高镍球铁耐热性能与排气歧管数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车排气歧管是靠近发动机的器件,工作环境十分恶劣,排气歧管选用的材料应具有良好的耐热能力和成型性能。高镍奥氏体球墨铸铁(高镍球铁)作为排气歧管最新使用材料,已经被广泛认可。本课题以自主开发与制造高镍球铁排气歧管铸件为目的,分别对其组织、性能和铸造过程数值模拟进行研究。
     采用ESCALAB-250 X射线衍射仪、JSW-5310和JXA-840扫描电镜、LinK-ISIS能谱和OLYMPUS-PMG3金相显微镜对高镍球铁显微组织进行观察与分析。运用扫描电镜观察热疲劳裂纹形貌及裂纹萌生和扩展特征,并分析在热疲劳试验过程中高温氧化情况。采用FM-70维氏硬度计分析在热疲劳试验循环过程中基体硬度的变化。通过上述研究,对其作为排气歧管材料抵御开裂的能力提供了实验基础和理论依据,以便于在实际生产中更好的应用。
     运用有限元模拟软件ProCAST观察充型凝固过程中的温度场、速度场、金属液流动,预测铸件中可能存在的缺陷。对不同的工艺方案进行改进,通过优化工艺参数,从而帮助在实际生产前采取有效措施避免铸件缺陷的产生,达到提高产品质量、缩短产品开发周期,降低生产成本的目的。
In recent years, the automotive industry is facing serious challenges because of world energy consumption, reducing emissions to protect the environment is recognized as one of the key issues for the automotive exhaust system. The automobile exhaust manifold is the closest device to the engine, but its working environment is very poor. Early automobile engines, gas temperature did not exceed 500℃, but as the efficiency of engine rised, the maximum exhaust gas temperature has been raised from 500℃to 900℃, and it is expected to rise in the future. Traditional materials could not meet their requirements, but Ni-resist ductile iron which has good heat resistance used in exhaust manifold has been widely recognized.
     The objective of this paper is to self-develop and manufacture the Ni-resist ductile iron used in exhaust manifold. It is divided into two parts: one is the research on the microstructure and heat resistance of Ni-resist ductile iron, the other is numerical simulation of casting process.
     The microstructure and heat resistance of Ni-resist ductile iron:
     The ESCALAB-250 X-ray diffraction (XRD), JSW-5310 and JXA-840 scanning electron microscope (SEM), the energy spectrum of British LinK-ISIS (EDS) and Olympus-PMG3 optical microscope (OM) were carried out to study the microstructure of Ni-resist ductile iron. The morphology of thermal fatigue cracks and the crack initiation and propagation characteristics of thermal fatigue tests were analysis by SEM, The high temperature oxidation process was also investigated by SEM and EDS. FM-70 Vickers microhardness (HV) was used to study the hardness. By analyzing the experimental data, some conclusions have been drawn as follows:
     The matrix of Ni-resist ductile iron is austenite, and intermetallics FeNi3 was found in it. Three typical areas were analyzed, Most of these areas contain large quantities of silicon and nickel, which form Ni-Si phase and Fe-Ni-Si phase, some carbides distributed in the grain boundary. Not only spherical graphite, but irregular shape graphite also exist in some regions.
     Thermal fatigue properties of Ni-resist ductile iron:In the thermal cycles,the pressure strain occurs while specimen heated and the tensile strain occurs while it cooled. When the heating temperature rised, the thermal stress of the specimen increased with the heating temperrature increased, and the expansion rate of themal fatigue crack accelerated. Thermal fatigue cracks formed along the edge of the specimen, and then they extended with the thermal cycle times increased. In the end, they formed“T”or“+”type thermal fatigue crack; Oxidation reaction occured when oxygen entered the cracks, which lead to the material occurs thermal growing. The material size increased with the number of cycle times, but because the coefficient of thermal expansion of Ni-resist ductile iron is low and the austenite is stable in room temperature and high temperature, thermal deformation is smaller than other materials; With the increase of thermal cycles, the hardness of the matrix of specimen decreased;In the thermal cycles,the surface of the sample was corroded by oxidation. Thermal fatigue cracks and large numbers of holes which are
     formed in the surface are caused by the effect of oxidation. The datas provide an experimental and theoretical basis to the exhaust manifold in the actual production and application.
     Numerical simulation of casting process:
     As the exhaust manifold materials,Ni-resist ductile iron is the complex material which has high nickel and low carbon. It has high melting and pouring temperature, Poor casting process, uneven thickness, high dimensional accuracy, especially the three dimensional surface measurements. If it is designed only through personal experience and manual operation, we will not only spend much time and cost, but also receive low accuracy and poor reliability results, and the quality of castings is hard to guarantee. The effective method could solve above problems through using CAE numerical simulation of casting process. The software can view filling and solidification of the whole cast processing, prediction and analysis of casting defects in the site. We can optimize the parameters to improve casting technology before its actual production, and help taking effective measures to avoid casting defects.
