荧光碳点的制备及其在药物分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳点(Carbon Dots, CDs)作为新型荧光碳纳米材料,具有类似量子点优良的光致发光性能,同时具有化学惰性和良好的生物相容性。因此,·碳点是潜在的可以替代量子点的良好选择。然而,碳点的制备与应用还有一定的挑战,主要体现在以下两方面:(1)高荧光量子产率的碳点,其发射光颜色大多为蓝色或绿色,与生物体的背景荧光相近,不利于成像研究;而发射光为红色的碳点,其荧光量子产率都较低。(2)由于碳点表面基团的不确定性和缺乏多样性,其应用依然受到限制。因此,如何充分利用荧光碳点的优良性质,将其应用在更多的领域还需进一步研究。本文主要从荧光碳点的制备出发,研究了其生物相容性,并最终将其应用于药物分析中。论文的主要内容包括三个部分,概括如下:
     第1部分:荧光碳点合成新方法研究。以血晶素为碳源,比较了煅烧和水热法制备碳点的发光性质,并最终采用水热法一步合成荧光碳点。研究发现,血晶素的碱性水溶液在聚四氟乙烯反应釜中,250℃下反应4h得到碳点,荧光量子产率达8.3%。合成的碳点不仅具有良好的光致发光特性、还有较好的水溶性和光化学稳定性。其形貌通过透射电子显微镜(TEM)表征,结果显示所合成碳点为球形或类球形,粒径分布在2-5nm,平均粒径约为3.23nm;另外,碳点在水溶液状态下的水合粒径采用动态光散射(DLS)进一步表征,约为10nm。Zeta电位分析表明碳点表面带有负电荷。高分辨透射电镜(HRTEM)成像显示其具有完整的晶体结构,晶格参数为0.22nm。X射线电子能谱与红外光谱表征结果显示碳点表面主要由C和O两种元素组成,带有羟基和羧基官能团。此外,该碳点具有良好的光致发光性能,激发与发射光谱较为对称,其荧光发射随激发波长红移而红移且强度会发生变化,最大激发与发射分别在290nm和390nm。
     第2部分:荧光碳点在药物分析中的应用。这一部分主要基于碳点荧光信号的改变检测药物,包括四个内容:
     1.基于小檗碱类猝灭CDs荧光检测小檗碱类。小檗碱类是一类广泛存在于自然界中的异奎宁生物碱,具有广泛的药理活性。研究发现小檗碱类的五种成分均可以猝灭CDs的荧光,且猝灭程度随着小檗碱类浓度的增大而增大。基于此,将CDs分别用于检测这五种小檗碱类,并在优化的条件下分别建立了线性关系。利’用此种方法检测盐酸小檗碱片中的盐酸小檗碱含量,结果与标示量一致。对猝灭机理进行研究,发现CDs的荧光发射与五种小檗碱类的吸收均有重叠,猝灭是因为CDs与它们发生能量转移。同时由于反应前后CDs荧光量子产率没有发生变化,说明CDs与小檗碱类药物之间发生了辐射能量转移而导致CDs荧光的猝灭。
     2.基于药根碱致CDs发射红移检测药根碱。研究发现,药根碱在碱性条件下使CDs发射峰红移,且红移程度随着药根碱浓度增大而增大。药根碱浓度在2.30μM到414μM范围内,位移值与浓度对数值呈良好的线性关系,方程式:Δλem=17.3log c-6.64(μM), r=0.995(n=10)。药根碱致CDs发射红移的机理同样是基于辐射能量转移,主要是由于药根碱的羟基在碱性条件下解离,导致吸收发生变化,与CDs的荧光发射重叠部分发生变化,不同波长处猝灭程度不同,于是发射峰红移。
     3.基于支链聚乙烯亚胺钝化的碳点(PEI-CDs,参考文献制备)荧光恢复检测乙酰半胱氨酸。因为铜离子能与PEI-CDs表面钝化剂上的氨基发生配位作用,从而猝灭其荧光。但如果有乙酰半胱氨酸存在,其结构上的巯基能与铜离子作用将Cu2+还原为Cu+同时自身形成二硫键,从而破坏了Cu2+与PEI-CDs表面氨基之间的作用,使得PEI-CDs荧光恢复,以此建立了PEI-CDs免标记快速、灵敏检测乙酰半胱氨酸的方法。在优化条件下,荧光恢复效率与乙酰半胱氨酸浓度在5.56μM~277.8μM范围内呈良好的线性关系,线性方程为:I/I0=0.88+0.013c(μM),r=0.997(n=10)。
     4.在PEI-CDs表面偶联上FITC,基于荧光比率法检测pH。通过荧光光谱表征证明PEI-CDs上偶联了FITC。在pH6.4-7.2范围内对pH有响应,线性方程如下:I520/I450=0.550+0.0252pH, r=0.986。
     第3部分:CDs生物相容性的研究。首先,研究了血晶素制备的CDs及支链聚乙烯亚胺钝化的碳点(PEI-CDs,根据文献制备)和CTAB-CDs(本实验室以富勒烯为碳源,CTAB为钝化剂制备)的细胞毒性。结果发现由血晶素制备的羟基碳点浓度高达5mg/mL时也不会对细胞造成明显毒性;,但PEI-CDs浓度大于2mg/mL可见明显的细胞毒性,且细胞存活率比同浓度PEI存在时低,这是由于在PEI-CDs制备过程中有受热,可能导致PEI进一步聚合从而增大了其毒性;CTAB作为阳离子表面活性剂,其细胞毒性为众人所知,CTAB-CDs的毒性相对最强,达到0.003mg/mL细胞存活率即降低至30%。说明碳点本身细胞毒性很低,其细胞毒性最终取决于CDs表面钝化剂的毒性作用。另外以斑马鱼和豆芽为模式生物,考察了CDs和PEI-CDs对于动植物活体生物生长的影响。在0.05mg/mL CDs和PEI-CDs溶液中,均未发现有斑马鱼胚胎孵化延迟效应和胚胎发育畸形;通过数据分析发现在0.05mg/mL CDs和PEI-CDs溶液中斑马鱼仔鱼死亡率与对照组没有明显差异。CDs浓度小于0.005mg/mL时不会对豆芽的生长产生明显的阻碍,而浓度为20mg/mL时培养的豆芽根茎长则与对照组有明显差异。PEI-CDs浓度小于0.05mg/mL没有明显差异,大于0.2mg/mL则培养的豆芽根茎长与对照组有明显的差异。这些结果说明,碳点本身具有良好的生物相容性,其毒性最终取决于CDs表面钝化剂的毒性强弱。
     总而言之,本论文新制备了荧光碳点,并基于碳点荧光信号的改变将该碳点与另外一种PEI钝化碳点用于药物分析;最后研究了该碳点和其他两种碳点的生物相容性。
Carbon dots (CDs), a new fluorescent carbon nanomaterial, not only possess unique optical properties, but also have good biocompatibility. So they are considered as a potential substitute for quantum dots. However, there remain some challenges in the preparation and application of CDs. Firstly, fluorescence quantum yield of the red CDs are always too low, while the CDs with high fluorescence quantum yield are blue or green, which is similar to the fluorescence of biological sample. Secondly, uncertainty of the surface groups and the lack of diversity of CDs lead to the limitation of their application. As a result, the development of novel preparation of CDs with excellent fluorescence and how to make it applicable in more and more fields are quite important. In this thesis, we mainly state the preparation, biological compatibility of CDs, as well as their applications in the pharmaceutical analysis.
