空间目标天基光学监视跟踪关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间目标监视是获取空间态势信息的主要手段之一,空间监视能力是未来空间优势的基础,是实现控制空间的重要基础能力。天基光学监视由于其所具有的能耗低、精度高以及易于小型化实现等方面的优势而更具有发展潜力。本论文在对天基光学监视特点进行分析的基础上,研究如何利用天基光学观测获取的角度测量信息实现对空间目标的被动监视跟踪,重点对其中的天基光学初轨确定、空间目标天基光学跟踪方法以及摄动条件下的空间目标跟踪方法和双行根数拟合方法等理论问题和关键技术进行了深入分析和研究。论文主要工作如下:
     首先对天基光学监视工作机理、系统特点、观测条件等进行分析,在系统参数和对目标的观测覆盖特点等方面与地基光学监视系统进行对比,明确了天基光学监视信息处理流程,并对相关技术进行归纳分析。最后给出空间目标天基光学监视跟踪相关模型,包括常用坐标系定义与转换、空间目标运动描述以及天基光学测量模型。
     针对未编目目标的初轨确定问题,在对经典Laplace初轨确定方法进行研究的基础上,通过对短弧测量相关性及测量法方程系数矩阵特性的分析,进一步揭示了短弧测量尤其是天基光学观测条件下的初轨计算病态性和误差特性。考虑天基光学测量数据特点,引入短弧测量属性和约束域概念,充分利用短弧测量信息将目标运动状态有效约束至测量斜距和斜距变化率二维平面内。以弧段测量预测残差为目标函数优选剖分节点作为初始条件,提出两种基于约束域Delaunay三角剖分的约束域分析方法,分别采用约束微分修正和三角网细分搜索策略,利用两个短弧段测量实现对新发现目标的初轨确定,并就其在约束域平面内的误差和收敛特性进行探讨。
     针对不同层次的监视跟踪需求,以误差传播理论为基础,采用协方差分析描述函数对空间目标的误差传播进行仿真分析。然后根据天基光学监视数据特点对经典EKF跟踪滤波算法进行研究,推导空间目标运动方程与状态转移函数。针对EKF一阶线性化截断误差影响,在状态预测过程中引入UT变换以达到对非线性系统状态的二阶近似,并采用混合状态空间,分别在直角坐标和修正球坐标空间实现状态预测和滤波更新,以提高跟踪滤波稳定性,提出天基光学混合状态SPKF跟踪方法。并进一步根据天基光学测量特点,提出基于样点状态转换的MSC-SPKF方法,提高跟踪收敛性能,并对上述方法的跟踪精度和收敛性能进行了仿真分析。给出跟踪滤波误差下限和系统可观测度定义,并提出瞬时可观测度概念,结合仿真结果对影响系统可观测度的因素进行分析,并对天地基观测系统可观测度进行了对比。
     在二体问题下的跟踪定轨方法的基础上考虑J 2摄动影响,推导空间目标受摄运动方程与状态转移函数,提出考虑J 2摄动的EKF和相应的SPKF被动跟踪方法。在对空间目标TLE格式和相应SGP4预测模型理论进行理解分析的基础上,对TLE的单点拟合和采样拟合两种方法进行研究和改进;针对空间目标监视应用中运动状态未知的非合作目标,根据两种拟合方法特点,提出面向天基光学监视应用的空间目标TLE拟合方法,利用仅测角数据实现对空间目标尤其是非合作目标TLE的拟合估计。
Space surveillance is one of the main means to acquire the situation information in the space. The capability of the space surveillance is the foundation of the dominance in space and is essential for controlling the space in the future. Space-based optical surveillance has great development potential for its advantages in lower power consuming, higher precision, and easier realizing. Based on the analysis on the characteristics of the space-based optical surveillance, the dissertation focus on how to utilize the solid angles measurements obtained by space-based optical sensor to realizing the passive surveillance and tracking of the space objects. The theories and key technologies are discussed and researched particularly, including the initial orbit determination with space-based optical short arcs, space objects passive tracking methods in space-based optical surveillance, tracking and two-line elements (TLE) fitting methods considering the perturbations. The main contributions of this dissertation are demonstrated as follows:
     Firstly, the working principle, system characteristics and the observation conditions of the space-based optical surveillance system are analyzed. And then compared with the ground-based optical system on the system parameters and targets coverage. The characteristics of the information processing flow and the corresponding information processing technologies are extracted and analyzed. The mathematical models of the space-based optical surveillance are extracted, including the definition and transformation of the coordinates, the kinetic model of the space object, the observation geometry and the solid angles measurements.
