基于SOPC技术的弹载组合导航系统的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究探讨了基于FPGA的SOPC技术构建弹载导航系统方面的有关理论和技术;论文结合现代导航系统尤其是多传感器组合弹载导航系统的要求,面向工程化应用,采用大规模平台级FPGA为核心器件构建SOPC嵌入式无陀螺弹载导航系统。无陀螺捷联惯性导航系统主要由加速度计组成,该系统舍弃陀螺仪,用加速度计代替陀螺仪作为惯性测量元件,这不仅可以克服陀螺无法承受大的加速度冲击的缺点,而且系统的体积和功耗小、可靠性高等优点。使用SOPC方法在FPGA上设计嵌入式导航系统,改变了目前通用处理器、DSP+MCU(CPLD)的形式主导导航计算机设计的格局,采用软硬件协同的设计模式和可定制性更恰当的适合了组合导航系统对处理能力和接口能力的要求,具有很强的应用价值和广阔的应用前景。
     论文首先在分析弹体的有限空间、高动态性等特征,要求导航系统体积小、高可靠化、实时性等应用需求的基础上,结合无陀螺惯性导航理论,采用了GFSINS/GPS组合导航的导航优化方案;并从工程应用的角度出发,提出了基于IP核的SOPC技术在平台级FPGA器件上设计组合导航系统的整体方案,并给出了系统仿真验证策略和SOPC导航系统的顶层硬件结构。
     接下来的部分,针对弹体飞行过程中惯性导航参数的测量,论文完成了无陀螺惯性测量的硬件系统设计,包括传感器结构配置、信号调理、信号采集与处理电路的设计实现,并考虑了抗干扰等关键技术。
     然后,针对GFSINS/GPS组合导航系统对功能、接口等方面的要求,重点研究CPU外设的实现方案,并应用Altera的FPGA集成开发环境Quartus II及硬件描述语言VHDL,实现了ADC采样控制器、GPS接口单元等自定义逻辑电路的设计,完成对加速度传感器、GPS信号的采集、滤波和缓存,并通过对各模块仿真验证其满足设计要求。
     研究了导航计算机硬件板卡,包括芯片选型和硬件原理图设计;为了提高采样速度和精度,在FPGA内实现了FIR(有限冲激响应)数字滤波器的硬件设计,并通过对仿真验证其满足设计要求。
     最后,针对SOPC构建的嵌入式系统,其软件架构和系统初始化步骤与通用个人计算机有很大差异,应用Altera的集成开发环境SOPC Builder及IDE,完成了导航系统的NiosII构建及软件部分设计。
     本论文在研究基于FPGA的SOPC技术构建弹载导航系统应用方面,进行了较为全面的分析,对所设计的导航系统的各模块进行了仿真验证达到了预定的目标,证明是可行的,取得了一些有益的成果,为进一步的工程应用和开发提供了一定的基础。
This paper studied has discussed based on the FPGA SOPC technology construction missile-mounted navigation system aspect related theory and the technology; The paper union modern navigation system multi-sensor combination missile-mounted navigation system's request, face the project application, uses large-scale platform level FPGA is particularly the core component constructs SOPC embedded not to have the top missile-mounted navigation system. Gyro-free Strap down Inertial navigation System is mainly composed of the accelerometer, this system rejection gyroscope, replaces the gyroscope with the accelerometer to take the inertial survey part, not only this may overcome the top to be unable to withstand the great acceleration impact the shortcoming, moreover system's volume and the power loss are small, reliable higher merit. Uses the SOPC method to design the embedded navigation system on FPGA, changed the present general processor, DSP+MCU(CPLD) form leadership navigation computer design pattern, uses the design pattern which the software and hardware coordinates and may have custom-made the nature more appropriate to suit the mixed navigation system to the handling ability and the connection ability request, has the very strong application value and the broad application prospect.
     The paper first in analyzes characteristics and so on shell body's finite space, high dynamic, the request navigation system volume small, high reliable in the application demand and so on, timeliness foundations, unifies the non-top inertial navigation theory, has used the GFSINS/GPS combined navigation guidance optimization plan; And from project application's angle embarking, proposed technology designs mixed navigation system's overall plan based on IP the nucleus SOPC on the platform level FPGA component, and has given the system simulation confirmation strategy and the SOPC navigation system's top layer hardware architecture.
