纳米颗粒的组装、形态变化及分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年,金属纳米材料由于其独特的光电性质而倍受关注。一方面它们广泛应用于如DNA、氨基酸、蛋白质、金属离子等各种检测;另一方面金属纳米材料可以组装成一维、二维或三维结构,组装后的纳米材料表现出特有的集体性质。本文探讨了高离子强度下卡托普利与金纳米棒的分子组装;利用球形金纳米颗粒的网状组装体实现对三聚氰胺的检测;卤素单质对银纳米颗粒形态的影响及壳核结构的银纳米颗粒形成等四方面问题。主要内容如下:
     1.利用药物卡托普利(Cap)实现了棒状金纳米颗粒在高离子强度溶液中的组装。Cap分子一端为巯基,另一端为羧基。由于Au-S键很容易形成,所以Cap很容易修饰到金纳米棒的表面,同时由于羧基之间的氢键作用使得Cap分子两两结合在一起。正是Cap分子这种结构特殊性为金纳米棒组装奠定了基础。研究发现,通过调节溶液的离子强度,可以使金纳水棒形成不同形态的组装体。低离子强度时,NaCl能减弱CTAB包被的金棒之间的静电斥力,导致金棒肩并肩组装;高离子强度时,大量的Cl-在金棒表面形成静电双分子层,使金棒逐渐分散,从而实现了金棒头碰头与肩并肩结构共存的组装体。这种高离子强度下金棒与卡托普利的分子组装也为其在化学及生物传感器方面的应用奠定了基础。
     2.三聚氰胺诱导金纳米颗粒的网状组装。在碱性条件下制备了巯基乙酸包被的球形金纳米颗粒,所制备的金纳米颗粒表面存在-COO-,同时调节三聚氰胺溶液的酸度,使得其分子中的-NH2以-NH3+的形式存在,因而两者混合时-COO~-与-NH_3~+之间发生静电作用,金纳米颗粒组装成网状结构,溶液颜色逐渐由红色变为蓝色。据此,本文建立了一种三聚氰胺的色度分析方法。该方法操作简单、快速,直观,成本低,用于检测合成样与实际样,结果均与权威机构报道数据一致。
     3.探讨了卤素对柠檬酸根包被的银纳米颗粒的形态影响。以紫外可见吸收光谱、SEM电镜等作为表征手段,证实在室温条件下,碘单质能够使银纳米颗粒发生强烈的融合作用,破坏其原有球形结构,同时生成碘化银。相比之下,溴单质无此现象,它只能引起银纳米颗粒聚集,但不改变其原有形态。进一步发现,向柠檬酸根包被的银纳米颗粒溶液中同时加入Cu2+与Br-,银纳米颗粒的粒径会明显增大,并仍然呈现良好的分散性。随着Cu2+与Br-量的增加,银纳米颗粒的吸收强度逐渐降低,且吸收峰的位置先红移后蓝移,最后在长波长处(约620nm)出现一个新峰,并在360nm形成一个等色点。通过紫外可见吸收光谱、SEM电镜、能谱分析等表征手段,证明溶液中的Cu2+与Br可能形成了某种络合物。该络合物覆盖在原有银纳米颗粒表面形成了一种新壳核结构。
Recently, metal nanoparticles have attracted great attention due to the unique optical and electric properties, and thus they can be widely exploited to detect some analytes such as DNA, amino acid, protein, metal ion and so on on one hand, and can assemble into one-, two-, or three-dimensional structures on the other, which can offer the unique collective properties of assembly structures.In this thesis, investigations on the assembly of gold nanorods in high ionic strength solutions, colorimetric assay of melamine have been made on the basis of the network structrue of gold nanoparticles, the morphological change of Ag nanoparticles induced by halogen and the formation of core-shell structure of Ag nanoparticles. The main contents are as follow:
     1.Assemblies of gold nanorods (Au-NRs) induced by captopril (Cap) in high ionic strength solutions. Captopril molecule has is a thiol group and a carboxylic group on the each side, and thus can bond to the surface of Au-NRs on one hand because of the easily formed Au-S covalent bond, and are preferable to combine with each other through cooperative hydrogen bond with its carboxylic groups on the other, which offer the foundation for introducing the assembly of Au-NRs. Furthermore, it was found that the assembly structures could be formed only in the presence of both Cap and NaCl.In the medium of low concentration of NaCl, Au-NRs can form side-by-side structures because NaCl can neutralize the electrostatic repulsion among CTAB-capped gold nanoparticles.In high concentration of NaCl, on the other hand, abundant Cl- is present around the surface of Au-NRs forming an electronic double layer, which keeps Au-NRs well dispersed. In such case, Au-NRs can realize the end-to-end assembly. At the same time, several Au-NRs can form the side-by-side assembly because Cl" can neutralize the electrostatic repulsion among Au-NRs to some extent, so the assembly of Au-NRs containing both end-to-end and side-by-side structures is formed. This assembly method will be of importance in chemical and biological sensing.
