SPT壁面和等离子体换热的数学模拟和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稳态等离子推进器(Stationary Plasma Thruster简称SPT)是Hall等离子推进器的基本类型,是一种应用于卫星在轨推进的先进电推进技术。由于其高性能,可以完全取代传统的需要大量燃料的化学推进方式。由于SPT工作过程中发出大量的热能,构成了SPT的主要能量损失。所以对于SPT的各项理论实验研究中,热分析是比较重要的内容。本文的主要工作是对SPT的热源进行分析,定量计算壁面热流和内热源生热率。通过仿真计算得出不同工况下的温度和应力分布,并通过实验验证。根据计算和实验结果进行热防护设计。具体的工作如下:
     分析SPT能量转化过程,得出SPT能量损失主要因素。对通道内等离子体与壁面相互作用过程进行分析,得出壁面热流分布规律,并定量计算其大小。
     使用大型有限元分析软件ANSYS进行建模仿真计算,对不同工况(流量,点火冲击,线圈真空预热)进行模拟得出其相应的温度场,应力场和温升曲线。针对SPT热流难以测量的情况,通过APDL语言对ANSYS进行二次开发来反演壁面热流。
     使用红外测温仪和表面热电偶进行联合测温实验,得出通道内和SPT外部的温度值和温升过程。测量结果不仅可以验证仿真结果,还有助于分析实际SPT结构和简化模型之间的区别。此外还测量了不同磁场聚焦程度下内套筒的温度值。
     查阅资料提出SPT材料的耐温极限。以SPT的实际工作环境为出发点,结合目前成熟的航空热控技术提出SPT热控的整体思路和具体措施。并通过计算验证其可行性和效果
Stationary Plasma Thruster (SPT), the basic type of Hall plasma thrusters, is an advanced electric propulsion technique which is used in the on-orbit satellite propulsion. With its excellent performance, the thruster can substitute the traditional chemical rocket that needs much more fuel as its propellant.The heat energy SPT produce when it is running is the main energy loss of SPT.So the thermal analysis is the very important. In this thesis, heat source of the discharge channel is found,the amount of heat flux is also calculated.The distribution of temperature and stress can be get through simulation,which need to be confirmed with experiment.Thermal design of SPT will be made based on the result above. The main embody work in this thesis as follows:
     Analyse the process of energy transformation in order to know the main cause of the loss of energy. Through the analysis of the interaction of plasma and the ceramic wall,we can get the distribution of heat flux.
     Set up the model of SPT using ANSYS,and we can get the distribution of temperature and stress in different situation.Because the flux in the discharge channel is hard to be measured,so that we may use APDL to amend the program in order to get the heat flux.
     Using infrared imaging and surface temperature probe ,we can get the temperature of some node and its process of rise of temperature.This can help validating the result of experiment and finding the difference between model and the real one.We also measure the temperature of ceramic wall in different magnetic field.
     Find out the thermal limit that the material of SPT is able to endure.We make thermal design with thermal control techniques which are already being used in the spaceflight field.In this thesis ,the feasibility and effect of thermal design has been validated.
引文
1 D.P. Schmidt. N.B. Meezan and W.A. Hargus.Jr. et al. Operating Characteristics of a Linear Hall Thruster with an Open Electron-Drift. AIAA 99-2569:1~8
    2 Frank Stanley Gulczinski III Examination of the Structure and Evolution of Ion Energy Properties of a 5kW Class Laboratory Hall Effect Thruster at Various Operational Conditions. A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Aerospace Engineering) in The University of Michigan 1999
    3 V. V. Zhurin, H. R. Kaufman, and R. S. Robinson Physics of the closed drift thrusters Plasma sources Sci. Technol. 8 (1999) R1-R20 printed in UK
    4 A.I. Morozov,The Conceptual Development of Stationary Plasma Thrusters,Plasma Physics Reports, Vol. 29, No. 3, 2003, pp. 235–250.
    5 K. N. Kozubski, V. M. Murashko,Stationary Plasma Thrusters Operate in Space Plasma Physics Reports, Vol. 29, No. 3, 2003, pp. 251–266.
    6 A.I. Morozov,A.I.Bugrova, A.V.Desyatskov et al. ATON-Thruster plasma Accelerator. Plasma Physics Reports. Vol.23. No.7. 1997:587~597.
    7 A.I. Bugrova, A.S. Lipatov, V.K. Kharchevnikov, D.V. Churbanov, A.I. Morozov,“SPT—ATON Tests at Kurchatov Institute Stands,”IEPC-95-067, 24th International Electric Propulsion Conference, Sept. 19-23, 1995, Moscow,Russia.
    8 S Mazouffre P Echegut MDudeck, A calibrated infrared imaging study on the steady state thermal behaviour of Hall effect thrusters,Plasma Sources Sci Technol.16(2007)13-22,2006
    9 David T. Jacobson and David H. Manzella, NASA's 2004 Hall Thruster Program, NASA/TM—2004-213340
    10李玉全,稳态等离子发动机能量转换及损失分析,硕士学位论,2003.7
    11 V. V. Zhurin, H. R. Kaufman, and R. S. Robinson Physics of the closed drift thrusters Plasma sources Sci. Technol. 8 (1999) R1-R20 printed in UK
    12 Nathan B.Meezan Mark A.Cappelli,Ion Beam Dynamics in a Linear Hall Discharge,IEEE TRANSACTIONS ON PLASMA SCIENCE,VOL.30,NO.1,FEBRUARY 2002
    13 A. I. Morozov and V. V. Savelyev Fundamentals of Stationary Plasma Thruster Theory. Reviews of Plasma Physics 21. 2001.
