高分子水凝胶修饰碳纳米管神经元探针
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了聚乙二醇二丙烯酸酯/单壁碳纳米管(PEGDA/SWNTs)水凝胶膜层对金电极的修饰,考察了水凝胶修饰电极的电化学性能。同时,在PEGDA/SWNTs水凝胶膜层中负载地塞米松,研究了其药物释放规律。
     采用共价键合法对金电极进行化学修饰,将清洁处理的金电极采用层层组装的方法,分别经过巯乙胺和PEGDA大分子的修饰,在金电极表面制得以乙烯基封端的分子膜。利用接触角、x射线光电子能谱(xPS)和循环伏安曲线(CV)的测试手段证实了巯乙胺的自组装和Michael加成反应的成功进行,为电极的进一步修饰提供了可能
     将化学酸化处理的SWNTs超声分散在PEGDA水凝胶的前驱物溶液中,用微量注射器滴加到分子修饰的金电极表面,采用UV紫外光聚合法制得了水凝胶修饰电极。采用循环伏安法(CV)和交流阻抗谱(EIS)表征了水凝胶修饰电极的电化学性能,发现SWNTs能显著提高水凝胶修饰膜层的导电性能;并比较了共价键合法和涂渍法制得的水凝胶修饰电极的膜层粘结强度,结果表明共价键合法优于涂渍法。
     将地塞米松掺杂于PEGDA水凝胶前驱物溶液中,PEGDA在UV紫外光下照射固化过程中使药物负载在三维网络结构中,表征了水凝胶薄膜的物理化学性质,并研究了水凝胶的药物释放规律,发现SWNTs对地赛米松具有固定吸附的作用,延长了地塞米松在水凝胶中的释放周期。
In this paper, gold electrode was modified with polyethylene glycol diacrylate/single-walled carbon nanotubes (PEGDA/SWNTs) hydrogel coating. Electrochemical properties of the hydrogel-modified electrode as well as mechanisms of the drug release from PEGDA/SWNTs hydrogel coating were investigated.
     The gold substrate was chemically modified by covalent binding. The fabrication was performed in in-situ layer-by-layer assembly method. First the surface of the cleaned and activated gold substrate was chemically modified with cysteamine, followed by Michael addition between PEGDA and cysteamine to introduce pendant vinyl surface functionalities on the surface of gold electrode. The self-assembly of cysteamine and Michael addition were demonstrated by contact angle, X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV).
     After acid treatment, the shortened SWNTs were dispersed in PEGDA hydrogel precursor mixture by ultrasonication. The mixture was spread evenly onto the molecular-modified gold electrode with a microsyringe, followed by ultraviolet irradiation for photopolymerization. The electrochemical properties of the resulted hydrogel-modified electrode were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It was found that SWNTs enhanced the conductivity of the hydrogel coating. Furthermore, adhesive strength of the hydrogel coating on the hydrogel-modified electrode made by covalent binding and dip-coating was carried out separately. The results showed that covalent binding had a better adhesive strength compared to dip-coating.
     For doping drug into three-dimensional network structure, dexamethasone was dissolved in PEGDA hydrogel precursor mixture, and the mixture was photopolymerized under ultraviolet irradiation. The physical and chemical properties of the hydrogel coating as well as the mechanisms of the drug release from the hydrogel were investigated. It was found that SWNTs had some sorption on dexamethasone, prolonged the release period of dexamethasone from hydrogel.
引文
[1]Mohamad H H, Vamsy C, Sam M. NeuroMEMS:neural probe microtechnologies[J]. Sensors,2008,8(10):6704~6726.
    [2]Ruther P, Herwik S, Kisban S, et al. Neuro probes-development of modular multifunctional probe arrays for meuroscience[C]. Mikrosystemtechnik Kongress in Dresden,2007:739~742.
    [3]Brown W J, Babb T L. Tissue reactions to long-term electrical stimulation of the cerebellum in monkeys[J]. J. Neueosurg.,1977,47(3):366~379.
    [4]Weppelmann E R, Field J S, Swain M V. Observation, analysis, and simulation of the hysteresis of silicon using ultra-micro-indentation with spherical indenters[J]. J. Mater. Res.,1993,8(4):830~839.
    [5]Baughman R H., Zakhidov A A., Heer W A. Carbon nanotubes:the route toward applications[J]. Science,2002(5582),297:787~792.