     2. Network assembly of gold nanoparticles coused by melamine. Thioglycolic-acid-modified gold nanoparticles (Au-NPs) were synthesized under alkaline condition, so most carboxyl groups are negatively charged.Before the interaction, HCl was used to modulate the acidity of melamine, making sure that amino groups are mainly positively charged.When mixed, electrostatic interaction occured between modified Au-NPs and melamine,resulting in the network assembly of Au-NPs. At the same time, the color of mixed solution changed from red to blue.Upon this,a colorimetric method of detecting melamine is developed.This method is simple,fast, intuitionistic and low-cost.Employing it to detect melamine in milk powder, the analytical result is satisfying, so this colorimetric assay of melamine will be promising and worth being developed.
     3.We investigated the morphological change of citrate-capped Ag nanoparticles (Ag-NPs) induced by halogen. From the results of UV-vis absorption spectra and SEM images, it is concluded that at room temperature, iodine could fuse Ag nanoparticles, and produce AgI.At the same condition, bromine can not fuse Ag nanoparticles, but only induce the aggregation of Ag nanoparticles.Besides, we also found that the diameter of citrate-capped Ag nanoparticles (Ag-NPs) enlarges obviously after adding Cu2+ and Br", and the whole Ag-NPs still keep well dispersed. Increasing the concentration of Cu2+ and Br-, the absorption intensity gradually decreases, and the absorption peak red shifts firstly, then blue shifts.Finally a new characteristic absorption appears at longer wavelengths(~620 nm).What is more interesting is that all the absorption spectra intersect at an isosbestic point (λ.≈360 nm, A≈0.270) perfectively. UV-vis absorption spectra, SEM images and energy dispersive spectrdmeter were employed in this study, and we speculate that Cu2+ and Br- may form some complex compound, covering the surface of Ag-NPs to form a new core-shell structure nanoparticles.
引文
[I]El-Sayed, M.A.Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes.Acc. Chem. Res.2001,34,257-264.
    [2]Daniel, M.-C.;Astruc, D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. ReV.2004,104,293-346.
    [3]Valden, M.;Lai, X.;Goodman, D. W. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science.1998,281,1647-1650.
    [4]Chen, M. S.;Goodman, D. W. The Structure of Catalytically Active Gold on Titania. Science. 2004,306,252-255.
    [5]Hornyak, G.L.;Patrissi,C. J.;Martin, C.R. Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites:The Nonscattering Maxwell-Garnett Limit. J. Phys. Chem. B.1997,101,1548-1555.
    [6]Link, S.;El-Sayed, M.A.Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B.1999, 103,8410-8426.
    [7]Elghanian, R.;Storhoff. J.J.;Mucic, R. C.;Letsinger, R. L.;Mirkin, C.A.Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science.1997,277,1078-1080.
    [8]Kelly, K. L.;Coronado, E.;Zhao, L. L.;Schatz, G.C.The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2003,107,668-677.
    [9]Sosa, I. O.;Noguez, C.;Barrera, R. G. Optical Properties of Metal Nanoparticles with Arbitrary Shapes. J. Phys. Chem. B.2003,107,6269-6275.
    [10]Garrell, R. Surface-enhanced Raman spectroscopy. Anal. Chem.1989,61,401A-411A.
    [11]Kneipp, K.;Kneipp, H.;Itzkan, I.;Dasari, R. R.;Feld. M. S.Ultrasensitive Chemical Analysis by Raman Spectroscopy. Chem. ReV.1999,99,2957-2975.
    [12]Nie, S.; Emory, S. R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science.1997,275,1102-1106.