     The main contents of the thesis consist of the following three parts:
     Part I. Study on the preparation of CDs. By comparation the photoluminescence performance of CDs synthesized from hemin by calcination and hydrothermal reaction, we prepared CDs by hydrothermal reaction from hemin. The hydroxyls-coated CDs were facilely synthesized by hydrothermal reaction from hemin, which possesses excellent photoluminescence property, good water-solubility and optochemical stability. Transmission electron microscope (TEM) imaging showed that CDs were uniformly distributed with the diameter of2-5nm, and the average diameter is3.23nm. Dynamic light scattering (DLS) analysis showed that the average hydrodynamic size of CDs was about10nm and the surface of CDs was negative charged. High resolution transmission electron microscopy (HRTEM) measurement revealed the CDs have integrated crystalline structure, and the lattice parameter was0.22nm. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) results implied the existence.of hydroxyl and carboxyl groups on the surface of the CDs. The CDs had good photoluminescence properties with quantum yield of8.3%.
     Part Ⅱ. The application of CDs in the pharmaceutical analysis. Based on the fluorescence change, the CDs were applied in the pharmaceutical analysis. This section includes four elements.
     1. Detection of the berberines (Bers) based on fluorescence quenching of CDs. The emission of the CDs can be quenched obviously with the addition of five kinds of Bers respectively. The fluorescence intensity of CDs decreases with increasing amount of Bers. Under optimum experimental conditions, good linear correlations between the quenching intensity (ΔI) and the logarithm of the concentration of Bers was obtained and a simple spectrofluorometric method of various Bers was established. The concentration of Ber in berberine hydrochloride tablets determined by the proposed method relates well with that claimed by the label. To understand the mechanism of the experiment, we found that the emission of CDs and the absorption of Bers overlapped, and we speculated energy transfer may happen between CDs and Bers. Furthermore, the fluorescence lifetime of CDs have no variation before and after the addition of Bers, indicating quenching radiation energy transfer occured.
     2. Detection of jatrorrhizine (Jat) based on the emission red shift of CDs. It was found that, in BR buffer at pH10, the addition of Jat may lead to the quench of CDs fluorescence intensity and induce the red shift of the emission of CDs. And the redshift presented a good linear relationship with the logarithm of the concentration of Jat from2.30μM to414uM with the the equation of Δλem=17.3log c-6.64(μM), correlation coefficients of0.995(n=10). It should be noted that the other four Bers are not able to change the emission peak of CDs. It was speculated the red-shift is owing to the radiation energy transfer. Under this condition, higher pH induces further dissociation of hydroxyl of Jat, and then the absorption of Jat changed, which lead to the change of overlap between CDs and Jat.
     3. Detection of N-Acetylcysteine (NAC) based on the fluorescence of CDs passivated by branched polyethylene imine (PEI-CDs, prepared according to literature) off-on. Cu2+ions can be captured by the amino groups of PEI-CDs and form an absorbent complex at the surface of CDs, resulting in fluorescence quenching of the PEI-CDs. While in the present of NAC, thiol group of NAC can reduce cupric to cuprous and form disulfur bond, thus the fluorescence of PEI-CDs resumes. Herein, we presented a non-label, fast detection-of NAC. Under the optimum condition, enhanced PL intensity was found to be linearly correlated with the concentrations of NAC, and a linear equation of I/I0=0.88+0.013c (μM) is followed in the range of5.56μM~277.8μM with the correlation coefficients of0.997(r, n=10).
     4. FITC was coupled on the surface of PEI-CDs for pH testing based on fluorescence ratio method. Fluorescence spectroscopy showed the achievement of the coupling of FITC on PEI-CDs, which can detect the slight changes of pH from6.4to7.2.
     Part Ⅲ. Biocompatibility study of the proposed CDs. Firstly, cytotoxicity of the CDs prepared with hemin, CDs passivated by branched polyethylene imine (PEI-CDs, prepared according to literature) and CTAB-CDs (fullerenes as carbon source, CTAB as the passivation) was achieved in this section. The results showed that more than5mg/mL hydroxylated CDs prepared with hemin can not lead to significant toxicity to the cells; while PEI-CDs are toxic even at the concentration of2mg/mL, and the cell viability is lower than that in the presence of only PEI at the same concentration. We speculated that during the preparation of PEI-CDs, high temperature may induce the polymerization of PEI, which lead to the increased toxicity. Cytotoxicity of CTAB-CDs is the highest among the three kinds of CDs in this study because of the toxicity of CTAB, which is widely known as a cationic active agent, and0.003mg/mL of CTAB-CDs can make the cell viability reduce to30%. In a word, CDs itself is not toxic, and the corresponding cytotoxicity depends on the passivation agent on the surface of CDs. Zebrafish and bean sprouts were employed as the model organisms to investigate the biocompatibility of CDs and PEI-CDs to live plants and animals. In0.05mg/mL of CDs or PEI-CDs solution, no delayed embryo hatching effects and embryo malformations were observed, and the analysis demonstrated larval mortality in these two groups is not obvious diferent from the control. Further study showed that less than5mg/mL of CDs solution didn't significantly impede the growth of sprouts, while the concentration increased to20mg/mL the length of sprouts roots were distinct different from the control group. Less than0.05mg/mL, PEI-CDs has no effect on the length of sprouts rhizome, but when the concentration of PEI-CDs is higher than0.2mg/mL, the length of sprouts rhizome are obviously different compared to the control. These study indicated that within a certain range, CDs have good biocompatibility, and the corresponding cytotoxic depends on the passivation agent on the surface of CDs.
     In summary, we explored a new method to synthesize CDs. And then, CDs were applied in pharmaceutical analysis. Lastly, we studied the biocompatibility of CDs preparation from hemin and the PEI-CDs.
引文
[1]Fan, J.; Chu, P. K. Group IV Nanoparticles:Synthesis, Properties, and Biological Applications. Small 2010,6(19),2080-2098.
    [2]Kroto, H. W.; Heath, J. R.; O'Brien, S.; Curl, R. F.; Smalley, R. E. C60:Buckminsterfullerene Nature 1985,318,162-163.
    [3]Guldi, D. M. Excited-State Properties of C6o Fullerene Derivatives. Acc. Chem. Res.2000,33 (10),695-703.