    [6]Wang J. Carbon-nanotube based electrochemical biosensors:a review[J]. Electroanalysis,2005,17(1):7~14.
    [7]Dimitrios T, Nikos T, Bianco A, Prato M. Chemistry of carbon nanotubes [J]. Chem. Rev.,2006,106(3):1105~1136.
    [8]Yakobson B I, Smalley R E. Fullerene nanotubes:C1,000,000 and beyond[J].Am. Sci.,1997,85(4):324~337.
    [9]Peters J E, Papavassiliou D V, Grady B P. Unique thermal conductivity behavior of single-walled carbon nanotube-polystyrene composites[J]. Macromol.,2008,41(20): 7274~7277.
    [10]Collins P G, Avouris P. Nanotubes for electronics[J]. Sci. Am.,2000,283(6):62~69.
    [11]Zhao Y L, Hu L B, Stoddart J F, Gruner G. Pyrenecyclodextrin-decorated single-walled carbon nanotube field-effect transistors as chemical sensors[J]. Adv. Mater., 2008,20(10),1910~1915.
    [12]Feldman A K, Steigerwald M L, Guo X F, Nuckolls C. Molecular electronic devices based on single-walled carbon nanotube electrodes[J]. Acc. Chem. Res.,2008,41(12): 1731~1741.
    [13]Cheng Q F, Bao J W, Liang Z Y, et al. High mechanical performance composite conductor:multi-walled carbon nanotube sheet/bismaleimide nanocomposites[J]. Adv. Funct. Mater.,2009,19(20):3219~3225.
    [14]Cheng J P, Tu J P, Zhang X B, et al. Carbon nanotubes grown on sepiolite as catalyst carrier[J]. Chinese Chem. Lett.,2002,13(4):381~384.
    [15]Sarangi D, Arfaoui I, Bonard J M. Carbon nanotube growth on borosilicate glass for flat panel displays[J]. Physica B:Condensed Matter.2002,323(1-4):165~167.
    [16]Roberts M E, LeMieux M C, Bao Z N. Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors[J]. ACS Nano,2009, 3(10):3287~3293.
    [17]Yoo H J, Kim H D. Synthesis and properties of waterborne polyurethane hydro gels for wound healing dressings[J]. J. Biomed. Mater. Res. Part B,2008,85(2):326~333.
    [18]Wang Y J, Tan G X, Zhang S J, Guang Y X. Influence of water states in hydro gels on the transmissibility and permeability of oxygen in contact lens materials[J]. Appl. Surf. Sci.,2008,255(2):604~606.
    [19]Sun G M, Chu C C. Synthesis, characterization of biodegradable dextran-allyl isocyanate-ethylamine/polyethylene glycol-diacrylate hydrogels and their in vitro release of albumin[J]. Carbohydr Polym,2006,65(3):273~287.
    [20]Slaughter B V, Khurshid S S, Peppas N A. Hydrogels in regenerative medicine[J]. Adv. Mater.,2009,21(32-33):3307~3329.
    [21]Danielle S W Benoit, Michael P Schwartz, Kristi S Anseth. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells[J]. Nature Mater.,2008,7(10):816~823.
    [22]Lee P Y, Cobain E, Huang L. Thermosensitive hydrogel PEG-PLGA-PEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound[J]. Molecular Therapy,2007,5(6):1189~1194.
    [23]Joshi P P, Merchant S A, Wang Y, et al. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites amperometric[J]. Anal. Chem.,2005,77(10): 3183~3188.
    [24]Olaf M, Dirk K, Christian F, et al. Mechanical properities and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene[J]. Polymer,2004,45(3):739~748.
    [25]Daniel T C. Single-wall nanotubes:a new option for conductive plastics and engineering polymers[J]. Plastics Additives Compounding,2003,5(1):18~25.
    [26]Makamba H, Huang J W, Chen H H, et al. Photopatterning of tough single-walled carbon nanotube composites in microfluidic channels and their application in gel-free separations[J]. Electrophoresis,2008,29(12):2458~2465.
    [27]Tong X, Zheng J J, Zhang Z F, et al. Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol) hybrid hydrogels[J]. Mater. Lett.,2007,61(8~9):1704~1706.
