还原性氧化物及其复合物在金催化CO中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米金催化剂由于优异的低温CO氧化性能在燃料电池、CO防毒面具、CO2激光器及汽车尾气处理器等许多领域具有广泛的应用前景,但是Au催化剂制备的重复性和应用过程中的稳定性问题限制了它的工业应用。研究者发现除了Au活性组分的尺寸和形貌外,载体的种类和微结构对催化剂活性的影响也不容忽视。因此本文工作主要集中研究载体作用。我们选择活性载体CeO2、MnO2以及高稳定性载体SiO2,构建复合氧化物,希望设计出高活性和高稳定性的金催化剂。
     本文首先考察了还原性载体CeO2和MnO2结构对金催化CO氧化的影响,然后制备了MxNy/SiO2复合氧化物,通过沉积沉淀法制备了Au/MxNy/SiO2催化剂。通过对催化剂结构和催化性能的表征,研究载体对金催化活性的影响。
     论文第一部分采用初湿浸渍法将CeO2引入到不同微结构的SiO2表面,以制备复合氧化物载体,然后以氯金酸为前体通过沉积沉淀法制备Au/CeO2/SiO2催化剂。通过XRD、氮气物理吸附和TEM等表征了Au/CeO2/SiO2的结构和活性组分的分散状态,通过TPR,HR-TEM,原位DRIFTS等表征揭示了Au/CeO2/SiO2可能的反应机制。多级孔道结构的HMS,保证了Au和CeO2纳米颗粒的均匀分散和相互作用,Au/CeO2/HMS表现了最优的催化活性和较好的稳定性。提高CeO2的含量可得到分散均匀的小尺寸纳米金颗粒,因而催化剂活性提高。Au/CeO2/SiO2的催化行为与Au/CeO2相似。
     第二部分水热条件下合成了α、β和γ-MnO2,并通过XRD、氮气物理吸附和SEM等表征其结构。采用(NH4)2S2O8为前体,合成了α、β和γ-MnO2,晶型较好的前提下,其横向尺寸的减小有利于CO的转化。α、β和γ-MnO2的催化活性顺序为γ>α>β-MnO2,负载金后,Au-α、γ-MnO2的低温CO氧化能力优于Au-β-MnO2,但Au-β-MnO2完全转化能力强。以KMnO4为前体合成的α-MnO2,负载金之后催化活性明显优于(NH4)2S2O8为前体合成的α-MnO2o
     第三部分通过浸渍和原位的方式引入MnO2制备Au/MnO2/SiO2催化剂。Au/Mn2O3/SiO2表现了比Au/MnO2/SiO2更优的CO氧化能力。在SBA-15中原位引入棒状MnO2修饰其惰性表面,负载金后Au/MnO2/SBA-15催化活性明显增强。在HMS中原位引入横向尺寸在2-4 nm的枝状MnO2,负载金后,Au/MnO2/HMS催化CO氧化能力也显著增强。
     综上所述,本文将以还原性氧化物为载体的高活性金催化剂负载至稳定性较好的SiO2表面。Au/MxNy/Si02与Au/SiO2相比催化活性显著提高,与Au/MxNy相比其稳定性也得到增强,因而基本实现了将高催化活性和稳定性相结合的设想。
Gold catalysts have potential to be widely used in many fileds such as hydrogen fuel cells, CO gas masks, enclosed CO2 lasers and automobile exhaust processors due to their high activities at low-temperature for CO oxidation. However, the industrial application would be limited for the unsatisfied synthesis repeatability and catalytic stability of active gold catalysts. Besides the morphology and size of the gold nanoparticles, the support is another key factor that influences the catalytic activity. Therefore, the work in this text would concentrate on the effect of support, the active supports of CeO2, MnO2 and silica with high stability were selected to construct composite supports. The gold catalysts with high activity and good stability would be obtained.