    [4]Ramachandran, C. N.; Sathyamurthy, N. Time-Dependent Density Functional Theoretical Study of the Absorption Properties of Bn-Substituted C6o Fullerenes. J. Phys. Chem. A 2007,111 (30), 6901-6903.
    [5]Hasheminezhad, M.; Fleischner, H.; McKay, B. D. A Universal Set of Growth Operations for Fullerenes. Chem. Phy. Lett.2008,464(1-3),118-121.
    [6]Guan, B.; Zou, F.; Zhi, J. Nanodiamond as the pH-Responsive Vehicle for an Anticancer Drug. Small 2010.
    [7]Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991,354,56-58.
    [8]Riggs, J.; Guo, Z.; Carroll, D.; Sun, Y. Strong Luminescence of Solubilized Carbon Nanotubes. J. Am. Chem. Soc.2000,122 (24),5879-5880.
    [9]Riggs, J. E.; Walker, D. B.; Carroll, D. L.; Sun, Y.-P. Optical Limiting Properties of Suspended and Solubilized Carbon Nanotubes. J. Phys. Chem. B 2000,104 (30),7071-7076.
    [10]Sun, Y.-P.; Fu, K.; Lin, Y.; Huang, W. Functionalized Carbon Nanotubes:Properties and Applications. Acc. Chem. Res.2002,35(12),1096-1104.
    [11]Huang, W.; Fernando, S.; Allard, L. F.; Sun, Y.-P. Solubilization of Single-Walled Carbon Nanotubes with Diamine-Terminated Oligomeric Poly(Ethylene Glycol) in Different Functionalization Reactions. Nano Lett.2003,3 (4),565-568.
    [12]Bottini, M.; Balasubramanian, C.; Dawson, M. I.; Bergamaschi, A.; Bellucci, S.; Mustelin, T. Isolation and Characterization of Fluorescent Nanoparticles from Pristine and Oxidized Electric Arc-Produced Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2006,110 (2), 831-836.
    [13]Zhang, L.; Huang, C. Z.; Li, Y. F.; Xiao, S. J.; Xie, J. P. Label-Free Detection of Sequence-Specific DNA with Multiwalled Carbon Nanotubes and Their Light Scattering Signals. J. Phys. Chem. B 2008,112 (6),7120-7122.
    [14]Kamanina, N. V.; Serov, S. V.; Savinov, V. P. Photorefractive Properties of Nanostructured Organic Materials Doped with Fullerenes and Carbon Nanotubes. Technical Physics Letters 2010,36(1),40-42.
    [15]Zhang, L.; Zhen, S. J.; Sang, Y.; Li, J. Y.; Wang, Y.; Zhan, L.; Peng, L.; Wang, J.; Li, Y. F.; Huang, C. Z. Controllable Preparation of Metal Nanoparticle/Carbon Nanotube Hybrids as Efficient Dark Field Light Scattering Agents for Cell Imaging. Chem. Commun.2010,46, 4303-4305.
    [16]Su, Z.; Zhu, S.; Donkor, A. D.; Tzoganakis, C.; Honek, J. F. Controllable Delivery of Small-Molecule Compounds to Targeted Cells Utilizing Carbon Nanotubes. J. Am. Chem. Soc. 2011,133,6874-6877.
    [17]Zhen, S. J.; Chen, L. Q.; Xiao, S. J.; Li, Y. F.; Hu, P. P.; Zhan, L.; Peng, L.; Song, E. Q.; Huang, C. Z. Carbon Nanotubes as a Low Background Signal Platform for a Molecular Aptamer Beacon on the Basis of Long-Range Resonance Energy Transfer. Anal. Chem.2010,82, 8432-8437.
    [18]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; I.V.Grigorieva; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004,306,666-669.
    [19]Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-Based Composite Materials. Nature 2006, 442,282-286.
    [20]Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater.2007,6,183-191.
    [21]Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoffa, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007,45 (7),1558-1565.
    [22]Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Phys. Chem. C 2008, 112,17554-17558.
    [23]Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z. Graphene in Mice:Ultrahigh in Vivo Tumor Uptake and Efficient Photothermal Therapy. Nano Lett.2010,10,3318-3323.
    [24]Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional Graphene Oxide as a Nanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. Small 2010,6 (4), 537-544.
    [25]Zhao, G.; Jiang, L.; He, Y.; Li, J.; Dong, H.; Wang, X.; Hu, W. Sulfonated Graphene for Persistent Aromatic Pollutant Management. Adv. Mater.2011,23,3959-3963.
    [26]Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. Pegylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc.2008,130,10876-10877.
    [27]Bai, H.; Li, C.; Wang, X.; Shi, G. A pH-Sensitive Graphene Oxide Composite Hydrogel. Chem. Commun.2010,46,2376-2378.
    [28]Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N. G.; Wu, T.; Li, L.; Li, J.; Gan, L. H. Chitosan-Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery. Small 2011.
    [29]Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc.2004,126,12736-12737.
    [30]Sun, Y. P.; Zhou, B.; Lin, Y.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S. Y. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006,128,7756-7757.
    [31]Li, W.; Zhang, Z.; Kong, B.; Feng, S.; Wang, J.; Wang, L.; Yang, J.; Zhang, F.; Wu, P.; Zhao, D. Simple and Green Synthesis of Nitrogen-Doped Photoluminescent Carbonaceous Nanospheres for Bioimaging. Angew. Chem. Int. Ed.2013,52.
    [32]Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T.-K.; Sun, X.; Ding, Z. An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCTs). J. Am. Chem. Soc.2007,129,744-745.
    [33]Zhao, Q. L.; Zhang, Z. L.; Huang, B. H.; Peng, J.; Zhang, M.; Pang, D. W. Facile Preparation of Low Cytotoxicity Fluorescent Carbon Nanocrystals by Electrooxidation of Graphite. Chem. Commun.2008,5116-5118.
    [34]Zheng, L. Y; Chi, Y. W.; Dong, Y. Q.; Lin, J. P.; Wang, B. B. Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite. J. Am. Chem. Soc.2009,131,4564-4565.
    [35]Lu, J.; Yang, J. X.; Wang, J. Z.; Lim, A. L.; Wang, S.; Loh, K. P. One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano 2009,3,2367-2375
    [36]Hu, S. L.; Niu, K. Y.; Sun, J.; Yang, J.; Zhao, N. Q.; Du, X. W. One-Step Synthesis of Fluorescent Carbon Nanoparticles by Laser Irradiation. J. Mater. Chem.2009,19,484-488.
    [37]Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Surface Functionalized Carbogenic Quantum Dots. Small 2008,4,455-458.
    [38]Wang, F.; Xie, Z.; Zhang, H.; Liu, C. Y.; Zhang, Y. G. Highly Luminescent Organosilane-Functionalized Carbon Dots. Adv. Funct. Mater.2011,21,1027-1031.