    [28]Rokita B, Rosiak J M, Ulanski P. Ultrasound-induced cross-linking and formation of macroscopic covalent hydrogels in aqueous polymer and monomer solutions [J]. Macromol.,2009,42(9):3269~3274.
    [29]Zheng Y, Andreopoulos F M, Micic M, et al. A novel photoscissile poly(ethylene glycol)-based hydrogel[J]. Adv. Funct. Mater.,2001,11(1):37~40. [30] Sheng L G, Sidi B, James A C, et al. Synthesis and characterization of PEG dimethacrylates and their hydrogels[J]. Biomacrom.,2004,5(4):1280~1287.
    [31]Gaetano G, Giovanna P, Pitarresi G, et al. New biodegradable hydrogels based on a photocrosslinkable modified polyaspartamide:synthesis and characterization[J]. Biochimica et Biophysica Acta,1999,1428(1):29-38.
    [32]Minoru N, Yu Y. Photoreversible poly(ethylene glycol)s with pendent coumarin group and their hydrogels[J]. Reactive & Functional Polymers,2008,68(5):915~921.
    [33]Lin H Q, Wagner E V, Freeman B D, et al. Plasticization-enhanced hydrogen purification using polymeric membranes[J]. Science,2006,311(5761):639~642.
    [34]Wang S F, Chen T, Zhang Z L, et al. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids [J]. Langmuir,2005,21(20):9260~9266.
    [35]Wartelle C, Schuhmann W, Blochl A, et al. Integrated compact biocompatible hydrogel-based amperometric sensing device for easy screening of drugs involved in nitric oxide production by adherent cultured cells[J]. Electrochimica Acta,2005,50(25-26): 4988~4994.
    [36]Justin G, Finley S, Rahman A R A, et al. Biomimetic hydrogels for biosensor implant biocompatibility:electrochemical characterization using micro-disc electrode arrays (MDEAs)[J]. Biomed Microdevices,2009,11(3):103~115.
    [37]Liu H H, Tian Z Q, Lu Z X, et al. Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films[J]. Biosen.& Bioelec.,2004,20(2): 294~304.
    [38]Richter A, Paschew G, Klatt S, et al. Review on hydrogel-based pH sensors and microsensors[J]. Sensors,2008,8(1):561~581.
    [39]Rahman A R A, Justin G, Guiseppi-Elie A. Bioactive hydrogel layers on microdisk electrode arrays:impedimetric characterization and equivalent circuit modeling[J]. Electroanalysis,2009,21(10):1135~1144.
    [40]Maciej K, Marcin K, Zbigniew S, et al. Thermoresponsive poly(N-isopropylacrylamide) gel for immobilization of laccase on indium tin oxide electrodes[J]. J. Phys. Chem. B,2009,113(17):6062~6067.
    [41]Russell R J, Sirkar K, Pishko M V. Preparation of nanocomposite poly(allylamine)-poly(ethylene glycol) thin films using Michael addition[J]. Langmuir, 2000,16(8):4052~4054.
    [42]Jessica O W, Stuart C, Joseph F R. Hydrogel-electrode interfaces for directed tissue remodeling in the retinal implant[C]. American Institute of Chemical Engineers Annual Meeting, Cincinnati,2005.
    [43]Syu M J, Chiu T C, Lai C Y, et al. Amperometric detection of bilirubin from a micro-sensing electrode with a synthetic bilirubin imprinted poly(MAA-co-EGDMA) film[J]. Biosen. & Bioelec.,2006,22(4):550~557.
    [44]Winter J O, Cogan S F, Rizzo III J F. Neurotrophin-eluting hydrogel coatings for neural stimulating electrodes[J]. J. Biomed. Mater. Res.,2006,81B(2):551~563.
    [45]Lu Y, Wang D F, Duan Y W, et al. Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface[J]. Biomaterials,2009,30(25): 4143~4151.
    [46]Johanna R, Helke R, Diethelm J. Formation of surface-attached responsive gel layers via electrochemically induced free-radical polymerization[J]. Langmuir,2006,22(7): 3362~3367.
    [47]Bai Y H, Du Y, Xu J J, et al. Choline biosensors based on a bi-electrocatalytic property of MnO2 nanoparticles modified electrodes to H2O2[J]. Electrochem. Commun., 2007,9(10):2611~2616.