     Part then ,In view of the shell body flight process in the inertial navigation parameter's survey, the paper has completed the non-top inertial survey hardware system design, including the sensor structure disposition, the signal recuperation, the signal gathers and processes electric circuit's design to realize, and has considered the antijamming and so on key technologies.
     Then, in view of the GFSINS/GPS mixed navigation system to aspect and so on function, connection requests, studies the CPU peripheral device to realize the plan with emphasis, and using Altera FPGA integrated development environment Quartus II and hardware description language VHDL, has realized the ADC sampling controller, the GPS connection unit and so on from the definition logic circuit's design, completes to the acceleration instrument, GPS signal gathering, the filter and the buffer, and through confirms it to various modules simulation to satisfy the design requirements.
     Has studied the navigation computer hardware board card, including chip shaping and hardware schematic diagram design; In order to raise the sampling speed and the precision, has realized FIR in FPGA (limited impulse response) the digital filter's hardware design, and through confirms it to the simulation to satisfy the design requirements.
     Finally, in view of the SOPC construction's embedded system, its software construction and the system initialization step with uses in common the personal computer to have the very big difference, applies Altera integrated development environment SOPC Builder and IDE, has completed navigation system's NiosII construction and the software part design.
     The present paper in the research based on the FPGA SOPC technology construction missile-mounted guidance system application aspect, has carried on a more comprehensive analysis, to guidance system's various modules which designs carry on the simulation confirmation to achieve the predetermined goal, the proof are feasible, has made some beneficial progresses, has provided certain foundation for the further project application and the development.
引文
[1]周振宁,周芸,胡绍华.浅析精确制导武器红外月刊.2004 年,第 3 期:1~4。
    [2]樊启发.对国外制导兵器装备与技术发展规律的分析.弹箭与制导学报.1994 年, 第4 期:12~17。
    [3]曹云峰,王柳文,陶勇,等.微型飞行器控制与导航系统研究.航空电子技术.2002年,第 33 卷,第 1 期:31~34。
    [4]Georgia Tech,MIT,UCLA,AVCS MURI Program 1st Annual Review Active-Vision Control Systems,2004。
    [5]李海洋.基于 DSP 和 FPGA 的多功能嵌入式导航计算机设计.硕士学位论文.南京:南京航空航天大学,2005。
    [6]薛志宏.基于 DSP 的 SINS/GPS 组合导航系统研究与实现.硕士学位论文.南京:南京航空航天大学,2003。
    [7]李宏生.基于 DSP 的主从式紧耦合捷联导航计算机.中国惯性技术学报.2001 年,第 9 卷,第 3 期:34~38。
    [8]黄丽斌,周百令,单茂华.基于 DSP 的 MIMU/GPS 组合导航系统研究.中国惯性技术学报.2003 年,第 11 卷,第 3 期:12~15。
    [9]张大庆,万德钧,李嵘.基于浮点 DSP 的主从式多处理器在高速数据处理系统中的应用.测控技术.2002 年,第 21 卷,第 10 期:56~60。
    [10]章飚.SoC 技术及其在导弹武器系统中的应用前景.飞航导弹.2003 年,第 4 期,27~31。 [11 孟宪元.可编程器件实现片上系统.测控技术.2000 年,第 19 卷,第 10 期:43~46。
    [12]林金永.面向 SOC 的设计方法研究.航天控制.2004 年, 第 22 卷,第 2 期:68~71。
    [13] Aaron Parsons,Don Backer,Chen Chang,A New Approach to Radio Astronomy Signal Processing,General Assembly of the International Union of Radio Science,2005,(10): 485~496。