    [39]Liu, R. L.; Wu, D. Q.; Liu, S. H.; Koynov, K.; Knoll, W.; Li, Q. An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers. Angew. Chem. Int. Ed.2009,48,4668-4671.
    [40]Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Photoluminescent Carbogenic Dots. Chem. Mater.2008,20,4539-4541.
    [41]Li, H. T.; He, X. D.; Liu, Y.; Huang, H.; Lian, S. Y.; Lee, S. T.; Kang, Z. H. One-Step Ultrasonic Synthesis of Water-Soluble Carbon Nanoparticles with Excellent Photoluminescent Properties. Carbon 2011,49,605-609.
    [42]Zhuo, S.; Shao, M.; Lee, S.-T. Upconversion and Downconversion Fluorescent Graphene Quantum Dots:Ultrasonic Preparation and Photocatalysis. ACS Nano 2012,6,1059-1064.
    [43]刘慧;杨晓溪;郑佳佳;李原芳;黄承志超声法一步合成生物相容的黄绿色荧光碳点.中国科学:化学2013,43,895-900.
    [44]Gedanken, A. Using Sonochemistry for the Fabrication of Nanomaterials. Ultrason. Sonochem. 2004,11,47-55.
    [45]Zhu, H.; Wang, X. L.; Li, Y. L.; Wang, Z. J.; Yang, F.; Yang, X. R. Microwave Synthesis of Fluorescent Carbon Nanoparticles with Electrochemiluminescence Properties. Chem. Commun. 2009,5118-5120.
    [46]Liu, J. M.; Lin, L. P.; Wang, X. X.; Lin, S. Q.; Cai, W. L.; Zhang, L. H.; Zheng, Z. Y. Highly Selective and Sensitive Detection of Cu2+ with Lysine Enhancing Bovine Serum Albumin Modified-Carbon Dots Fluorescent Probe. Analyst 2012,137,2637-2642.
    [47]Qu, S.; Wang, X.; Lu, Q.; Liu, X.; Wang, L. A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots. Angew. Chem. Int. Ed.2012,51,12215-12218.
    [48]Wang, Q.; Liu, X.; Zhang, L. C.; Lv, Y. Microwave-Assisted Synthesis of Carbon Nanodots through Eggshell Membrane and Their Fluorescent Application. Analyst 2012,137, 5392-5397.
    [49]Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent Carbon Nanoparticles Derived from Candle Soot. Angew. Chem. Int. Ed.2007,46,6473-6475.
    [50]Tian, L.; Ghosh, D.; Chen, W.; Pradhan, S.; Chang, X.; Chen, S. Nanosized Carbon Particles from Natural Gas Soot. Chem. Mater.2009,21,2803-2809.
    [51]Tan, M.; Zhang, L.; Tang, R.; Song, X.; Li, Y.; Wu, H.; Wang, Y.; Lv, G.; Liu, W.; Ma, X. Enhanced Photoluminescence and Characterization of Multicolor Carbon Dots Using Plant Soot as a Carbon Source. Talanta 2013,115,950-956.
    [52]Fang, Y.; Guo, S.; Li, D.; Zhu, C.; Ren, W.; Dong, S.; Wang, E. Easy Synthesis and Imaging Applications of Cross-Linked Green Fluorescent Hollow Carbon Nanoparticles. ACS Nano 2012,6 400-409.
    [53]Liu, S.; Tian, J. Q.; Wang, L.; Zhang, Y. W.; Qin, X. Y.; Luo, Y. L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Hydrothermal Treatment of Grass:A Low-Cost, Green Route to Nitrogen-Doped, Carbon-Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Label-Free Detection of Cu(Ⅲ) Ions. Adv. Mater.2012,24, 2037-2041.
    [54]Lu, W. B.; Qin, X. Y.; Liu, S.; Chang, G. H.; Zhang, Y. W.; Luo, Y L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(Ⅱ) Ions. Anal. Chem.2012,84, 5351-5357.
    [55]Yin, B.; Deng, J.; Peng, X.; Long, Q.; Zhao, J.; Lu, Q.; Chen, Q.; Li, H.; Tang, H.; Zhang, Y.; et al. Green Synthesis of Carbon Dots with Down-and up-Conversion Fluorescent Properties for Sensitive Detection of Hypochlorite with a Dual-Readout Assay. Analyst 2013.
    [56]Wang, Q.; Huang, X.; Long, Y.; Wang, X.; Zhang, H.; Zhu, R.; Liang, L.; Teng, P.; Zheng, H. Hollow Luminescent Carbon Dots for Drug Delivery. Carbon 2013,59,192-199.
    [57]Wu, Z. L.; Zhang, P.; Gao, M. X.; Liu, C. F.; Wang, W.; Leng, F.; Huang, C. Z. One-Pot Hydrothermal Synthesis of Highly Luminescent Nitrogen-Doped Amphoteric Carbon Dots for Bioimaging from Bombyx Mori Silk-Natural Proteins. J. Mater. Chem. B 2013,1, 2868-2873.
    [58]Gao, M. X.; Liu, C. F.; Wu, Z. L.; Zeng, Q. L.; Yang, X. X.; Wu, W. B.; Li, Y. F.; Huang, C. Z. A Surfactant-Assisted Redox Hydrothermal Route to Prepare Highly Photoluminescent Carbon Quantum Dots with Aggregation-Induced Emission Enhancement Properties. Chem. Commun.2013,49,8015-8017.
    [59]Yang, S. T.; Wang, X.; Wang, H. F.; Lu, F. S.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J. H.; Liu, Y. F.; Chen, M.; et al. Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents. J. Phys. Chem. C2009,113,18110-18114.
    [60]Yang, S. T.; Cao, L.; Luo, P. G.; Lu, F. S.; Wang, X.; Wang, H. F.; Meziani, M. J.; Liu, Y. F.; Qi, G.; Sun, Y. P. Carbon Dots for Optical Imaging in Vivo. J. Am. Chem. Soc.2009,131, 11308-11309.
    [61]Cao, L.; Yang, S.-T.; Wang, X.; Luo, P. G.; Liu, J.-H.; Sahu, S.; Liu, Y.; Sun, Y.-P. Competitive Performance of Carbon "Quantum" Dots in Optical Bioimaging. Theranostics 2012,2, 295-301.
    [62]Li, Q.; Ohulchanskyy, T. Y.; Liu, R.; Koynov, K.; Wu, D.; Best, A.; Kumar, R.; Bonoiu, A.; Prasad, P. N. Photoluminescent Carbon Dots as Biocompatible Nanoprobes for Targeting Cancer Cells in Vitro. J. Phys. Chem. C 2010,114,12062-12068.
    [63]Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar. R. Fluorescent Carbon Nanoparticles:Synthesis, Characterization, and Bioimaging Application. J. Phys. Chem. C2009,113,18546-18551.