    [48]Wu L Q, Gadre A P, Yi H, et al. Voltage-dependent assembly of the polysaccharide chitosan onto an electrode surface[J]. Langmuir,2002,18(22):8620~8625.
    [49]Serizawa T, Nakashima Y, Akashi M. Stepwise fabrication and characterization of ultrathin hydrogels prepared from poly(vinylamine-co-N-vinylformamide) and poly(acrylic acid) on a solid substrate[J]. Macromol.,2003,36(6):2072~2078.
    [50]Smith O, Seo S S. Ferrocenedimethanol transport in thin films consisting of laponite and hydrogel[J]. IEEE Sensors Journal,2008,8(6):871~873.
    [51]Serizawa T, Nanameki K, Yamamoto K, et al. Thermoresponsive ultrathin hydrogels prepared by sequential chemical reactions[J]. Macromol.,2002,35(6):2184~2189.
    [52]Zeng X D, Wei W Z, Li X F, et al. Direct electrochemistry and electrocatalysis of hemoglobin entrapped in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan[J]. Bioelectrochem.,2007,71(2):135~141.
    [53]Widge A S, Jeffries-El M, Cui X Y, et al. Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes[J]. Biosen. & Bioelec,2007,22(8):1723~1732.
    [54]Abu-Rabeah K, Marks R S. Impedance study of the hybrid molecule alginate-pyrrole:Demonstration as host matrix for the construction of a highly sensitive amperometric glucose biosensor[J]. Sensors and Actuators B:chemical,2009,136(2): 516~522.
    [55]Nita II, Abu-Rabeah K, Tencaliec AM, et al. Amperometric biosensor based on the electro-copolymerization of a conductive biotinylated-pyrrole and alginate-pyrrole [J]. Synthetic metals,2009,159(12):1117~1122.
    [56]Kima D H, Wiler J A, Anderson D J, et al. Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex[J]. Acta Biomaterial, 2010,6(1):57~62.
    [57]Abidian M R, Martin D C. Multifunctional nanobiomaterials for neural interfaces[J]. Adv. Funct. Mater.,2009,19(4):573~585.
    [58]Kim D H, Abidian M, Martin D C. Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices[J]. J. Biomed. Mater. Res. Pt B:Appl. Biomater.,2004,71A(4):577~585.
    [59]Jhaveri S J, Hynd M R, Dowell-Mesfin N, et al. Release of nerve growth factor from HEMA hydrogel-coated substrates and its effect on the differentiation of neural cells[J]. Biomacrom.,2009,10(1):174~183.
    [60]Nyberg T, Inganas O, Jerregard H. Polymer hydrogel microelectrodes for neural communication[J]. Biomedical Microdevices,2002,4(1):43~52.
    [61]Lin S P, Kyriakides T R, Chen J J. On-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arrays[J]. Biomater.,2009, 30(17):3110~3117.
    [62]Kim D H, Richardson-Burns S M, Hendricks J L, et al. Effect of immobilized nerve growth factor on conductive polymers:electrical properties and cellular response[J]. Adv. Funct. Mater.2007,17(1):79~86.
    [63]Yan R, Zhao F Q, Li J W, et al. Direct electrochemistry of horseradish peroxidase in gelatin-hydrophobic ionic liquid gel films[J]. Electrochi Acta,2007,52(26):7425~7431.
    [64]Huang R, Hu N F. Direct voltammetry and electrochemical catalysis with horseradish peroxidase in polyacrylamide hydrogel films[J]. Biophys. Chem.,2003,104(1): 199~208.
    [65](?)sberg D P, Inganas O. PEDOT/PSS hydrogel networks as 3-D enzyme electrodes[J]. Synthetic Metals,2003,137(1~3):1403~1404.
    [66]Asberg P, Inganas O. Hydrogels of a conducting conjugated polymer as 3-D enzyme electrode[J]. Biosen. & Bioelec.,2003,19(3):199~207.
    [67]Alexander R, Ryan J R, Vamsi K Y. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography [J]. Langmuir,2001,17(18):5440~5447.
    [68]Zou Y J, Xiang C L, Sun L X, et al. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel[J]. Biosen. & Bioelec,2008,23(7):1010~1016.