     Firstly, the influences of CeO2 and MnO2 structures on the gold catalysis were evaluated for CO oxidation. Then the composite Au/MxNy/SiO2 catalysts were synthesized with the deposition-precipitation method. The effects of supports were investigated from characterizations of the structures and catalytic abilities of catalysts.
     In the first part, ceria was introduced with the incipient wetness impreagnation method to modify the silica surface; Au/CeO2/SiO2 catalysts were obtained by a traditional deposition-precipitation method with the hydrochloroauric acid as the precursor. The dispersion of active gold and ceira sites were characterized by XRD, N2 physi-adsorption, TEM et al, and the possible mechanism insights were obtained from TPR, HR-TEM and in situ DRIFTS. HMS with hierachical pores ensured the homogeneous dispersion and the interaction betweem gold and ceria nanoparticles, so it achieved the best catalytic activity and good stability. The silica supports with high ceria content guarantee the small gold nanoparticles with a high dispersion, and the composite catalysts worked much like Au/CeO2.
     In the second part,α,βandγ-MnO2 were synthesized with a hydrothermal method. A good crystalline and small transverse size was benefical for the CO oxidation from XRD and SEM characterizations. The catalytic activity orders of MnO2 obtained from (NH4)2S2O8was:γ>α>β-MnO2, the order changed after the deposition of gold colloids, at the low temperature range, Au-a-MnO2 and Au-y-MnO2 showed the better activity while Au-β-MnO2 fristly completely converted CO to CO2. The Au/a-MnO2 with the support synthesized from KMnO4 has higher activity than that with (NH4)2S2O8.
     In the third part, Au/MnO2/SiO2 were synthesized with different methods, MnO2 was introduced by the incipient wetness impregnation or in situ method. Au/Mn2O3/SiO2 had a better ability than Au/MnO2/SiO2 on CO conversion. Nano-rod MnO2 were introduced to the surface of SBA-15 by the in situ method, the composite gold catalysts obtained an improved catalytic activity for CO oxidation. Branchlike nano-MnO2 with the small size were dispersed uniformLy on the HMS with the in situ method, after gold nanoparticles were deposited on MnO2/HMS, the enhanced catalytic activity was obtained on Au/MnO2/HMS.
     Inconclusion, active gold catalysts with the reductive oxides as the support were deposited on silica. The composite catalyst Au/MxNy/SiO2 showed an improved activity compared to Au/SiO2, and achieved an enhanced stability compared to Au/MxNy.
引文
[1]Haruta M, Kobayashi T, Sano H, et al. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 oC [J]. Chem. Lett.,1987,16:405-408.
    [2]Cha D Y, Parravano G. Surface reactivity of supported gold:Oxygen transfer between CO and CO2 [J]. J.Catal.,1970,18:200-221.
    [3]王东辉,程代云,郝郑平,等.纳米金催化剂及其应用[M].北京:国防工业出版,2006.
    [4]Hutchings G J, Vapor phase hydrochlorination of acetylene:Correlation of catalytic activity of supported metal chloride catalysts [J]. J. Catal.,1985,96:292-295.
    [5]Haruta M, Yalnada N, Kobayashi T, et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide [J]. J.Catal.,1989,115:301-309.
    [6]Liu ZM, Vannice MA, CO and O2 adsorption on model Au-TiO2 systems [J]. Catal. Lett.,1997, 43(1-2):51-54.
    [7]Wolf A, Schuth F. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts [J]. Appl. Catal., A:Gen.,2002,226:1-13.
    [8]Khoudiakov M, Gupta M C, Deevi S. Au/Fe2O3 nanocatalysts for CO oxidation:A comparative study of deposition-precipitation and coprecipitation techniques [J]. Appl. Catal., A:Gen.,2005,291: 151-161.
    [9]Heidekum A, Harmer M A, HoelderichW F. Addition of carboxylic acids to cyclic olefins catalyzed by strong acidic ion-exchange resins [J]. J. Catal.,1999,181:223-232.