    [64]Liu, L.; Li, Y.; Zhan, L.; Liu, Y.; Huang, C. One-Step Synthesis of Fluorescent Hydroxyls-Coated Carbon Dots with Hydrothermal Reaction and its Application to Optical Sensing of Metal Ions. Sci. China Chem.2011,54,1342-1347.
    [65]Tao, H.; Yang, K.; Ma, Z.; Wan, J.; Zhang, Y.; Kang, Z.; Liu, Z. In Vivo NIR Fluorescence Imaging, Biodistribution, and Toxicology of Photoluminescent Carbon Dots Produced from Carbon Nanotubes and Graphite. Small 2012,8 (2),281-290.
    [66]Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H. F.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; et al. Carbon Dots for Multiphoton Bioimaging. J. Am. Chem. Soc.2007, 129,11318-11319.
    [67]Zhu, A.; Qu, Q.; Shao, X.; Kong, B.; Tian, Y. Carbon-Dot-Based Dual-Emission Nanohybrid Produces a Ratiometric Fluorescent Sensor for in Vivo Imaging of Cellular Copper Ions. Angew. Chem.2012,124,7291-7301.
    [68]Sun, D.; Ban, R.; Zhang, P.-H.; Wu, G.-H.; Zhang, J.-R.; Zhu, J.-J. Hair Fiber as a Precursor for Synthesizing of Sulfur-and Nitrogen-Co-Doped Carbon Dots with Tunable Luminescence Properties. Carbon 2013,64,424-434.
    [69]Huang, P.; Lin, J.; Wang, X.; Wang, Z.; Zhang, C.; He, M.; Wang, K.; Chen, F.; Li, Z.; Shen, G.; et al. Light-Triggered Theranostics Based on Photosensitizer-Conjugated Carbon Dots for Simultaneous Enhanced-Fluorescence Imaging and Photodynamic Therapy. Adv. Mater.2012, 24 (37),5104-5110.
    [70]Jinhwan Kim, J. P., Hyunwoo Kim, Kaushik Singha, Won Jong Kim. Transfection and Intracellular Trafficking Properties of Carbon Dot-Gold Nanoparticle Molecular Assembly Conjugated with PEI-pDNA. Biomaterials 2013,34,7168-7180.
    [71]Shi, W. B.; Wang, Q. L.; Long, Y. J.; Cheng, Z. L.; Chen, S. H.; Zheng, H. Z.; Huang, Y. M. Carbon Nanodots as Peroxidase Mimetics and Their Applications to Glucose Detection. Chem. Commun.2011,47,6695-6697.
    [72]Wang, D. M.; Gao, M. X.; Gao, P. F.; Yang, H.; Huang, C. Z. Carbon Nanodots-Catalyzed Chemiluminescence of Luminol:A Singlet Oxygen-Induced Mechanism. J. Phys. Chem. C 2013,117,19219-19225.
    [73]Lin, Z.; Xue, W.; Chen, H.; Lin, J.-M. Peroxynitrous-Acid-Induced Chemiluminescence of Fluorescent Carbon Dots for Nitrite Sensing. Anal. Chem.2011,83,8245-8251.
    [74]Liu, J.; Li, J.; Jiang, Y.; Yang, S.; Tan, W.; Yang, R. Combination of π-π Stacking and Electrostatic Repulsion between Carboxylic Carbon Nanoparticles and Fluorescent Oligonucleotides for Rapid and Sensitive Detection of Thrombin. Chem. Commun.2011,47, 11321-11323.
    [75]Goncalves, H.; Jorge, P. A. S.; Fernandes, J. R. A.; Silva, J. C. G. E. d. Hg(II) Sensing Based on Functionalized Carbon Dots Obtained by Direct Laser Ablation. Sensor. Actuat. B-Chem. 2010,145,702-707.
    [76]Sun, W.; Du, Y.; Wang, Y. Study on Fluorescence Properties of Carbogenic Nanoparticles and Their Application for the Determination of Ferrous Succinate. J. Lumin.2010,130, 1463-1469.
    [77]Dong, Y; Li, G.; Zhou, N.; Wang, R.; Chi, Y.; Chen, G. Graphene Quantum Dot as a Green and Facile Sensor for Free Chlorine in Drinking Water. Anal. Chem.2012,84,8378-8382.
    [78]Dong, Y. Q.; Wang, R. X.; Li, G. L.; Chen, C. Q.; Chi, Y. W.; Chen, G. N. Polyamine-Functionalized Carbon Quantum Dots as Fluorescent Probes for Selective and Sensitive Detection of Copper Ions. Anal. Chem.2012,84,6220-6224.
    [79]Zhao, H. X.; Liu, L. Q.; Liu, Z. D.; Wang, Y.; Zhao, X. J.; Huang, C. Z. Highly Selective Detection of Phosphate in Very Complicated Matrixes with an off-on Fluorescent Probe of Europium-Adjusted Carbon Dots. Chem. Commun.2011,47,2604-2606.
    [80]郑佳佳;李春梅;刘忠德;李原芳;黄承志.羧基化碳点-铝(Ⅲ)复合荧光探针定量检测氟离子.科学通报2011,56,2952-2958.
    [81]Zhou, L.; Lin, Y. H.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Carbon Nanodots as Fluorescence Probes for Rapid, Sensitive, and Label-Free Detection of Hg2+ and Biothiols in Complex Matrices. Chem. Commun.2012,48,1147-1149.
    [82]Bai, W. J.; Zheng, H. Z.; Long, Y. J.; Mao, X. J.; Gao, M.; Zhang, L. Y. A Carbon Dots-Based Fluorescence Turn-on Method for DNA Determination. Anal. Sci.2011,27,243-246.
    [83]Shi, W.; Li, X. H.; Ma, H. M. A Tunable Ratiometric pH Sensor Based on Carbon Nanodots for the Quantitative Measurement of the Intracellular pH of Whole Cells. Angew. Chem. Int. Ed. 2012,51,6432-6435.
    [84]Cao, B.; Yuan, C.; Liu, B.; Jiang, C.; Guan, G.; Han, M.-Y. Ratiometric Fluorescence Detection of Mercuric Ion Based on the Nanohybrid of Fluorescence Carbon Dots and Quantum Dots. Anal. Chim. Acta 2013,786,146-152.
    [85]Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S.-T. Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem. Int. Ed.2010,49,4430-4434.
    [86]Li, Y.; Hu, Y.; Zhao, Y.; Shi, G.; Deng, L.; Hou, Y.; Qu, L. An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics. Adv. Mater.2011,23,776-780.
    [87]Luo, P.; Li, C.; Shi, G. Synthesis of Gold@Carbon Dots Composite Nanoparticles for Surface Enhanced Raman Scattering. Phys. Chem. Chem. Phys.2012,14,7360-7366.
    [88]Baker, S. N.; Baker, G. A. Luminescent Carbon Nanodots:Emergent Nanolights. Angew. Chem. Int. Ed.2010,49,6726-6744.