     To solve the problem of the initial orbit determination (IOD) of the un-cataloged target (UCT), the classical Laplace method is studied firstly, and the ill-condition of the IOD with short arc is analyzed. By analyzing the relativity of the short arc measurements and the characteristic of the coefficient matrix, the dissertation ulteriorly demonstrates that the ill-condition and the error characteristic of the IOD of the short arc measurements especially under the situation of the space-based optical surveillance. The concepts of the attributes and the admissible region are introduced, and then the kinetic states of the space object could be effectively constrained within 2-dimension plane of the slant-range and its ratio, using the measurement information extracted from the short arc. Two kinds of the IOD methods, constrained differential correction method and the triangulation iterative subdivision searching method, are put forward based on the triangulation in the admissible region, which take the selected optimal nodes by the cost function as the best initial conditions. Then the initial orbit of the new space object could be determined using two short arcs. The characteristics of the error and the convergency in Admissible Region are discussed according to the analysis on the simulation results.
     According to the different requirements for surveillance and tracking missions, the Covariance Analysis Describing Function Technique (CADET) is adopted to analyze the error propagating characteristics of the space object. The classical extended Kalman filter (EKF) is studied, the kinetic equation and the state transformation function are deduced especially for the space-based optical tracking. Aiming at the influence of the truncation error in the first order linearization in EKF, unscented transformation (UT) is introduced in the state prediction in order to get the second order approximation to the nonlinear system. Simultaneously the mixed state space is adopted to enhance the stability of the tracking filter, which performs the state prediction in Cartesian coordinates and filter updating in modified sphere coordinates (MSC) respectively. This method is called mixed state sigma points Kalman filter (SPKF) for space-based optical surveillance. Further more, considering the characteristics of the space-based optical measurements and improvement on filtering convergence, the MSC-SPKF method is put forward which is based on state transformation of the sigma points. The performance on tracking precision and convergency of the methods mentioned above are analyzed with simulation results. The definition of the Cramer-Rao low bound (CRLB) and the system observability degree are introduced, and the instantaneous observability degree is brought forward. The factor which may affect the system observability degree are analyzed with the simulation results, and compared with the ground-based system.
     Considering the influence of the J2 perturbation based on the two-body tracking filter, the kinetic model and state transformation function are deduced. The new EKF and SPKF tracking filters considering J2 perturbation are put forward,. After analyzing on the two-line elements (TLE) and SGP4 orbit prediction model, the single point fitting and sampling fitting method are studied and modified. For the space objects whose kinetic state is unknown, the new TLE fitting methods are put forward for space-based optical surveillance, which can utilize the bearing-only (BO) measurements to realize the estimation and fitting of the TLE, especially for non-cooperative space objects.
引文
[1]周宇昌,熊之凡.空间信息战初探[J].空间电子技术, 2004 (1):7-14.
    [2]马元申,陈文清,张文静.空间战总体概念体系结构分析[J].航天电子对抗, 2003 (5):10-13.
    [3]黄培康.试论空间目标信息获取[J].航天电子对抗, 2005 (2):17-20.
    [4]总装备部航天装备总体研究发展中心.国外空间监视系统现状及发展(一)[J].军事航天参考,2008年第2期
    [5]总装备部航天装备总体研究发展中心.国外空间监视系统现状及发展(二)[J].军事航天参考,2008年第3期
    [6]柳仲贵.空间目标监视系统设计[D].南京大学硕士学位论文,南京, 2001.
    [7] Report on Space Surveillance, Asteroids and Comets, and Space Debris Volume I: Space Surveillance[J]. ADA33308, 1961.
    [8] Space Surveillance, Asteroids and Comets, and Space Debris Volume I: Space Surveillance[J].ADA412693, 1997.
    [9] Petrick B. L. Weighting Scheme for the Space Surveillance Network Automated Tasker[D]. Degree of Master, Air Force Institute of Technology, 1994.
    [10]刘林.人造地球卫星轨道力学[M],北京:高等教育出版社, 1992.
    [11]刘林.航天器轨道理论[M],北京:国防工业出版社, 2000.
    [12]李颖,张占月,方秀花.空间目标监视系统发展现状及展望[J].国际太空,2004 (6):28-31.
    [13]乔凯,王治乐,从明煜.空间目标天基与地基监视系统对比分析[J].光学技术, 2006, 32(5):744-746.
    [14]周一宇,李骏,安玮.天基光学空间目标监视信息处理技术分析[J].光电工程, 2008, 35(4): 43-48.
    [15]杨嘉墀,范秦鸿,张云彤等.航天器轨道动力学与控制(上)[M],北京:宇航出版社, 1995.
    [16] Liu Y. C., Liu L. Orbit Determination Using Satellite-to-Satellite Tracking Data[J]. Chinese Journal of Astronomy and Astrophysics, 2001,1 (3):281-286.
    [17]沈荣骏,赵军.我国航天测控技术的发展趋势与策略[J].宇航学报, 2001,22 (3): 1-5.
    [18]刘利生,吴斌,杨萍.航天器精确定轨与自校准技术[M],北京:国防工业出版社, 2005.