    [13]Jiang, J.;Bosnick, K.;Maillard, M.;Brus, L. Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals. J. Phys. Chem. B.2003,107,9964-9972.
    [14]Imura, K.;Nagahara, T.;Okamoto, H.Plasmon Mode Imaging of Single Gold Nanorods.J. Am. Chem. Soc.2004,126,12730-12731.
    [15]Tao, A.;Kim, F.;Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano Lett.2003,3,1229-1233.
    [16]Hanarp, P.;Kall, M.;Sutherland, D.S.Optical Properties of Short Range Ordered Arrays of Nanometer Gold Disks Prepared by Colloidal Lithography. J. Phys. Chem. B.2003,107, 5768-5772.
    [17]Gluodenis, M.;Foss, C.A., Jr. The Effect of Mutual Orientation on the Spectra of Metal Nanoparticle Rod-Rod and Rod-Sphere Pairs. J. Phys. Chem. B.2002,106,9484-9489.
    [18]Nikoobakht, B.;El-Sayed, M. A.Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods.J. Phys. Chem. A.2003,107,3372-3378.
    [19]Turkevitch, J.;Stevenson, P. C.;Hillier, J. Nucleation and Growth Process in the Synthesis of Colloidal Gold. Discuss. Faraday Soc.1951,11,55-75.
    [20]Lee, P.C.;Meisel, D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J. Phys. Chem.1982,86,3391-3395.
    [21]Giersig, M.;Mulvaney, P.Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir.1993,9,3408-3413.
    [22]Faraday, M. Experimental Relations of Gold (and other Metals) to Light. Philos. Trans.1857, 147,145-181.
    [23]Brust, M.;Walker, M.;Bethell, D.;Schiffrin, D. J.;Whyman, R. J. Synthesis of Thiol-Derivatized Gold Nanoparticles in a Twophase Liquid-Liquid System. J. Chem. Soc., Chem. Commun.1994,801-802.
    [24]Brust, M.;Fink, J.;Bethell, D.;Schiffrin, D. J.;Kiely, C. J. Synthesis and Reactions of Functionalised Gold Nanoparticles. J. Chem. Soc., Chem. Commun.1995,1655-1656.
    [25]Sun, L.;Crooks, R. M.;Chechik, V.Preparation of Polycyclodextrin Hollow Spheres by Templating Gold Nanoparticles. Chem. Commun.2001,359-360.
    [26]Jana, N. R.;Gearheart, L.;Murphy, C.J. Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles. Chem. Mater.2001,13, 2313-2322.
    [27]Sau, T. K.;Pal, A.;Jana, N.R.;Wang, Z. L.;Pal, T. Size Controlled Synthesis of Gold Nanoparticles Using Photochemically Prepared Seed Particles. J. Nanopart. Res.2001,3, 257-261.
    [28]Meltzer, S.;Resch, R.;Koel, B.E.;Thompson, M.E.;Madhukar, A.;Requicha, A.A.G.; Will, P.Fabrication of Nanostructures by Hydroxylamine Seeding of Gold Nanoparticle Templates. Langmuir.2001,17,1713-1718.
    [29]Jana, N.R.;Gearheart, L.;Murphy, C. J.Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles. Langmuir.2001,17,6782-6786.
    [30]Mo'ssmer, S.;Spatz, J. P.;Mo'ller, M.;Aberle, T.;Schmidt, J.;Burchard, W. Solution Behavior of Poly(styrene)-block-poly(2-vinylpyridine) Micelles Containing Gold Nanoparticles. Macromolecules.2000,33,4791-4798.
    [31]Mallick, K.;Wang, Z. L.;Pal, T. Seed-Mediated Successive Growth of Gold Particles Accomplished by UV Irradiation:a Photochemical Approach for Size-Controlled Synthesis. J. Photochem. Photobiol.2001,140,75-80.
    [32]Zhou, Y.;Wang, C.Y.;Zhu, Y.R.;Chen, Z.Y.A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature. Chem. Mater. 1999,11,2310-2312.
    [33]Niidome, Y.;Hori, A.;Sato, T.;Yamada, S.Enormous Size Growth of Thiol-passivated Gold Nanoparticles Induced by Near-IR Laser Light. Chem. Lett.2000,310-311.