    [10]Porta F, Prati L. Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst:an insight into reaction selectivity [J]. J. Catal.,2004,224:397-403.
    [11]Schubert M M, Hackenberg S, Veen A C, et al. CO Oxidation over Supported Gold Catalysts-"Inert" and "Active" Support Materials and Their Role for the Oxygen Supply during Reaction [J]. J. Catal., 2001,197:113-122.
    [12]Bond G C, Louis C, Thompson D T,徐柏庆等译.黄金的催化作用:现象·原理·应用[M].北京:科学出版社,2008:144.
    [13]Remediakis I N, Lopez N, N(?)rskov J K. CO oxidation on gold nanoparticles:Theoretical studies [J]. Appl. Catal. A:Gen.2005,291:13-20.
    [14]Sanchez A, Abbet S, Heiz U, When gold is not noble:nanoscale gold catalysts [J]. J. Phys. Chem. A, 1999,103:9573-9578.
    [15]Liu H C, Kozlov A I, Kozlova A P, et al. Active oxygen species and mechanism for low temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au(PPh3)(NO3) and
    as-precipitated titanium hydroxide [J]. J. Catal.1999,185:252-264.
    [16]Haruta M, Date M. Advances in the catalysis of Au nanoparticles [J]. Appl. Catal. A:Gen.2001,222: 427-437.
    [17]Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic Properties [J]. Science,1998,281:1647-1650.
    [18]Haruta M. Gold as a novel catalyst in the 21st century:preparation, working mechanism and applications [J]. Gold Bull.,2004,37(1-2):27-37.
    [19]Turner M, Golovko V B, Vaughan O P H, et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters [J]. Nature,2008,454:981-983.
    [20]Chen M S, Goodman D W. The structure of catalytically active gold on titania [J]. Science,2004,306: 252-255.
    [21]Haruta M. When gold is not noble:catalysis by nanoparticles [J]. Chem. Rec.,2003,3:75-87.
    [22]Zanella R, Giorgio S, Shin C H, et al. Characterization and reactivity [J]. J. Catal.,2004,222: 357-367.
    [23]Akita T, Lu P, Ichikawa S, et al. Analytical TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures [J]. Surf. Interface Anal.,2001,31:73-78.
    [24]Vogel W, Ctmningham D A H, Tanaka K, et al. Structural analysis ofAu/Mg(OH)2 during deactivation by Debye function analysis [J]. Catal. Lett.,1996,40:175-181.
    [25]Cunningham D A H, Vogel W, Haruta M. Negative activation energies in CO oxidation over an icosahedral Au/Mg(OH)2 catalyst [J]. Catal. Lett.,1999,63:43-47.
    [26]Weiher N, Bus E, Delannoy L, et al. Structure and oxidation state of gold on different supports under various CO oxidation conditions [J]. J. Catal.,2006,240:100-107.
    [27]Weiher N, Beesley A M, Tsapatsaris N, et al. Activation of oxygen by metallic gold in Au/TiO2 catalysts [J]. J. Am. Chem. Soc.,2007,129:2240-2241.
    [28]Wu Z L, Zhou S G, Zhu H G, et al. DRIFTS-QMS study of room temperature CO oxidation on Au/SiO2 catalyst:nature and role of different Au species [J]. J. Phys. Chem. C,2009,113,3726-3734.
    [29]Hao Z P, An L D, Wang H L, et al. Mechanism of gold aActivation in supported gold catalysts for CO oxidation [J]. React. Kinet. Catal. Lett.,2000,70(1):153-160.
    [30]Epling W S, Hoflund G B, Weaver J F. Surface characterization study of Au/r-Fe2O3 and Au/Co3O4 low-temperature CO oxidation catalysts [J]. J. Phys. Chem.,1996,100,9929-9934.
    [31]Guzman J, Gates B C. Catalysis by supported gold:correlation between catalytic activity for CO oxidation and oxidation states of gold [J]. J. Am. Chem. Soc.,2004,126:2672-2673.