    [89]Pan, D.; Zhang, J.; Li, Z.; Wu, C.; Yan, X.; Wu, M. Observation of pH-, Solvent-, Spin-, and Excitation-Dependent Blue Photoluminescence from Carbon Nanoparticles. Chem. Commun. 2010,46,3681-3683.
    [90]Lin, Z.; Xue, W.; Chen, H.; Lin, J. M. Classical Oxidant Induced Chemiluminescence of Fluorescent Carbon Dots. Chem. Commun.2012,48 (7),1051-1053.
    [91]Zhang, Y.; Goncalves, H.; Silva, J. C. G. E. d.; Geddes, C. D. Metal-Enhanced Photoluminescence from Carbon Nanodots. Chem. Commun.2011,47,5313-5315.
    [92]Dahan, M.; Levi, S.; Luccardini, C.; Rostaing, P.; Riveau, B.; Triller, A. Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking. Science 2003,302, 442-445.
    [93]Elford, B. C. L-Glutamine Influx in Malaria-Infected Erythrocytes:A Target for Antimalarials? Parasitology Today 1986,2,309-312.
    [94]Cui, H.-S.; Hayasaka, S.; Zhang, X.-Y.; Hayasaka, Y.; Chi, Z.-L.; Zheng, L.-S. Effect of Berberrubine on Interleukin-8 and Monocyte Chemotactic Protein-1 Expression in Human Retinal Pigment Epithelial Cell Line. Life Sciences 2006,79,949-956.
    [95]Cui, H.-S.; Hayasaka, S.; Zhang, X.-Y.; Hayasaka, Y.; Chi, Z.-L.; Zheng, L.-S. Effect of Berberine on Barrier Function in a Human Retinal Pigment Epithelial Cell Line. Jpn. J. Ophthalmol.2007,51,64-67
    [96]Yang, J.; Wang, H.-d.; Lu, D.-x.; Wang, Y.-p.; Qi, R.-b.; Li, J.; Li, F.; Li, C.-j. Effects of Neutral Sulfate Berberine on LPS-Induced Cardiomyocyte TNF-a Secretion, Abnormal Calcium Cycling, and Cardiac Dysfunction in Rats. Acta Pharmacologica Sinica 2006,27, 173-178.
    [97]Fu, Y.; Hu, B. R.; Tang, Q.; Fu, Q.; Zhang, Q. Y.; Xiang, J. Z. Effect of Jatrorrhizine, Berberine, Huanglian Decoction and Compound-Mimic Prescription on Blood Glucose in Mice. Chin. Tradit. Herbal Drugs 2005,36 (4),548-551.
    [98]Unger, M.; Stockigt, J. Improved Detection of Alkaloids in Crude Extracts Applying Capillary Electrophoresis with Field Amplified Sample Injection. J. Chromatogr. A 1997,791,323-331.
    [99]Liu, Q.; Liu, Y J.; Li, Y. Q.; Yao, S. Z. Nonaqueous Capillary Electrophoresis Coupled with Laser-Induced Native Fluorescence Detection for the Analysis of Berberine, Palmatine, and Jatrorrhizine in Chinese Herbal Medicines. J. Sep. Sci.2006,29,1268-1274.
    [100]Sun, S. W.; Tseng, H. M. Sensitivity Improvement on Detection of Coptidis Alkaloids by Sweeping in Capillary Electrophoresis. J. Pharm. Biomed. Anal.2005,37,39-45.
    [101]Chang, L. C.; Sun, S. W. Micellar Electrokinetic Chromatography for Separation of a Mixture of Coptis Alkaloids, Scute Flavonoids, and Rhubarb Anthraquinones and Bianthrones. J. Pharm. Biomed. Anal.2006,40,62-67.
    [102]Luo, X. B.; Chen, B.; Yao, S. Z. Simultaneous Analysis of Protoberberine, Indolequinoline and Quinolone Alkaloids in Coptis-Evodia Herb Couple and the Chinese Herbal Preparations by High-Performance Liquid Chromatography-Electrospray Mass Spectrometry. Talanta 2005, 66,103-110.
    [103]Yin, L. H.; Lu, B. N.; Qi, Y.; Xu, L. N.; Han, X.; Xu, Y. W.; Peng, J. Y.; Sun, C. K. Simultaneous Determination of 11 Active Components in Two Well-Known Traditional Chinese Medicines by HPLC Coupled with Diode Array Detection for Quality Control. J. Pharm. Biomed Anal.2009,49,1101-1108.
    [104]Deng, Y. T.; Liao, Q. F.; Li, S. H.; Bi, K. S.; Pan, B. Y.; Xie, Z. Y. Simultaneous Determination of Berberine, Palmatine and Jatrorrhizine by Liquid Chromatography-Tandem Mass Spectrometry in Rat Plasma and Its Application in a Pharmacokinetic Study after Oral Administration of Coptis-Evodia Herb Couple. J. Chromatogr. B 2008,863,195-205.
    [105]Kumar, P.; HaoquanWu; McBride, J. L.; Jung, K.-E.; Kim, M. H.; Davidson, B. L.; Lee, S. K.; Shankar, P.; Manjunath, N. Transvascular Delivery of Small Interfering RNA to the Central Nervous System. Nature 2007,448,39-45.
    [106]Wu, H.; Zhang, L. B.; Du, L. M. Ionic Liquid Sensitized Fluorescence Determination of Four Isoquinoline Alkaloids. Talanta 2011,85,787-793.
    [107]王启龙;孙达;黄金文;金晟;张朝晖.药根碱的研究进展.时珍国医国医2010,21(7),1844-1846.
    [108]Estensen, R. D.; Levy, M.; Klopp, S. J.; Galbraith, A. R.; Mandel, J. S.; Blomquist, J. A.; Wattenberg, L. W. N-Acetylcysteine Suppression of the Proliferative Index in the Colon of Patients with Previous Adenomatous Colonic Polyps. Cancer Lett.1999,147,109-114.
    [109]Ourique, A. F; Coradini, K.; Chaves, P. d. S.; Garcia, S. C.; Pohlmann, A. R.; Guterres, S. S.; Beck, R. C. R. A LC-UV Method to Assay N-Acetylcysteine without Derivatization:Analyses of Pharmaceutical Products. Anal. Methods 2013,5,3321-3327.
    [110]Wang, X.; Lin, R.; Xu, Z.; Huang, H.; Li, L.; Liu, F.; Li, N.; Yang, X. N-Acetylcysteine Induced Quenching of Red Fluorescentoligonucleotide-Stabilized Silver Nanoclusters and the Application in Pharmaceutical Detection. Anal. Chim. Acta 2013,793,79-85.
    [111]McDermott, G. P.; Terry, J. M.; Conlan, X. A.; Barnett, N. W.; Francis, P. S. Direct Detection of Biologically Significant Thiols and Disulfides with Manganese(IV) Chemiluminescence. Anal. Chem.2011,83,6034-6039.