    [34]Reed, J.A.;Cook, A.;Halaas, D.J.;Parazolli,P.;Robinson, A.;Matula, T. J.;Griezer, F. The Effects. of Microgravity on Nanoparticle Size Distributions Generated by the Ultrasonic Reduction of an Aqueous Gold-Chloride Solution. Ultrason. Sonochem.2003,10,285-289.
    [35]Jana, N.R.;Gearheart, L.;Murphy, C.J.Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. J. Phys. Chem. B.2001,105,4065-4067.
    [36]Busbee, B.D.;Obare, S.O.;Murphy, C.J.An Improved Synthesis of High-Aspect-Ratio Gold Nanorods.Adv. Mater.2003,15,414-416.
    [37]Wu, H.-Y.;Chu, H.-C.;Kuo, T.-J.;Kuo, C.-L.;Huang, M.H.Seed-Mediated Synthesis of High Aspect Ratio Gold Nanorods with Nitric Acid. Chem. Mater.2005,17,6447-6451.
    [38]Gao, J.;Bender, C.M.;Murphy, C.J.Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution. Langmuir.2003,19,9065-9070.
    [39]Gole, A.;Murphy, C.J.Seed-Mediated Synthesis of Gold Nanorods:Role of the Size and Nature of the Seed. Chem. Mater.2004,16,3633-3640.
    [40]Murphy, C.J.;Sau, T. K.;Gole, A.M.;Orendorff, C.J.;Gao, J.;Gou, L.;Hunyadi,S.E.;Li, T. Anisotropic Metal Nanoparticles:Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B.2005,109,13857-13870.
    [41]Yu, Y.-Y.;.Chang, S.-S.;Lee, C.-L.;Wang, C.R. C.Gold Nanorods:Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B.1997,101,6661-6664.
    [42]Chang, S.-S.;Shih, C.-W.;Chen, C.-D.;Lai, W.-C.;Wang, C.R. C.The Shape Transition of Gold Nanorods.Langmuir.1999,15,701-709.
    [43]Kim, F.;Song, J. H.;Yang, P.Photochemical Synthesis of Gold Nanorods.J. Am. Chem.Soc. 2002,124,14316-14317.
    [44]Foss Jr.,C. A.;Hornyak, G.L.;Stockert, J.A.;Martin, C. R. Optical Properties of Composite Membranes Containing Arrays of Nanoscopic Gold Cylinders. J. Phys. Chem. 1992,96,7497-7499.
    [45]Martin, C.R. Nanomaterials:A Membrane-Based Synthetic Approach.Science.1994,266, 1961-1966.
    [46]Martin, C.R. Membrane-Based Synthesis of Nanomaterials. Chem. Mater.1996,8, 1739-1746.
    [47]Evanoff, D. D.;Chumanov, G. Size-Controlled Synthesis of Nanoparticles.1."Silver-Only" Aqueous Suspensions via Hydrogen Reduction. J. Phys.Chem. B.2004,108,13948-13956.
    [48]Rodr(?) guez-Gattorno, G.;Di'az, D.;Rendo'n, L.;Herna'ndez-Segura, G. O. Metallic Nanoparticles from Spontaneous Reduction of Silver(I) in DMSO. Interaction between Nitric Oxide and Silver Nanoparticles. J. Phys. Chem. B.2002,106,2482-2487.
    [49]Wiley, B.;Sun, Y.;Xia, Y. Synthesis of Silver Nanostructures with Controlled Shapes and Properties. Acc. Chem. Res.2007,40,1067-1076.
    [50]Murphy, C. J.;Gole, A. M.;Hunyadi, S.E.;'Stone, J. W.;Sisco, P.N.;Alkilany, A.;Kinard, B.E.;Hankins, P.Chemical sensing and imaging with metallic nanorods. Chem. Commun. 2008,544-557.
    [51]Liz-Marza'n, L. M. Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir.2006,22,32-41.
    [52]Mohamed, M.B.;Ismail, K.Z.;Link, S.;El-Sayed, M. A.Thermal Reshaping of Gold Nanorods in Micelles. J. Phys. Chem. B.1998,102,9370-9374.
    [53]Murphy, C. J.;Jana, N. R. Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires.Adv. Mater.2002,14,80-82.
    [54]Millstone, J. E.;Hurst, S.J.;Me'traux, G.S.;Cutler, J.I.;Mirkin, C.A.Colloidal Gold and Silver Triangular Nanoprisms.Small.2009,5,646-664.