    [32]Hodge N A, Kiely C J, Whyman R, et al. Microstructural comparison of calcined and uncalcined
    gold/iron-oxide catalysts for low-temperature CO oxidation [J]. Catal.Today,2002,72(1-2):133-144.
    [33]Haruta M. Size-and support-dependency in the catalysis of gold [J]. Catal. Today,1997,36:153-166.
    [34]Dekkers M A P, Lippits M J, Nieuwenhuys B E, CO adsorption and oxidation on Au/TiO2 [J]. Catal. Lett.,1998,56:195-204.
    [35]Arrii S, Morfin F, Renouprez A J, et al. Oxidation of CO on gold supported catalysts prepared by laser vaporization:direct evidence of support contribution [J]. J. Am. Chem. Soc.,2004,126:1199-1205.
    [36]Comotti M, Li W C, Spliethoff B, et al. Support effect in high activity gold catalysts for CO oxidation [J]. J. Am. Chem. Soc.,2006,128 (3),917-924.
    [37]Wang C M, Fan K N, Liu Z P, Origin of oxide sensitivity in gold-based catalysts:a first principle study of CO oxidation over Au supported on monoclinic and tetragonal ZrO2 [J]. J. Am. Chem. Soc., 2007,129,2642.
    [38]Gupta N M, Tripathi A K. The role of nanosized gold particles in adsorption and oxidation of carbon monoxide over Au/Fe2O3 catalyst [J]. Gold Bull.,2001,34(4):120-128.
    [39]Haruta M. Catalysis of gold nanoparticles deposited on metal oxides [J]. CATTECH,2002,6(3): 102-115.
    [40]Jia K M, Zhang H L, Li W C. Effect of morphology of the ceria support on the activity of Au/CeO2 catalysts for CO oxidation [J]. Chin. J. Catal.,2008,29(11):1089-1092.
    [41]Wang G H, Li W C, Jia K M, et al. Shape and size controlled α-Fe2O3 nanoparticles as supports for gold-catalysts:Synthesis and influence of support shape and size on catalytic performance [J]. Appl. Catal. A:Gen.,2009,36:42-47.
    [42]Huang X S, Sun H, Wang L C, et al. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation [J]. Appl. Catal. B:Environ.,2009,90: 224-232.
    [43]Denkwitz Y, Makosch M, Geserick J, et al. Influence of the crystalline phase and surface area of the TiO2 support on the CO oxidation activity of mesoporous Au/TiO2 catalysts [J]. Appl. Catal. B: Environ.,2009,91:470-480.
    [44]Zhang X, Wang H, Xu B Q, Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation [J]. J. Phys. Chem. B,2005,109:9678-9683.
    [45]Carrettin S, Concepcion P, Corma A, et al. Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude [J]. Angew. Chem. Int. Ed.,2004,43:2538-2540.
    [46]Venezia A M, Pantaleo G, Longo A, et al. Relationship between Structure and CO oxidation Activity of Ceria-Supported Gold Catalysts [J]. J. Phys. Chem. B,2005,109:2821-2827.
    [47]Tsubota S, Nakamura T, Tanaka K, et al. Effect of calcination temperature on the catalytic activity of
    Au colloids mechanically mixed with TiO2 powder for CO oxidation [J]. Catal. Lett.,1998,56: 131-135.
    [48]Okumura M, Nakamura S, Tsubota S, et al. Chemical vapor deposition of gold on A12O3, SiO2, and TiO2 for the oxidation of CO and of H2 [J]. Catal. Lett.,1998,51:53-58.
    [49]Zhu H G, Liang C D, Yan W F, et al. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique [J]. J. Phys. Chem. B,2006,110:10842-10848.
    [50]Yin H F, Ma Z, Overbury S H, et al. Promotion of Au(en)2C13-derived Au/fumed SiO2 by treatment with KMnO4 [J]. J. Phys. Chem. C,2008,112:8349-8358.