    [112]Beitollahi, H.; Sheikhshoaie, I. Electrochemical Behavior of Carbon Nanotube/Mn(Ⅲ) Salen Doped Carbon Paste Electrode and Its Application for Sensitive Determination of N-Acetylcysteine in the Presence of Folk Acid. Int. J. Electrochem. Sci.2012,7,7684-7698.
    [113]Celma, C.; Allue, J. A.; Prunonosa, J.; Peraire, C.; Obach, R. Determination of N-Acetylcysteine in Human Plasma by Liquid Chromatography Coupled to Tandem Mass Spectrometry. J. Chromatogr. A 2000,870,13-22.
    [114]Seiwert, B.; Karst, U. Simultaneous LC/MS/MS Determination of Thiols and Disulfides in Urine Samples Based on Differential Labeling with Ferrocene-Based Maleimides. Anal. Chem. 2007,79,7131-7138.
    [115]Dong, Y.; Wang, R.; Li, H.; Shao, J.; Chi, Y.; Lin, X.; Chen, G. Polyamine-Functionalized Carbon Quantum Dots for Chemical Sensing. Carbon 2012 50,2810-2815.
    [116]Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T. Development of an Iminocoumarin-Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc. J. Am. Chem. Soc.2007,129 (44),13447-13454.
    [117]Ye, F.; Wu, C.; Jin, Y.; Chan, Y.-H.; Zhang, X.; Chiu, D. T. Ratiometric Temperature Sensing with Semiconducting Polymer Dots. J. Am. Chem. Soc.2011,133 (21),8146-8149.
    [118]Yu, H.; Xiao, D. Y.; Guo, H.; Qian, X. Convenient and Efficient FRET Platform Featuring a Rigid Biphenyl Spacer between Rhodamine and Bodipy:Transformation of 'Turn-on' Sensors into Ratiometric Ones with Dual Emission. Chem. Eur. J.2011,17(11),3179-3191.
    [119]Zhang, K.; Zhou, H.; Mei, Q.; Wang, S.; Guan, G.; Liu, R.; Zhang, J.; Zhang, Z. Instant Visual Detection of Trinitrotoluene Particulates on Various Surfaces by Ratiometric Fluorescence of Dual-Emission Quantum Dots Hybrid. J. Am. Chem. Soc.2011,133 (22), 8424-8427.
    [120]Domaille, D. W.; Zeng, L.; Chang, C. J. Visualizing Ascorbate-Triggered Release of Labile Copper within Living Cells Using a Ratiometric Fluorescent Sensor. J. Am. Chem. Soc.2010, 132(4),1194-1195.
    [121]Xu, Z.; Yoon, J.; Spring, D. R. A Selective and Ratiometric Cu2+ Fluorescent Probe Based on Naphthalimide Excimer-Monomer Switching. Chem. Commun.2010,46,2563-2565.
    [122]Wu, C.; Bull, B.; Christensen, K.; McNeill, J. Ratiometric Single-Nanoparticle Oxygen Sensors for Biological Imaging. Angew.Chem.2009,121 (15),2779-2783.
    [123]Service, R. F. Nanomaterials Show Signs of Toxicity. Science 2003,300 (5617),243.
    [124]Brumfiel, G. Nanotechnology:A Little Knowledge. Nature 2003,424 (6946),246-248.
    [125]AshaRani, P. V.; Mun, G. L. K.; Hande, M. P.; Valiyaveettil, S. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano 2009,3 (2),279-290.
    [126]Lovric, J.; Bazzi, H. S.; Cuie, Y.; Fortin, G. R. A.; Winnik, F. M.; Maysinger, D. Differences in Subcellular Distribution and Toxicity of Green and Red Emitting CdTe Quantum Dots. J. Mol. Med 2005,83,337-385.
    [127]Hussain, S. M.; Braydich-Stolle, L. K.; Schrand, A. M.; Murdock, R. C.; Yu, K. O.; Mattie, D. M.; Schlager, J. J.; Terrones, M. Toxicity Evaluation for Safe Use of Nanomaterials:Recent Achievements and Technical Challenges. Adv. Mater.2009,21 (16),1549-1559.
    [128]Fischer, H. C.; Chan, W. C. W. Nanotoxicity:The Growing Need for in Vivo Study. Curr. Opin. Biotechnol.2007,18 (6),565-571.
    [129]Hagens, W. I.; Oomen, A. G.; de Jong, W. H.; Cassee, F. R.; Sips, A. J. A. M. What Do We (Need to) Know About the Kinetic Properties of Nanoparticles in the Body? Regul. Toxicol. Pharm.2007,49 (3),217-229.
    [130]Shaw, S. Y.; Westly, E. C.; Pittet, M. J.; Subramanian, A.; Schreiber, S. L.; Weissleder, R. Perturbational Profiling of Nanomaterial Biologic Activity. Proc. Natl. Acad. Sci. USA 2008, 105 (21),7387-7392.
    [131]Dobrovolskaia, M. A.; McNeil, S. E. Immunological Properties of Engineered Nanomaterials. Nat. Nanotechnol.2007,2 (8),469-478.
    [132]Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding Biophysicochemical Interactions at the Nano-Bio Interface. Nat. Mater.2009,8 (7),543-557.
    [133]DunphyGuzman, K. A.; Taylor, M. R.; Banfield, J. F. Environmental Risks of Nanotechnology:National Nanotechnology Initiative Funding,2000-2004. Em-iron. Sci. Technol.2006,40(5),1401-1407.
    [134]Hirano, S. A Current Overview of Health Effect Research on Nanoparticles Environ. Health Prevent. Medicine 2009,14 (4),223-225.
    [135]Handy, R.; Owen, R.; Valsami-Jones, E. The Ecotoxicology of Nanoparticles and Nanomaterials:Current Status, Knowledge Gaps, Challenges, and Future Needs. Ecotoxicology 2008,17 (5),315-325.
    [136]Wang, J. X.; Chen, C. Y.; Liu, Y.; Jiao, F.; Li, W.; Lao, F.; Li, Y. F.; Li, B.; Ge, C. C.; Zhou, G. Q.; et al. Potential Neurological Lesion after Nasal Instillation of TiO2 Nanoparticles in the Anatase and Rutile Crystal Phases. Toxicol. Lett.2008,183 (1-3),72-80.
    [137]Meng, H.; Chen, Z.; Xing, G.; Yuan, H.; Chen, C.; Zhao, F.; Zhang, C.; Zhao, Y. Ultrahigh Reactivity Provokes Nanotoxicity:Explanation of Oral Toxicity of Nano-Copper Particles. Toxicol. Lett.2007,175(1-3),102-110.