    [69]Nicholas D, Sonja H, Faming T, et al. Listening to the brain:microelectrode biosensors for neurochemicals[J]. Trends in Biotechnology,2005,23(8):420~428.
    [70]Liu H M, Liu C X, Jiang L Y, et al. Osmium redox hydrogel mediated biosensor for measurement of low concentration glucose extracted by reverse iontophoresis[J]. Electroanalysis,2008,20(2):170~177.
    [71]Nicolas M, Valentine S, Adam H. A laccase-wiring redox hydrogel for efficient catalysis of O2 electroreduction[J]. J. Phys. Chem. B,2006,110(23):11180~11187.
    [72]Pellissier M, Zigah D, Barriere F, et al. Optimized preparation and scanning electrochemical microscopy analysis in feedback mode of glucose oxidase layers grafted onto conducting carbon surfaces[J]. Langmuir,2008,24(16):9089~9095.
    [73]Korostynska O, Arshak K, Gill E, et al. Review on state-of-the-art in polymer based pH sensors[J]. Sensors,2007,7(12):3027~3042.
    [74]张俊苓,杨芳等.自组装单分子膜及其表征方法[J].化学进展,2005,17(2):203-208.
    [75]Duduzile N, Kenneth I O. Self-assembled nano-arrays of single-walled carbon nanotube-octa (hydroxyethylthio) phthalocyaninatoiron(II) on gold surfaces:Impacts of SWCNT and solution pH[J]. Electrochimica Acta,2008,53(6):2782~2793
    [76]Reza K S, Anahita F, Mojtaba B, Functionalization of gold cysteamine self-assembled monolayer with ethylenediaminetetraacetic acid as a novel nanosensor[J]. Analytica Chimica Acta,2007,587(2):254~262.
    [77]Dyer M A, Ainslie K M, Pishko M V. Protein adhesion on silicon-supported hyperbranched poly(ethylene glycol) and poly(allylamine) thin films[J]. Langmuir,2007, 23(13):7018~7023.
    [78]Li Y T, Armes S P. Synthesis of model primary amine-based branched copolymers by pseudo-living radical copolymerization and post-polymerization coupling of homopolymers[J]. Macromol.,2009,42(4):939~945.
    [79]Bain C D, Whitesides G M. Modeling organic surfaces with self-assembled monolayers[J]. Angew. Chem. Int. Ed. Engl.,1989,28(4):506~512.
    [80]李志祥.电子提花技术与产品开发[M].北京:中国纺织出版社,2000:179-214.
    [81]Lai L J, Yang Y W, Lin Y K, et al. Surface characterization of immunosensor conjugated with gold nanoparticles based on cyclic voltammetry and X-ray photoelectron spectroscopy[J]. Coll. & Sur. B:Biointerfaces,2009,68(2):130~135.
    [82]Luo X L, Xu J J, Zhang Q, et al. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly [J]. Biosens. Bioelectron.2005,21(1):190~196.
    [83]Wang S, Du D, Xu X. Self-assembly of metalloporphyrin-L-cysteine modified gold electrode[J]. J. App. Electrochem.,2004,34(5):495~500.
    [84]Wang Q, Dong D, Li N Q. Electrochemical response of dopamine at a penicillamine self-assembled gold electrode[J]. Bioelectrochemistry,2001,54(2):169~175.
    [85]罗国安,王宗花,王义明.生物兼容性电极构置及应用[M].北京:科学出版社,2006:ⅲ-ⅳ.
    [86]Ng L T, Swami S. Copolymers of acrylic acid with N-vinylpyrrolidinone and 2-hydroxyethyl methacrylate as pH-responsive hydrogels synthesized through a photoinitiator-free photopolymerization technique[J]. Polym. Int.2006,55(5):535~544.
    [87]Hernadi K, Fonseca A, Nagy J B, et al. Catalytic synthesis and purification of carbon nanotubes[J]. Synthetic metals,1996,77(1~3):31~34.
    [88]Niyogi S, Hamon M A, Haddon R C, et al. Chemistry of single-walled carbon nanotubes[J]. Acc. Chem. Res.,2002,35(12):1105~1113.
    [89]Liu J, Rinzler A G, Dai H, et al. Fullerene pipes[J]. Science,1998,280:1253~1256
    [90]Chen C X, Zhang Y F, Lee S T, et al. Nanowelded carbon-nanotube-based solar microcells[J]. Small,2008,4(9):1313~1318.
