8):409-414.
    [75]Jia GJ,Burke IC, et al. Assessing spatial patterns of forest fuel using AVIRIS data [J].Remote Sensing of Environment,2006,102:318-327.
    [76]Knapp E E, Keeley J E, Ballenger E A, et al. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest [J]. Forest Ecology and Management,2005,208:383-397.
    [77]Knapp E E,Keeley J E,Ballenger E A, et al. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest[J]. Forest Ecology and Management,2005,208:383-397.
    [78]Kobziar L N, Stephens S L.The effects of fuels treatments on soil carbon respiration in a Sierra Nevada pine plantation[J].Agricultural and Forest Meteorology,2006,141:161-178.
    [79]Kuenzi A M,Fule P Z, Sieg C H. Effects of fire severity and pre-fire stand treatment on plant community recovery after a large wildfire[J].Forest Ecology and Management,2008,255:855-865.
    [80]Lezberg A L,Battaglia M A,Shepperd W D et al.Decades-old silvicultural treatments influence surface wildfire severity and post-fire nitrogen availability in a ponderosa pine forest[J]. Forest Ecology and Management,2008,255:49-61.
    [81]Loucks E,Arthur M A,Lyons J E, et al. Character of fuel before and after a single prescribed fire in an Appalachian hardwood forest[J].Southern Journal of Applied Forestry,2008,32(2):80-88.
    [82]Moghaddas E E, Stephens S L. Mechanized fuel treatment effects on soil compaction in Sierra Nevada mixed-conifer stands[J].Forest Ecology and Management,2008,255:3098-3106.
    [83]Potts J B, Stephens S L. Invasive and native plant responses to shrub land fuel reduction: comparing prescribed fire, mastication, and treatment season[J].Biological Conservation, 2009,142:1657-1664.
    [84]Sah JP,Ross MS, Snyder JR et al. Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests[J].International Journal of Wild land Fire,2006,15,463-478.
    [85]Schmidt D A, Taylor A H, Skinner A H. The influence of fuels treatment and landscape arrangement on simulated fire behavior, Southern Cascade range, California[J].Forest Ecology and Management,2008,255:3170-3184.
    [86]Schwilk D W, Keeley J E, Knapp E E, et al. The national Fire and Fire Surrogate study:effects of fuel reduction methods on forest vegetation structure and fuels[J].Ecological Applications,2009,19(2):285-304.
    [87]Shang B Z, He H S,Crow T R, et al. Fuel load reductions and fire risk in central hardwood forests of the United States:a spatial simulation study[J].Ecological Modeling,2004,180:89-102.
    [88]Sims DA, Seemann JR,Luo Y. The significance of differences in the mechanisms of photosynthetic acclimation to light, nitrogen and CO2 for return on investment in leaves[J]. Functional Ecology, 1998,12:185-194.
    [89]Suffling R, Grant A, Feick R, et al. Modeling prescribed burns to serve as regional firebreaks to allow wildfire activity in protected areas[J]. Forest Ecology and Management,2008,256: 1815-1824.
    [90]Walters MB, Field CB. Photosynthesis light acclimation in two rainforest Piper species with different ecological amp litudes[J]. Oecologia,1987,72:449-456.
    [91]Whittaker R. Evolution and measurement of species diversity[J].Taxon,1972,21(2/3):213-2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700