    [55]Guo, W. W.;Yuan, J. P.;Wang, E.Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem. Commun.2009,3395-3397.
    [56]Shang, L.;Dong, S.J.Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II).J.Mater. Chem.2008,18,4636-4640.
    [57]Shang, L.;Dong, S.J. Sensitive detection of cysteine based on fluorescent silver clusters. Biosensors and Bioelectronics.2009,24,1569-1573.
    [58]Bao, Y.;Zhong, C.;Vu, D.M.;et al. Nanoparticle-Free Synthesis of Fluorescent Gold Nanoclusters at Physiological Temperature. J. Phys. Chem. C.2007,111,12194-12198.
    [59]Zheng, J.;Petty, J. T.;Dickson, R. M. High Quantum Yield Blue Emission from Water-Soluble Au8 Nanodots. J. Am. Chem. Soc.2003,125,7780-7781.
    [60]Evanoff, D. D.;Chumanov, G.Size-Controlled Synthesis of Nanoparticles.2. Measurement of Extinction, Scattering, and Absorption Cross Sections. J. Phys. Chem. B.2004,108, 13957-13962.
    [61]Yguerabide, J.;Yguerabide, E. E. Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications. Ⅰ. Theory. Anal. Biochem.1998,262,137-156.
    [62]Wu, L.L.;Shi, C.S.Tian, L.F.;Zhu, J.A one-pot Method to prepare Gold nanoparticle Chains with Chitosan. J. Phys. Chem. C.2008,112,319-323.
    [63]Lin, B. S.;Li, M.;Dujardin, E.;Girard, C.;Mann, S.One-Dimensional Plasmon Coupling by Facile Self-Assembly of Gold Nanoparticles into Branched Chain Networks.Adv. Mater.2005,17,2553-2559.
    [64]Thomas, K. G.;Barazzouk, S.;Ipe, B.I.;Joseph, S.T. S.;Kamat, P.V.Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods.J. Phys. Chem. B.2004, 108,13066-13068.
    [65]Caswell, K. K.;Wilson, J.N.;Bunz, U.H.F.;Murphy, C.J.Preferential End-to-End Assembly of Gold Nanorods by Biotin-Streptavidin Connectors. J. Am. Chem. Soc.2003, 125,13914-13915.
    [66]Orendorff, C.J.;Hankins, P. L.;Murphy, C.J.pH-Triggered Assembly of Gold Nanorods. Langmuir.2005,21,2022-2026.
    [67]Pan,B.F.;Cui,D.X.;Ozkan, C.;et al.DNA-Templated Ordered Array of Gold Nanorods in One and Two Dimensions. J. Phys. Chem. C.2007,111,12572-12576.
    [68]Liu, X.,;Dai, Q.;Austin, L.;et al.One-Step Homogeneous Immunoassay for Cancer Biomarker Detection Using Gold Nanoparticle Probes Coupled with Dynamic Light Scattering. J. Am. Chem. Soc.2008,130,2780-2782.
    [1]Pan, B.F.;Cui, D. X.;Ozkan, C.;et al.DNA-Templated Ordered Array of Gold Nanorods in One and Two Dimensions. J. Phys. Chem. C.2007,111,12572-12576.
    [2]Mocanu, A.;Cernica, I.;Tomoaia, G.;Bobos, L. D.;Horovitz,0.;Tomoaia-Cotisel, M. Self-assembly characteristics of gold nanoparticles in the presence of cysteine.Colloids and Surfaces A:Physicochem Eng Aspects.2009,338,93-101.
    [3]El-Sayed, M. A. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Acc. Chem. Res.2001,34,257-264.
    [4]Daniel, M. C.;Astruc, D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. ReV.2004,104,293-346.
    [5]Link, S.;El-Sayed, M. A.Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B.1999, 103,8410-8426.
    [6]Kelly, K. L.;Coronado, E.; Zhao, L. L.;Schatz, G. C.The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B.2003,107,668-677.
    [7]Sosa, I.O.;Noguez, C.;Barrera, R. G.Optical Properties of Metal Nanoparticles with Arbitrary Shapes. J. Phys. Chem. B.2003,107,6269-6275.