    [51]Liu X Y, Wang A Q, Wang X D, et al. Au-Cu alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation [J]. Chem. Commun.,2008,3187-3189.
    [52]Qian K, Huang W X, Jiang Z Q, et al. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive [J]. J. Catal.,2007,248:137.
    [53]Qian K, Huang W X, Fang J, et al. Low-temperature CO oxidation over Au/ZnO/SiO2 catalysts:Some mechanism insights [J]. J. Catal.,2008,255:269-278.
    [54]Konova P, Naydenov A, Venkov C, et al. Activity and deactivation of Au/TiO2 catalyst in CO oxidation [J]. J. Mole. Catal. A:Chem.,2004,213:235-240.
    [55]Haruta M, Ueda A, Tsubota S, et al. Low-temperature catalytic combustion of methanol and its decomposed derivatives over supported gold catalysts [J]. Catal. Today,1996,29:443-447.
    [56]Hughes M D, Xu Y J, Jenkins P, et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions [J]. Nature,2005,437:1132-1135.
    [57]Grisel R J H, Kooyman P J, Nieuwenhuys B E. Influence of the Preparation of Au/Al2O3 on CH4 oxidation activity [J]. J. Catal.,2000,191:430-437.
    [58]Hayashi T, Tanaka K, Haruta M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen [J]. J.Cata.,1998,178:566-575.
    [59]Corma A, Garcia H. Supported gold nanoparticles as catalysts for organic reactions [J]. Chem. Soc. Rev.,2008,37:2096-2126.
    [60]Abad A, Concepcion P, Corma A, et al. A Collaborative Effect between Gold and a Support Induces the Selective Oxidation of Alcohols [J]. Angew. Chem. Int. Ed.,2005,44:4066-4069.
    [61]Prati L, Spontoni P, Gaiassi A. From renewable to fine chemicals through selective oxidation:the case of glycerol [J]. Top. Catal.,2009,52:288-296.
    [62]Comotti M, Pina C D, Matarrese R, et al. The catalytic activity of "naked" gold particles [J]. Angew. Chem. Int. Ed.,2004,43:5812-5815.
    [63]Biella S, Prati L, Rossi M. Selective oxidation of D-Glucose on gold catalyst [J]. J. Cata.,2002,206:
    242-247.
    [64]Ueda A, Haruta M. Nitric oxide reduction with hydrogen, carbon monoxide, and hydrocarbons over gold Catalysts [J]. Gold Bull.,1999,32(1):3-11.
    [65]Ueda A, Oshima T, Haruta M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides [J]. Appl. Catal. B:Environ.,1997,12: 81-93.
    [66]Seker E, Cavataio J, Gulari E, et al. Nitric oxide reduction by propene over silver/alumina and silver-gold/alumina catalysts:effect of preparation methods [J]. Appl. Catal. A:Gen.,1999,183: 121-134.
    [67]刘晓艳.Au-Ag和Au-Cu合金纳米粒子的制备及催化CO氧化反应研究[D].大连:中国科学院大连化学物理研究所,2009.
    [68]Okumura M, Akita T, Haruta M. Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts [J]. Catal. Today,2002,74:265-269.
    [69]Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts [J]. Science,2003,301:935-938.
    [70]Chang F W, Yu H Y, Roselin L S, et al. Production of hydrogen via partial oxidation of methanol over Au/TiO2 catalysts [J]. Appl. Cata. A:Gen.,2005,290:138-147.
    [71]Nkosi B, Coville N J, Hutchings G J, et al. Hydrochlorination of acetylene using gold catalysts:A study of catalyst deactivation [J]. J. Cata.,1991,128:366-377.
    [72]Shi Y, Yang R Z, Yuet P K. Easy decoration of carbon nanotubes with well dispersed gold nanoparticles and the use of the material as an electrocatalyst [J]. Carbon,2009,47:1146-1151.