    [14]叶咏辰,赵光恒.用 PowerPC 硬核的 FPGA 片上系统及在存储系统中的应用.电子技术.2005 年,第 5 期:48~52。
    [15] K.N. Vikram, V.Vasudevan, Hardware-sofWare co-simulation of bus-basedreconfigurable systems, Microprocessors and Microsystems, 2005,(29):133~144。
    [16] T.S. Ganesh, M.T. Frederick, T.S.B. Sudarshan, Hashchip: A shared-resource multi-hash function processor architecture on FPGA,INTEGRATION,the VLSI journal,2006:121~134。
    [17]章飚.SOPC 技术及其在导弹武器系统中的应用前景.飞航导弹.2003 年,第 2 期:27~31。
    [18] P.Kolinummi,P.Hamalainen,T.Hamalainen,PARNEU:general-purpose partialtree computer, Microprocessors and Microsystems,2000,(24):23~42。
    [19]王劲松,王祁,孙圣和.无陀螺微惯性测量装置.传感器技术. 2003 年,第 22 卷,第 4 期:43~46。
    [20]丁明理,王祁等.无陀螺惯性测量技术研究现状及理论概述.佳木斯大学学报, 2003年,第 21 卷,第 1 期:38~41。
    [21]赵霞.无陀螺 SINS/GPS 组合导航系统研究.硕士学位论文.西安:西北工业大学,2006 年 3 月。
    [22] 何晓东.国外末制导炮弹现状与发展趋势.弹箭技术.1996 年,第 1 期:1~10。
    [23] ALTERA.Stratix II Device Handbook,Volume 1.2007.5。
    [24]Ji-Hong Li,Bong-Huan Jun,Pan-Mook Lee,A hierarchical real-time control architecture for a semi-autonomous underwater vehicle,Ocean Engineering,2005,(32):1631~1641。
    [25] 殷栩,王祁,丁明理,罗运顺.基于 DSP 的炮弹无陀螺惯性测量单元应用系统设计.传感技术学报.2007 年,第 20 卷,第 1 期:68~69。
    [26] Bernstein J.An overview of MEMS inertial sensing technology.Sensors.2003,(2)15~17。
    [27] R.E. Hopkins, J.T. Borestein, etal. The silicon oscillating accelerometer: A MEMS inertial instrument for strategic missile guidance. AIAA. Reprinted, withpermission from the missile Sciences Conference held in Monterey, California,USA. 2000,(11):7~9.
    [28]Anderson R S, Hanson D S, Kourepenis A S. Evolution of low-cost MEMS inertial system technologies. ION GPS 2001, Salt Lake City, Utah, USA. 2001,(9):11~14。
    [29]贺玲,薛大同.微机械硅加速度计的性能分析.真空与低温.2003 年,第 9 卷,第2 期:63~67。
    [30]朱自成.压阻式加速度传感器的补偿技术的研究.仪表技术.2000 年,第 4 期:42~43。
    [31] Texas Instruments.INA126.2007,1~2。
    [32] 郑世林.高性能滤波器的快速设计方法.咸宁学院学报, 2006 年,第 26 卷,第 6期:40~41.
    [33]AnalogDevices.250ksps,6-Channel,SimultaneousSamplingBipolar16-/14-/12-BitADC. 2006,20~26。
    [34]Robert D.Thompson,数字电路简明教程(马爱文).北京:电子工业出版社,2003。
    [35]胡广书.数字信号处理.第二版,北京:清华大学出版社,2003 年 8 月。
    [36] John G. Proakis,Dimitris G. Manolakis,张晓林译.数字信号处理.第二版,北京:电子工业出版社,2004 年 5 月。
    [37]黄仰博.基于 FPGA 的数字滤波器实现技术研究.硕士学位论文.长沙:国防科学技术大学,2004 年 1 月。
    [38]李彬.FIR 数字滤波器的 FPGA 实现技术研究.硕士学位论文.成都:西南交通大学,2007 年 5 月。
    [39] 彭澄廉著.挑战 SOC—基于 NIOS 的 SOPC 设计与实战.北京:清华大学出版.2004:40~115。
    [40] Altera Corporation.Nios II Software Developer’s Handbook。
    [41] Altera Corporation.Nios II Processor Reference Handbook。
    [42] ALTERA.Avalon Bus Specification Reference Manual.July 2003,9~53。
    [43] ALTERA.SOPC Builder User Guide.June 2003,10~18。 [44) 田泽编著.嵌入式系统开发与应用.北京:北京航空航天大学出版社,2005。
    [45](美)JEAN J.LABROSSE 著,邵贝贝译.μc/OS- II 源码公开的实时嵌入式操作系统.北京:中国电力出版社,2001。
    [46] Nios II Software Developer's Handbook, Altera Inc. 2005.5。
    [47]郭书军,王玉花,葛纫秋编著.嵌入式处理器原理及应用.北京:清华大学出版社,2004。
    [48] Using MicroC/OS- II RTOS with the Nios II Processor Tutorial. Altera Inc。
    [49] Nios Software Development Tutorial.Altera Inc. 2003.7。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700