    [8]Gole, A.;Orendorff, C.J.;Murphy, C. J.Immobilization of Gold Nanorods onto Acid-Terminated Self-Assembled Monolayers via Electrostatic Interactions. Langmuir.2004, 20,7117-7122.
    [9]Murphy, C.J.;Sau, T. K.;Gole, A.M.;Orendorff, C.J.;Gao, J.X.;Gou, L. F.;Hunyadi, S.E.; Li, T. Anisotropic Metal Nanoparticles:Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B.2005,109,13857-13870.
    [10]Sun, Z. H.;Ni, W. H.;Yang, Z.;Kou, X. S.;Li, L.;Wang, J. F. pH-Controlled Reversible Assembly and Disassembly of Gold Nanorods.Small.2008,4,1287-1292.
    [11]Caswell,K.K.;Wilson, J.N.;Bunz, U.H.F.;Murphy, C. J.Preferential End-to-End Assembly of Gold Nanorods by Biotin-Streptavidin Connectors.J. Am. Chem. Soc.2003,125, 13914-13915.
    [12]Salant, A.;Amitay-Sadovsky, E.;Banin, U.Directed Self-Assembly of Gold-Tipped CdSe Nanorods.J. Am. Chem. Soc.2006,128,10006-10007.
    [13]Kovtyukhova, N.I.;Martin,B.R.;Mbindyo, J.K.N.;Smith, P.A.;Razavi,B.;Mayer, T.S.: Mallouk, T.E.Layer-by-Layer Assembly of Rectifying Junctions in and on Metal Nanowires.J. Phys. Chem.B.2001,105,8762-8769.
    [14]Martin, B.R.;Dermody, D.J.;Reiss, B.D.;Fang, M.M.;Lyon, L. A.;Natan, M.J.;Mallouk, T.E.Orthogonal Self-Assembly on Colloidal Gold-Platinum Nanorods.AdV. Mater.1999,11, 1021-1025.
    [15]Grzelczak,M.; Perez-Juste, J.;Garcia de Abajo, F.J.;Liz-Marzan, L. M.Optical Properties of Platinum-Coated Gold Nanorods.J. Phys. Chem. C.2007,111,6183-6188.
    [16]Thomas, K.G.;Barazzouk, S.;Ipe, B.I.;Joseph, S.T. S.;Kamat, P.V.Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods. J. Phys. Chem. B.2004,108, 13066-13068.
    [17]Sudeep, P.K.;Shibu-Joseph,S.T.;George-Thomas, K.Selective Detection of Cysteine and Glutathione Using Gold Nanorods.J.Am. Chem. Soc.2005,127,6516-6517.
    [18]Shibu-Joseph, S. T.; Ipe, B.I.;Pramod, P.;George-Thomas, K. Gold Nanorods to Nanochains:Mechanistic Investigations on Their Longitudinal Assembly Using a,ω-Alkanedithiols and Interplasmon Coupling. J. Phys. Chem. B.2006,110,150-157.
    [19]Pramod. P.;Shibu-Joseph,S.T.;George-Thomas, K.Preferential End Functionalization of Au Nanorods through Electrostatic Interactions. J. Am. Chem. Soc.2007,129,6712-6713.
    [20]Wang, J.;Li,Y.F.;Huang, C. Z. Identification of Iodine-Induced Morphological Transformation of Gold Nanorods.J. Phys. Chem. C.2008,112,11691-11695.
    [21]Pedersen,D.B.;Wang, S.;Duncan, E.J.S.;Liang, S.H.Adsorbate-Induced Diffusion of Ag and Au Atoms Out of the Cores of Ag@Au, Au@Ag, and Ag@AgI Core-Shell Nanoparticles. J. Phys. Chem. C.2007,111,13665-13672.
    [22]Smith,D.K.;Miller, N.R.;Korgel,B.A.Iodide in CTAB Prevents Gold Nanorod Formation. Langmuir.2009,25,9518-9524.
    [23]Nie, Z.H.;Fava, D.;Rubinstein,M.;Kumacheva, E."Supramolecular"Assembly of Gold Nanorods End-Terminated with Polymer "Pom-Poms":Effect of Pom-Pom Structure on the Association Modes.J. Am..Chem.Soc.2008,130,3683-3689.
    [24]Wang, J.;Li,Y.F.;Huang, C.Z.;Wu, T. Rapid and selective detection of cysteine based on its induced aggregates of cetyltrimethylammonium bromide capped gold nanoparticles. Analytica. Chimica Acta.2008,626.37-43.