     In this paper, using FEM software ProCAST to do a dynamic simulation to observe temperature field, velocity field of the process of filling and solidification. We can predict the thermal section, shrinkage porosity and other defects, to determine the optimal casting process, reduce costs and improve the quality of the exhaust manifold. During the process of casting, when pouring temperature 1470℃, pouring speed 0.3m/s, the filling is stable and the defects less than other plans.
引文
[1]张潮生译.汽车耐热铸铁排气系统的开发[J].金属世界,2005,(5):25.
    [2]李青.汽车排气系统材料的现状及发展[J].汽车工艺与材料,1997,(11):5-8.
    [3] Ike.M,Akiyama.K,Ohtsuka .K,et al.Development of Heat-resistant Cast Steel for Exhaust Manifolds[J].International Journal of Fatigue,1992,14:64.
    [4]李晓琴,焦正音,夏兰廷.高硅钼球铁-美国汽车发动机排气歧管的首选材料[J].山西机械,2000,(3):45-48.
    [5]谭幼林.汽车发动机排气装置选用材料进展[J].湖北汽车,1999,1:11-16.
    [6]李伟,刘轲军,张义和等.发动机排气歧管断裂分析[J].汽车工艺与材料,2006,(6):25-26.
    [7]万仁芳,陈勉已.蠕墨铸铁排气管的使用和批量试生产[J].二汽科技,1982,(4):69-75.
    [8]万仁芳.汽车蠕墨铸铁件的应用与发展[J].现代铸铁,2006,(1):26-32.
    [9]崔晓鹏等.汽车用排气歧管材料的应用现状及发展方向[J].铸造,2008,57(10):1001-1004.
    [10]李秀真等.中硅耐热蠕墨铸铁的研究和应用[J].铸造,1997,(2):18-20.
    [11]李长龙.铸铁[M].北京:化学工业出版社,2007.
    [12] Black Brent,Burger Gene,Logan Robert,et al,Microstructure and Dimensional Stability in Si-Mo Ductile Irons for Elevated Temperature Applications [J].SAE Technical Paper Series,2002,1:792.
    [13] Li D.Perrin R,Burger G,et al.Solidification Behavior,Microstructure,Mechanical Properties,Hot Oxidation and Thermal Fatigue Resistance of High Silicon Si-Mo Nodular Cast Iron[J].SAE Technical Paper Series,2004,1:169.
    [14]王泽华,鲍国栋,蒋兴国.铸态高塑性中硅钼球铁的试验研制[J].河南大学常州分校学报.2004,1(18):20-23.
    [15]金永锡.中硅钼耐热蠕墨铸铁排气歧管材料和工艺探讨[J].现代铸铁,2006.(1):32-41.
    [16] Havva Kazdal Zeytin, Ceylan Kubilay, Hüseyin Aydin , et al . Effect ofMicrostructure on Exhaust Manifold Cracks Produced From Si-Mo Ductile Iron[J].Journal of Iron and Steel Research,2009,16(3):32-36.
    [17]王伟明,毛惠刚.汽车排气系统用409型铁素体不锈钢的开发研究[J].宝钢技术,2005,(4):56-60.
    [18] Tae Kwon Ha,Hyo Tae Jeong,Hwan Jin Sung.High Temperature Bending Fatigue Behavior of Stainless Steels for Automotive Exhaust[J].Materials Processing Technology,2007,187:555-558.
    [19] Sung Hwan Park,Jong Moon Kim,Hak Jin Kim.Development of a Heat Resistant Cast Iron Alloy for Engine Exhaust Manifolds[J].SAE Technical Paper Series,SAE International,2005,114.
    [20] Tim Hale.PM Stainless Steels Uses in Automotive Exhausts[J].Metal Powder Report,1998,53:22-26.
    [21] Yoon Jun Kim,Ho Jang,YongJun Oh.High Temperature Low Cycle Fatigue Properties of a HF30-Type Cast Austenitic Stainless Steel[J].Materials Science and Engineering:A,2009,7:41.
    [22] G.Quan,S.Xu,C.Sloss.Application of a Unified Plasticity Model for an Exhaust Manifold Material[J].SAE Technical Paper Series,SAE International,2009,(1).
    [23]张文茹等.汽车排气系统用铁素体不锈钢的发展[J].机械管理开发,1999,(4).46-48.
    [24] Ueta Shigeki,Hamano Shuji,Noda Toshihatu,et al.Development of Thermal Fatigue Resistant Austenitic Cast Alloys for High Temperature Engine Exhaust Gas Systems[J].SAE Technical Paper Series,SAE International,2003,112(5):431.
    [25]卫星.铁素体不锈钢在汽车排气系统的应用日益广泛[J].上海金属,2005,(3):63.
    [26]郑隆滨,孙永立,史然峰.我国耐热铸铁的生产和发展[J].锅炉制造,2004.3(1):39-44.
    [27]郝石坚.现代铸铁学[M].北京:冶金出版社,2004.