    [138]Zhu, M. T.; Feng, W. Y.; Wang, Y.; Wang, B.; Wang, M.; Ouyang, H.; Zhao, Y L.; Chai, Z. F. Particokinetics and Extrapulmonary Translocation of Intratracheally Instilled Ferric Oxide Nanoparticles in Rats and the Potential Health Risk Assessment. Toxicol. Sci.2009,107 (2), 342-351.
    [139]Wang, J. X.; Zhou, G. Q.; Chen, C. Y.; Yu, H. W.; Wang, T. C.; Ma, Y. M.; Jia, G.; Gao, Y. X.; Li, B.; Sun, J.; et al. Acute Toxicity and Biodistribution of Different Sized Titanium Dioxide Particles in Mice after Oral Administration. Toxicol. Lett.2007,168(2),176-185.
    [140]Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R.; Kam, N. W. S.; Chu, P.; Liu, Z.; Sun, X.; Dai, H.; Gambhir, S. S. A Pilot Toxicology Study of Single-Walled Carbon Nanotubes in a Small Sample of Mice. Nat. Nano.2008,3 (4),216-221.
    [141]Wang, J. X.; Liu, Y.; Jiao, F.; Lao, F.; Li, W.; Gu, Y. Q.; Li, Y. F.; Ge, C. C.; Zhou, G. Q.; Li, B.; et al. Time-Dependent Translocation and Potential Impairment on Central Nervous System by Intranasally Instilled TiO2 Nanoparticles. Toxicology 2008,254 (1-2),82-90.
    [142]Yang, S.-T; Wang, X.; Jia, G.; Gu, Y.; Wang, T.; Nie, H.; Ge, C.; Wang, H.; Liu, Y Long-Term Accumulation and Low Toxicity of Single-Walled Carbon Nanotubes in Intravenously Exposed Mice. Toxicol. Lett.2008,181 (3),182-189.
    [143]Meng, H.; Chen, Z.; Xing, G. M.; Yuan, H.; Chen, C. Y.; Zhao, F.; Zhang, C. C.; Zhao, Y L. Ultrahigh Reactivity Provokes Nanotoxicity:Explanation of Oral Toxicity of Nano-Copper Particles. Toxicol. Lett.2007,175(1-3),102-110.
    [144]Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science 2006,311 (5761),622-627.
    [145]Zhao, Y L.; Xing, G. M.; Chai, Z. F. Nanotoxicology:Are Carbon Nanotubes Safe? Nat. Nanotechnol.2008,3 (4),191-192.
    [146]Song, Y.; Li, X.; Du, X. Exposure to Nanoparticles Is Related to Pleural Effusion, Pulmonary Fibrosis and Granuloma. Eur. Respir. J.2009,34 (3),559-567.
    [147]Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology:An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect.2005,113 (7).
    [148]Zhu, X. S.; Zhu, L.; Lang, Y. P.; Chen, Y. S. Oxidative Stress and Growth Inhibition in the Freshwater Fish Carassius Auratus Induced by Chronic Exposure to Sublethal Fullerene Aggregates. Environ. Sci. Technol.2008,27(9),1979-1985.
    [149]Ispas, C.; Andreescu, D.; Patel, A.; Goia, D. V.; Andreescu, S.; Wallace, K. N. Toxicity and Developmental Defects of Different Sizes and Shape Nickel Nanoparticles in Zebrafish. Environ. Sci. Technol.2009,43 (16),6349-6356.
    [150]King-Heiden, T.; Wiecinski, P.; Mangham, A.; Metz, K.; Nesbit, D.; Pedersen, J.; Hamers, R.; Heideman, W.; Peterson, R. Quantum Dot Nanotoxicity Assessment Using the Zebrafish Embryo. Environ. Sci. Technol.2009,43 (5),1605-1611.
    [151]Griffitt, R. J.; Weil, R.; Hyndman, K. A.; Denslow, N. D.; Powers, K.; Taylor, D.; Barber, D. S. Exposure to Copper Nanoparticles Causes Gill Injury and Acute Lethality in Zebrafish (Danio Rerio). Environ. Sci. Technol.2007,41 (23),8178-8186.
    [152]Smith, C. J.; Shaw, B. J.; Handy, R. D. Toxicity of Single Walled Carbon Nanotubes to Rainbow Trout, (Oncorhynchus Mykiss):Respiratory Toxicity, Organ Pathologies, and Other Physiological Effects. Aquat. Toxicol.2007,82 (2),94-109.
    [153]Moucheta, F.; Landoisb, P.; Sarremejeana, E.; Bernarda, G.; Puechc, P.; Pinellia, E.; Flahautb, E.; Gauthiera, L. Characterisation and in Vivo Ecotoxicity Evaluation of Double-Wall Carbon Nanotubes in Larvae of the Amphibian Xenopus Laevis. Aquat. Toxicol.2008,87 (2), 127-137.
    [154]Federici, G.; Shaw, B. J.; Handy, R. D. Toxicity of Titanium Dioxide Nanoparticles to Rainbow Trout (Oncorhynchus Mykiss):Gill Injury, Oxidative Stress, and Other Physiological Effects. Aquat. Toxicol.2007,84 (4),415-430.
    [155]Baun, A.; S(?)ensen, S. N.; Rasmussen, R. F.; Hartmann, N. B.; Koch, C. B. Toxicity and Bioaccumulation of Xenobiotic Organic Compounds in the Presence of Aqueous Suspensions of Aggregates of Nano-C60. Aquat. Toxicol.2008,86 (3),379-387.
    [156]Guo, L.; Liu, X. Y.; Sanchez, V.; Vaslet, C.; Kane, A. B.; Hurt, R. H. A Window of Opportunity:Designing Carbon Nanomaterials for Environmental Safety and Health. Mater. Sci. Forum 2007,544-545,511-516.
    [157]Magrez, A.; Kasas, S.; Salicio, V.; Pasquier, N.; Seo, J. W.; Celio, M.; Catsicas, S.; Schwaller, B.; Forro, L. Cellular Toxicity of Carbon-Based Nanomaterials. Nano Lett.2006,6 (6), 1121-1125.
    [158]Jia, G.; Wang, H. F.; Yan, L.; Wang, X.; Pei, R. J.; Yan, T.; Zhao, Y. L.; Guo, X. B. Cytotoxicity of Carbon Nanomaterials:Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene. Environ. Sci. Technol.2005,39(5),1378-1383.
    [159]Sayes, C. M.; Gobin, A. M.; Ausman, K. D.; Mendez, J.; West, J. L.; Colvin, V L. Nano-C60 Cytotoxicity Is Due to Lipid Peroxidation. Biomaterials 2005,26 (36),7587-7595.
    [160]Chen, L.; Hu, P.; Zhang, L.; Huang, S.; Luo, L.; Huang, C. Toxicity of Graphene Oxide and Multi-Walled Carbon Nanotubes against Human Cells and Zebrafish. Sci. China Chem.2012, 55,2209-2216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700