    [25]Sethi, M.;Joung, G.E.;Knecht, M. R. Stability and Electrostatic Assembly of Au Nanorods for Use in Biological Assays.Langmuir.2009,25,317-325
    [1]黄芳;黄晓兰;吴惠勤;邓欣;林晓珊;朱志鑫.高效液相色谱-质谱法对饲料及食品添加剂中三聚氰胺的测定.分析测试学报.2008,27,313-315.
    [2]丁涛;徐锦忠;李健忠;沈崇钰;吴斌;陈惠兰;李淑娟.高效液相色谱-二极管阵列检测法及高效液相色谱-电喷雾串联质谱法测定植物源性蛋白中残留的三聚氰胺.色谱,2008,26.6-9.
    [3]王挥;曹小彦;彭新凯;陈利国;黄辉;谭舸.高效液相色谱-二极管阵列法测定高蛋白食晶中的三聚氰胺.食品与机械,2007,23,114-115,124.
    [4]Wei,G.T.;Yang, Z.;Lee, C.Y.;Yang, H.Y.;Wang, C.R. Aqueous-Organic Phase Transfer of Gold Nanoparticles and Gold Nanorods Using an Ionic Liquid. J. Am. Chem. Soc.2004,126, 5036-5037.
    [5]Zotti,G.;Vercelli,B.Reaction of Gold Nanoparticles with Tetracyanoquinoidal Molecules Spectrophotometric Determination of the Au(0) Content of Gold Nanoparticles.Anal. Chem. 2008,80,815-818.
    [6]Wang, H.L.;Schaefer, K.;Moeller, M.In situ Immobilization of Gold Nanoparticle Dimers in Silica Nanoshell by Microemulsion Coalescence. J. Phys. Chem. C.2008,112,3175-3178.
    [7]Ghosh,S.K.;Pal,T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:From Theory to Applications. Chem. ReV.2007,107,4797-4862.
    [8]Pavlov, V.;Xiao, Y.;Shlyahovsky, B.;Willner, I.Aptamer-Functionalized Au Nanoparticles for the Amplified Optical Detection of Thrombin.J. Am. Chem. Soc.2004,126,11768-11769.
    [9]Wei,H.;Li,B.L.;Li, J.;Wang, E. K.;Dong, S.J.Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun. 2007,3735-3737.
    [10]Zheng, J.;Feng, W. J.;Lin, L.;Zhang, F.;Cheng, G. F.;He, P. G.; Fang, Y. Z. A new amplification strategy for ultrasensitive electrochemical aptasensor with network-like thiocyanuric acid/gold nanoparticles. Biosensors and Bioelectronics.2007,23,341-347.
    [11]Li,B.L.;Wang, Y.L.;Wei,H.;Dong, S.J.Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model.Biosensors and Bioelectronics.2008,23, 965-970.
    [12]Wang, W.J.;Chen, C.L.;Qian, M.X.;Zhao, X.S.Aptamer biosensor for protein detection using gold Nanoparticles.Analytical Biochemistry.2008,373,213-219.
    [13]Wang, Y. L.;Li, D.;Ren, W.;Liu, Z. J.;Dong, S.J.;Wang, E. K. Ultrasensitive colorimetric detection of protein by aptamer-Au nanoparticles conjugates based on a dot-blot assay. Chem Commun.2008,2520-2522.
    [14]Huang, C.C.;Chiang, C.K.;Lin, Z. H.;Lee, K. H.;Chang, H. T. Bioconjugated Gold Nanodots and Nanoparticles for Protein Assays Based on Photoluminescence Quenching. Anal. Chem.2008,80,1497-1504.
    [15]Jana, B.N. R.;Ying, J. Y. Synthesis of Functionalized Au Nanoparticles for Protein Detection. Adv. Mater.2008,20,430-434.
    [16]Lee, J.S.;Ulmann, P.A.;Han, M.S.;Mirkin, C.A.A DNA-Gold Nanoparticle-Based Colorimetric Competition Assay for the Detection of Cysteine. Nano Letters.2008,8,529-533.
    [17]Sato, K.;Hosokawa, K.;Maeda, M.Rapid Aggregation of Gold Nanoparticles Induced by Non-Cross-Linking DNA Hybridization. J. Am. Chem. Soc.2003,125,8102-8103.