    [19]谭莹.天基空间目标探测技术探讨[J].空间电子技术, 2006 (3):5-9.
    [20]贲德,林幼权.天基监视雷达[J].现代雷达, 2005, 27(4):1-4.
    [21] Mark E. Davis. Future Space Based Radar Technology Needs for Surveillance[C]. AIAA/ICAS International Air and Space Symposium and Exposition. Dayton, Ohio, 2003:1-9.
    [22]李强.单星对卫星目标的被动定轨与跟踪关键技术研究[D].国防科技大学博士学位论文,长沙, 2007.
    [23]王杰娟,于小红.国外天基空间目标监视研究现状与特点分析[J].装备指挥技术学院学报,2006, 17(4):33-37.
    [24] Jayant Sharma, Grant H. Stokes, Curt von Braun, et al. Toward Operational Space-Based Space Surveillance[J]. Lincoln Laboratory Journal, 2002, 13(2): 309-334.
    [25]李强,郭福成,周一宇.单个卫星观测器对卫星仅测角被动跟踪的可观测性研究[J].宇航学报,2007, 28(5): 1323-1330.
    [26]余建慧,苏增立,谭谦.空间目标天基光学观测模式分析[J].量子电子学报, 2006, 23(6) : 772-776.
    [27]张科科,周峰,傅丹鹰.天基空间目标监视可见光遥感器研究[J].航天返回与遥感, 2005, 26(4): 10~14
    [28] C.P.DYJAK, D.C.Harrison. Space-Based Visible Surveillance Experiment[J]. SPIE Surveillance Technologies, 1991, Vol.1479:42~56.
    [29]“Space Technology Guide”, US Department of Defence, FY2005-01
    [30]李玉书.空间目标监视雷达技术探讨[J].飞行器测控学报, 2003, 22(4):62-66.
    [31]赵绍颖,杨文军.用于空间目标监视的相控阵雷达需求分析[J].现代雷达, 2006, 28(1):16-19.
    [32] http://www.stratcom.mil/fact_sheets/fact_spc.html. USSTRATCOM Space Control, 2006.2
    [33]魏晨曦.俄罗斯的空间目标监视、识别、探测与跟踪系统[J].中国航天, 2006 (8):39-41.
    [34] Stokes Grant H,von Braun Curt,Sridharan R,et al. Space-Based Visible Program [J]. Lincoln Laboratory Journal,1998,11(2):205-229.
    [35] D.C.Harrison,J.C.Chow. Space-Based Visible Sensor on MSX Satellite[J]. SPIE,Vol.2217:377-387.
    [36] Jayant Sharma. Space-Based Visible Space Surveillance Performance [J]. Journal of Guidance, Control, and Dynamics,2000,23(1):153-158.
    [37] Jayant Sharma , Andrew Wiseman , George Zollinger. Improving Space Surveillance with Space-Based Visible Sensor[J]. ADA400541, 2001.
    [38] Exploratory Model Analysis of the Space Based Infrared System (SBIRS) LowGlobal Scheduler Problem[J].ADA309027, 1999.
    [39]范晋祥.导弹防御系统的红外系统与技术的发展[J].红外与激光工程, 2006, 35(5):536-540.
    [40] Hoult, C.P., Wright, R.P. Space Surveillance Catalog Growth During SBIRS Low Deployment[C]. The IEEE Aerospace Conference. Los Angeles, CA, 1999, Vol.4:209-224.
    [41]马云.空间目标光电阵实时信息处理技术研究[D].国防科技大学博士学位论文,长沙, 2006.
    [42]文援兰.航天器精密轨道抗差估计理论与应用的研究[D].国防科技大学博士学位论文,长沙, 2001.
    [43]贾沛璋.卡尔曼滤波定轨算法的研究进展[J].飞行器测控学报, 2001,20 (3):45-50.
    [44]吴江飞,杜鹏,王磊等.星载GPS低轨卫星运动学定轨及研究进展[J].天文学进展, 2006, 24 (2):113-128.
    [45]贾沛璋,熊永清.星载GPS卡尔曼滤波定轨算法[J].天文学报, 2005, 46 (4):441-451.
    [46]熊永清,贾沛璋.星载GPS自主定轨的长期稳定性[J].天文学报, 2006, 47 (4):467-474.
    [47]夏南银,张守信,穆鸿飞.航天测控系统[M],北京:国防工业出版社, 2002.
    [48] http://www.sars.gov.cn/chinese/2005/Mar/825588.htm,中国航天测控实现多星同时定轨,定轨精度达厘米量级,中新网, 2005.3.
    [49] http://www.hb.xinhuanet.com/newscenter/2006-12/18/content8808664.htm,中国航天测控技术获突破,定轨能力延伸到月球,人民日报,2006.12.