    14 William Anthony Hargus, Jr Investigation of the Plasma Acceleration Mechanism within a Coaxial Hall ThrusterR .March 2001.Report NO.TSD-130
    15 E.Ahedo J.M.Gallardo,Effects of the radial plasma-wall interaction on the Hall thruster discharge,PHYSICS OF PLASMA,VOLUME 10,AUGUST 2003
    16菅井秀郎.等离子体电子工程学,北京:2002
    17宁中喜,稳态等离子发动机内电子与壁面相互作用机理及统计研究,硕士学位论文, 2004.6
    18 A. I. Morozov and V. V. Savel’ev,Structure of Steady-State Debye Layers in a Low-Density Plasma near a Dielectric Surface,Plasma Physics Report.Vol.30.No.4,2004
    19 A.I.Bugrova A.V.Desyatskov A.I.Morozov V.K.Kharchevnikov,Measurments of Negative Ion Flux in Plasma Yhruster Tests in a Vacuum Chamber,Plasma Physics Reports ,Vol.26.No.8.2000.pp.725-719
    20 B.A. Archipov,L.Z.Krochak,N.A.Maslennikov,Thermal Design of the Electric Propulsion System Components,34th Joint Propulsion Conference,AIAA Paper 98-3489,Cleveland,July1998
    21闵桂荣郭舜,航天器热控制,科学出版社,1998
    22杨世铭陶文铨,传热学,高等教育出版社,1998-09
    23张存泉徐烈赵兰屏孙恒,低温真空下的接触热阻温差和理论分析,低温与超导,第29卷第4期,2001.11
    24饶荣水,固体表面之间接触热阻的辨识研究,工业加热2003年第2期,2003
    25唐兴伦,范群波,张翔晖等。ANSYS工程应用教程,北京:中国铁道出版社,2003.3-126
    26刘涛杨凤鹏,精通ANSYS,,清华大学出版社,2002.9
    27耿洪滨,吴宜勇,新编工程材料,黑龙江:哈尔滨工业大学出版社,2000,1-238
    28王超然,胡传,新编国际常用金属材料手册,北京:北京工业大学出版社,1995,1-600
    29金志浩,高积强,乔冠军,工程陶瓷材料,西安:西安交通大学出版社,2000,1-385
    30谭建国,使用ANSYS6.0进行有限元分析,北京:北京大学出版社,2002
    31王宏伟,集成电路芯片封装热应力分析,新余高专学报第11卷第4期,2006.8
    32蒋长顺谢扩军许海峰朱琳,封装中的界面热应力分析,电子与封装,第6卷第8期,2006.8
    33杨冬陈听宽,导热反问题方法在计算瞬态传热过程中的应用,核动力工程,Vol.18.No.6.1997
    34王登刚刘迎曦李守巨,二维稳态导热反问题的正则化解法,吉林大学自然科学学报,2000.4
    35 J.Taler,W.Zima.Solution of inverse heat conduction problems usingcontrol volume approach[J].International journal of heat and mass transfer,1999,42:1123-1140
    36袁艳平程宝义,ANSYS的二次开发与多维稳态导热反问题的数值解,建筑热能通风空调
    37 ANSYS Inc.ANSYS element reference[M].Twelfth edition.Canonsburg:SAS IP Inc.2001,19-26
    38 ANSYS Inc.ANSYS modeling and meshing guide[M]Twelfth edition Canonsburg;SAS IP Inc.2001.25-38
    39博弈创作室,APDL参数化有限元分析技术及其应用实例,中国水利电力出版社,2004.2
    40李国屏,热电偶测温系统的误差分析与处理,无锡商业职业技术学院学报,2004。9
    41 Donald A.Jaworske,Hall Effect Thruster Plume Contamination and Erosion Study,June 2000
    42МорозовА.И.,БугроваА.И.,ДесятсковА.В.,ХарчевниковВ.К.идр. //Стационарьныйплазменныйускоритель-двигатель.Физикаплазмы. 1997.Т.
    23.№7.С. 635. 1997, 23 (7): 635~635
    43张志涌徐彦琴,MARLAB教程-基于6.X版本,北京航空航天大学出版社,2001.4
    44周健黄祖洪,高导热绝缘材料在高压电机上的应用前景和意义,绝缘材料通信,1999
    45黄泽铣,功能材料词典,科学出版社,2002年
    46 A.Warshavsky.et.al.,Israel, Thermal modeling and measurements of an engineering model Hall thruster,2001
    47李丹刘进胡娟张书霞寇自力,聚晶立方氮化硼材料的性能及其应用,工具技术,2006年第40卷No.12
    48吴雪岭,热桥问题的产生与解决办法,吉林建筑设计专家讲学,2006
    49范含林,载人航天热管理技术发展综述,航天器工程第16卷第1期,2007.1
    50奚正平汤慧萍朱纪磊廖际常,热管及热管用多孔材料,稀有金属材料与工程第35卷增刊2,2006.8
    51王平阳谈和平夏新林,空间辐射散热器液滴层的瞬态辐射换热,哈尔滨工业大学学报,第31卷第2期1999.4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700