    [18]Li, H. X.; Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences.2004,101,14036-14039.
    [19]Seferos, D. S.;Giljohann, D. A.;Hill, H.D.;Prigodich, A.E.;Mirkin, C. A.Nano-Flares: Probes for Transfection and mRNA Detection in Living Cells. J. Am. Chem. Soc.2007,129, 15477-15479.
    [20]Medley, C. D.; Smith, J. E.;Tang, Z. W.;Wu, Y. R.; Bamrungsap, S.;Tan, W. H. Gold Nanoparticle-Based Colorimetric Assay for the Direct Detection of Cancerous Cells.Anal. Chem.2008,80,1067-1072.
    [21]Huang, C. C.;Chiu, S.H.; Huang, Y. F.;Chang, H. T. Aptamer-Functionalized Gold Nanoparticles for Turn-On Light Switch Detection of Platelet-Derived Growth Factor. Anal. Chem.2007,79,4798-4804.
    [22]Huang, C.C.;Huang, Y.F.;Cao, Z. H.;Tan, W.H.;Chang, H.T. Aptamer-Modified Gold Nanoparticles for Colorimetric Determination of Platelet-Derived Growth Factors and Their Receptors. Anal.Chem.2005,77,5735-5741.
    [23]Liu, C. W.;Hsieh, Y. T.;Huang, C.C.;Lin, Z. H.;Chang, H.T. Detection of mercury(Ⅱ) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chem. Commun. 2008,2242-2244.
    [24]Xue, X. J.;Wang, F.;Liu, X. G.One-Step, Room Temperature, Colorimetric Detection of Mercury (Hg2+)Using DNA/Nanoparticle Conjugates. J. Am. Chem. Soc.2008,130, 3244-3245.
    [25]Liu, J.W.;Lu, Y. A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles. J. Am. Chem. Soc.2003,125,6642-6643.
    [26]Liu, J.W.;Lu, Y. (2004). Accelerated Color Change of Gold Nanoparticles Assembled by DNAzymes for Simple and Fast Colorimetric Pb2+ Detection.J. Am. Chem. Soc.2004,126, 12298-12305.
    [27]Liu, J.W.;Lu, Y.Stimuli-Responsive Disassembly of Nanoparticle Aggregates for Light-Up Colorimetric Sensing.J.Am. Chem. Soc.2005,127,12677-12683.
    [28]Wang, L.H.;Liu, X.F.;Hu, X.F.;Song, S.P.;Fan, C.H.Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers.Chem. Commun.2006,3780-3782.
    [29]Camey, R.P.;Devries, G.A.;Dubois, C.;Kim, H.;Kim, J.Y.;Singh, C.;Ghorai,P.K.;Tracy, J.B.;Stiles. R.L.;Murray, R.W.:Glotzer, S.C.;Stellacci,F. Size Limitations for the Formation of Ordered Striped Nanoparticles.J. Am.Chem.Soc.2008,130,798-799.
    [30]徐娇珍;华南平;杨平;杜玉扣.pH值对硫醇修饰的金纳米颗粒聚集态的影响.化学研究2003.14.16-18.
    [31]Liu, Z.D.;Huang, C.Z.;Li,Y.F.;Long, Y.F.Enhanced plasma resonance light scattering signals of colloidal gold resulted from its interactions with organic small molecules using captopril as an example. Analytica Chimica Acta.2006,577,244-249.
    [1]Sau,T.K.,Murphy,C.J.Room Temperature,High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution.J.Am.Chem.Soc.2004,126,8648-8649.
    [2]Hakkinen,H.,Barnett,R.N.,Landman,U.Gold Nanowires and Their Chemical Moditications.J.Phys.Chem.B.1999,103,8814-8816.
    [3]Schwartzberg,A.M.;Olson,T.Y.:Talley,C.E.;et al.Gold Nanotubes Synthesized via Magnetic Alignment of Cobalt Nanoparticles as Templates.J.Phys.Chem.C.2007,111. 16080-16082.
    [4]Wang, J.;Li, Y. F.;Huang, C.Z. Identification of Iodine-Induced Morphological Transformation of Gold Nanorods.J. Phys. Chem. C.2008,112,11691-11695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700