    [91]Chen G X, Miyauchi M, Shimizu H. UV-induced surface electrical conductivity jump of polymer nanocomposites[J]. Applied Physics Letters,2008,92, (20): 203113-1~203113-3.
    [92]Shen L, Huang R, Hu N F. Myoglobin in polyacrylamide hydrogel films:direct electrochemistry and electrochemical catalysis[J]. Talanta,2002,56:1131~1139.
    [93]Plambeck J A. Electroanalytical chemistry:basic principles and applications[M]. New York:John Wiley,1982.
    [94]Owino J H, Arotiba O A, Anthony G E, et al. Synthesis and characterization of poly (2-hydroxyethyl methacrylate)-polyaniline based hydrogel composites[J]. Reactive & Functional Polymers,2008,68(8):1239~1244.
    [95]DiRamio J A, Kisaalita W S, Majetich G F, et al. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs[J]. Biotechnol. Prog.,2005,21(4):1281~1288.
    [96]Mellott M B, Searcy K, Pishko M V. Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization[J]. Biomaterials,2001,22(9):929~941.
    [97]Aimetti A A, Machen A J, Anseth K S. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery[J]. Biomaterials, 2009,30(30):6048~6054.
    [98]Weber L M, He J, Anseth K S, et al. PEG-based hydrogels as an in vitro encapsulation platform for testing controlled β-cell microenvironments[J]. Acta Biomaterialia,2006,2(1):1-8.
    [99]Burdick J A, Anseth K S. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering [J]. Biomaterials,2002,23(22): 4315~4323.
    [100]Lin C C, Metters A T. Hydrogels in controlled release formulations:network design and mathematical modeling[J]. Adv. Drug Deli. Rev.,2006,58(12~13):1379~1408.
    [101]Serra L, Domenech J, Peppas N A. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels[J]. Biomaterials,2006,27(31):5440~5451.
    [102]McConaughy S D, Kirkland S E, McCormick C L, et al. Tailoring the network properties of Ca2+crosslinked Aloe vera polysaccharide hydrogels for in situ release of therapeutic agents[J]. Biomacromol.,2008,9(11):3277~3287.
    [103]Jiang Z Q, Hao J Y, Deng X M, et al. Biodegradable thermogelling hydrogel of P(CL-GL)-PEG-P(CL-GL) triblock copolymer:degradation and drug release behavior[J]. J. Phar. Sci.,2009,98(8):2603~2610.
    [104]Lin H Q, Kai T, Freeman B D, et al. The effect of cross-linking on gas permeability in cross-linked poly(ethylene glycol diacrylate) [J]. Macromol.,2005,38(20): 8381~8393.
    [105]Budtova T, Navard P. Swelling kinetics of a polyelectrolyte gel in water and salt solutions. Coexistence of swollen and sollapsed phases[J]. Macromol.,1998,31(25): 8845~8850.
    [106]Enscore D J, Hopfenberg H B, Stannett V T. Effect of particle size on the mechanism controlling n-hexane sorption in glassy polystyrene microspheres[J]. Polymer, 1977,18(8):793~800.
    [107]Zhang X Z, Zhuo R X. Synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with improved surface property [J]. J. Coll. Inter. Sci,2000,223(2):311~313.
    [108]Zhang X Z, Zhuo R X, Yang Y Y. Using mixed solvent to synthesize temperature sensitive poly(N-isopropylacrylamide) gel with rapid dynamics properties [J]. Biomaterials, 2002,23(5):1313~1318.
    [109]何天白,胡汉杰.功能高分子与新技术[M].北京:化学工业出版社,2001:112-113.
    [110]易国斌,王永亮,康正,等.亲水-疏水PVP-semi-IPN-PCL水凝胶的制备与溶胀性能[J].化工学报,2007,58(10):2669-2674.
    [111]Ritger P L, Peppas N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs[J]. J. Cont. Rele.,1987,5(1):23~36.
    [112]Griffth-Cima L, Lopina S T. Network structures of radiation-cross-linked star polymer gels[J]. Macromol.,1995,28(20):6787~6794.
    [113]Lee P I, Peppas N A. Prediction of polymer dissolution in swellable controlled-release systems[J]. J. Controlled Release,1987,6(1):201~215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700