    [28]潘振华译.奥氏体铸铁——北美市况和世界范围内的技术发展[J].国外球铁,1981,(12):59-68.
    [29] L Z He,Q Zheng,X.F Sun,et al.High Temperature Low Cycle Fatigue Behaviorof Ni-base Super Alloy M963[J].Materials Science and Engineering A,2005,402:33-41.
    [30] Dayong Cai,Liangyin Xiong,Wenchang Liu,et al.Development of Processing Maps for a Ni-based Super Alloy[J].Materials Characterization,2007,58:941-946.
    [31]张承甫,熊国庆,陈平昌.高镍奥氏体球墨铸铁性能的研究[J].华中工学院学报,1985,1:71.
    [32] Park Sung Hwan,Kim Jong Moon,Kim Hak Jin,et al.Development of a Heat Resistant Cast Iron Alloy for Engine Exhaust Manifolds[J].SAE Technical Paper Series,SAE International,2005,114 (5):777.
    [33] Andre Pineau,Stephen D.Antolovich.High Temperature Fatigue of Nickel-base superalloys-A Review with Specialm Emphasis on Deformation Modes and Oxidation[J].Engineering Failure Analysis,2009,8(16):2668-2697.
    [34] Wells CH,Sullivan CP.The Low Cycle Fatigue Characteristics of a Nickel Base Superalloy at Room Temperature[J].Trans ASM,1964,57:841–855.
    [35] C H Toh,P R Munroe,D J Young.Metal dusting of Fe-Cr and Fe-Ni-Cr Alloys under Cyclic Condition[J].Oxidation of Metal,2002,58:1-21.
    [36] Merrick HF.The Low Cycle Fatigue of Three Wrought Nickel Base Alloys[J].Met Trans,1974,5:891-897.
    [37] Chassaigne J.C.High Temperature Crack Propagation in Ni-base Superalloy N18 Fabricated by pm; Study of the Coupling of Mechanical and Environmental Effects at the Head of a Crack[D],Ecole Nationale Supérieure des Mines de Paris,1997.
    [38]孙平昌等.石墨和碳化物形态对高镍奥氏体铸铁冲击疲劳裂纹的影响[J].华中理工大学学报,1989,17(1):71-75.
    [39]程军.计算机在铸造中的应用[M].北京:机械工业出版社,1994.
    [40]熊守美,柳百成,许庆彦等.铸件充型凝固过程数值模拟研究[J].现代铸铁,2002,(1):16-18.
    [41] G.J Henzel,G.J.Keverian.Comparison of Calculated and Measured Solidification Pattern in a Variety of Casting[J].AFS Cast Met.Res.J,1965,1:19-30.
    [42] P.R.Sahm,P.N.Hansen.Numerical Simulation and Modeling of Heat and Solidification Processes for Foundry and Cast House.CIATF Zurich,1984,21-23.
    [43] J.T.Berry,J.A.M.Boulet.The Application of Geometric Modeling to Metal Casting Technology.Solid Modeling by Computer from Theory Application to Plenum Press,1984,105-106.
    [44] I.Ohnaka,T.Aizawa.Computer Simulation of Solidification Processing.The Metals Society,1987,268-270.
    [45]曹洪吉,宋延沛,王文焱.铸造过程计算机模拟研究应用现状与发展[J].河南科技大学学报,2006,27(1):6-8.
    [46]范柳光.铸钢件凝固过程计算机模拟技术应用研究[J].大型铸锻件,2002,96(2):1-7.
    [47]于百库,白文弟.铸件凝固过程温度场的数值模拟[J].中国铸造装备与技术,2002,218(2):16-19.
    [48]刘伟涛,李万,杨秉检等.铸件凝固过程数值模拟后处理的研究[J].西安交通大学学报,1999,33(10):52-56.
    [49] ESI GROUP.ProCAST-The Leading Finite Element Solution For Casting Process Simulation,2003,6-11.
    [50] Cristiana Delprete,Carlo Rosso.Exhaust Manifold Thermo-Structural Simulation Methodology[J].SAE Technical Paper Series,SAE International,2005,(1).
    [51] Niyama E.A.Method of Shrinkage Predication and AppliCation to Steel Casting Practice.AFS Inter.Cast Metals[J].1982,(9):52-63.
    [52]崔磊.高硅钼和高镍球铁排气管的组织和性能[D].长春:吉林大学材料学院,2009.
    [53]韩增祥.金属热疲劳试验方法的探索[J].理化检验-物理分册,2008,44:250-257.
    [54]华中工学院.耐热铸铁译文集[M].湖北:华中工学院,1983.
    [55]杜丕锡等.高镍低膨胀奥氏体球铁组织与性能的研究[J].吉林工业大学学报,1986,(4):46-54.
    [56]胡心彬,李麟.H13钢热疲劳后碳化物形态和组分的变化[J].材料热处理学, 2007,28(6):82-87.
    [57]张佳秋,姜华.铸造生产中热物性参数的变化[J].铸造,1998,8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700