    [73]Pillai U R, Deevi S. Highly active gold-ceria catalyst for the room temperature oxidation of carbon monoxide [J]. Appl. Cata. A:Gen.,2006,299:266-273.
    [74]Chen Z, Gao Q M. Enhanced carbon monoxide oxidation activity over gold-ceria nanocomposites [J]. Appl. Catal. B:Environ.2008,84:790-796.
    [75]Kim C H, Thompson L T. Deactivation of Au/CeOx water gas shift catalysts [J]. J. Catal.,2005,230: 66-74.
    [76]Lu A H, Li W C, Schmidt W, et al. Easy synthesis of an ordered mesoporous carbon with a hexagonally packed tubular structure [J]. Carbon,2004,42:2939.
    [77]Wang L C, He L, Liu Y M, et al. Effect of pretreatment atmosphere on CO oxidation over a-Mn2O3 supported gold catalysts [J]. J. Catal.,2009,264:145-153.
    [78]YanW F, Mahurin S M, Chen B, et al. Effect of supporting surface layers on catalytic activities of gold nanoparticles in CO oxidation [J]. J. Phys. Chem. B,2005,109:15489-15496.
    [79]Hernandez J A, Gomez S, Pawelec B, et al. CO oxidation on Au nanoparticles supported on wormhole HMS material:Effect of support modification with CeO2 [J]. Appl. Catal. B:Environ.,2009, 89:128-136.
    [80]Park E D, Lee J S. Effects of pretreatment conditions on CO oxidation over supported Au catalysts [J]. J. Catal.,1999,186:1-11.
    [81]Vindigni F, Manzoli M, Chiorino A, et al. Catalytically active gold sites:nanoparticles, borderline sites, clusters, cations, anions? FTIR spectra analysis of 12CO and of 12CO-13CO isotopic mixtures [J]. Gold Bull.,2009,42:106.
    [82]Costello C K, Guzman J, Yang J H, et al. Activation of Au/δ-Al2O3 catalysts for CO oxidation: characterization by X-ray absorption near edge structure and temperature programmed reduction [J]. J. Phys. Chem. B,2004,108:12529-12536.
    [83]Nyarady S A, SeversR E. Selective catalytic oxidation of organic compounds by nitrogen dioxide [J]. J. Am. Chem. Soc.,1985,107:3726-3727.
    [84]黄行康.二氧化锰的制备、结构表征及电化学性能[D].厦门:厦门大学,2007.
    [85]Wang X, Li Y D. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods [J]. Chem. Eur. J.,2003,9:300-306.
    [86]Tian Z R, Xia G G, Luo J, et al. Effects of water, cations, and structure on energetics of Layer and framework phases, NaxMgyMnO2·nH2O [J]. J. Phys. Chem. B,2000,104:5035-5039.
    [87]Dat M, Okumura M, S Tsubota, et al. Vital role of moisture in the catalytic activity of supported gold nanoparticles [J]. Angew. Chem. Int. Ed.,2004,43:2129-2132.
    [88]Qian K, Sun H X, Huang W X, et al. Restructuring-induced activity of SiO2-supported large Au nanoparticles in low-temperature CO oxidation [J]. Chem. Eur. J.,2008,14:10595-10602.
    [89]Liang S H, Teng F, Bulgan G, et al. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation [J]. J. Phys. Chem. C,2008,112:5307-5315.
    [90]Ramesh K, Chen L W, Chen F X, et al. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts [J]. Catal. Today,2008,131:477-482.
    [91]Lu A H, Li W C, Schmidt W, et al. Low temperature oxidative template removal from SBA-15 using MnO4-solution and carbon replication of the mesoporous silica product [J]. J. Mater. Chem.,2006, 16:3396-3401.
    [92]Dong X P, Shen W H, Zhu Y F, et al. Facile Synthesis of manganese-loaded mesoporous silica materials by direct reaction between KMnO4 and in-situ surfactant template [J]. Adv. Funct. Mater., 2005,15:955-960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700