    [50]刘林,王海红,胡松杰.卫星定轨综述[J].飞行器测控学报, 2005,24(2):28-34.
    [51] James R W. Optimal Orbit Determination. Analytical Graphics. Inc. Technicalreport. 2002.
    [52]韩蕾.低轨空间监视的天地协同轨道确定与误差分析[D].国防科技大学博士学位论文,长沙, 2008.
    [53]刘林.关于初轨计算[J].飞行器测控学报,2004, 23(3): 41~50.
    [54]吴连大,贾沛璋.初轨计算中的病态分析[J].天文学报,1997, 38(3): 288~296.
    [55]吴连大,贾沛璋.论初轨计算的最佳精度及二重解[J].天文学报,1998, 39(4): 337-343.
    [56]汤锡生,陈贻迎,朱民才.载人飞船轨道确定和返回控制[M],北京:国防工业出版社, 2002.
    [57]张玉祥.人造卫星测轨方法[M],北京:国防工业出版社, 2007.
    [58] M.Ju.Sokolaskaya. On the Laplacian Orbit Determination of Asteroids[J]. Planet.Space Sci., 1998, 45(12): 1575-1580.
    [59]贾沛璋,吴连大.初轨计算的参考矢量法[J].天文学报,1997, 38(4): 353~358
    [60]贾沛璋,吴连大.初轨的稳健估计算法[J].天文学报,2000, 41(2): 123-128.
    [61]总装备部军事训练教材编辑工作委员会.航天器轨道确定[M],北京:国防工业出版社, 2003.
    [62]刘福声,罗鹏飞.统计信号处理[M],长沙:国防科技大学出版社, 1999.
    [63] Byron D. Tapley, Bob E. Schutz, George H.Born. Statistical Orbit Determination[M]. Elsevier Academic Press, London, 2004.
    [64]李济生.人造卫星精密轨道确定[M],北京:解放军出版社, 1995.
    [65] Danielson D A, Canright D, Perini D N, et al. The Naval Space Command Automatic Differential Correction Process [C]. Paper AAS 99-366.
    [66] Marshall P. Least Squares Solutions in Statistical Orbit Determination Using Singular Value Decomposition [D]. Naval Postgraduate School, Monterey,California, 1999.
    [67] Kalman R E. New Methods in Wiener Filtering Theory. Proceedings of the First Symposium on Engineering Applications of Random Function Theory andProbability[C]. John Wiley & Sons, New York, 1963.
    [68] Bucy R S, Joseph, Peter D. Filtering for Stochastic Processes with Applicationsto Guidance[M]. Interscience Publishers, John Wiley & Sons, New York, 1968.
    [69]贾沛璋.卡尔曼滤波定轨算法的研究进展[J].飞行器测控学报,2001, 20(3): 45-50.
    [70]李强,郭福成,周一宇.单星对卫星的仅测角被动定轨跟踪方法研究[J].国防科技大学学报,2007,29 (2):70-75.
    [71]李强,郭福成,周一宇.基于角度和频率信息的单星对卫星被动定轨方法研究[J].系统工程与电子技术, 2007, 29 (3):353-356.
    [72] Li Q., Guo F. C., Li J., et al. Research of Satellite-to-Satellite Passive Tracking Using Bearings-Only Measurements in J2000 ECI Frame[C]. 2006 CIE International Conference on Radar. Shanghai, 2006:41-44.
    [73] Matthew A. Hausman. Orbit Determination Techniques of A Conceptual Space Based Observatory System for the Detection and Monitoring of Near-Earth Objects[D]. Degree of Master, University of Colorado, 2004.
    [74] Paul Vergez, Luke Sauter, Scott Dahlke. An Improved Kalman Filter for Satellite Orbit Prediction[J]. The Journal of the Astronautical Science., 2004, 52(3): 1~22.
    [75]薛申芳,金声震,宁书年等.卫星轨道估计中广义卡尔曼滤波算法改进[J].计算机工程与应用, 2004(33):203-206.
    [76]房建成,宁晓琳,田玉龙.航天器自主天文导航原理与方法[M],北京:国防工业出版社, 2005.
    [77]谢恺.天基红外低轨星座对目标的定位与跟踪[D].国防科技大学博士学位论文,长沙, 2006.
    [78]李骏,安玮,周一宇. SBV对GEO短弧初轨确定误差分析[J].航天控制,2008, 26(4): 21-25.
    [79]甘庆波,马静远,陆本魁等.一种基于星间方向观测的初轨计算方法[J].宇航学报, 2007, 28(3): 619-622.
    [80]戎鹏志,陆本魁.一种改进型的拉普拉斯轨道计算方法[J].天文学报, 1991, 32(1): 62-72.
    [81]吴连大,贾沛璋.已知e的先验值的初轨寻优算法[J].紫金山天文台台刊, 1997, 16(3): 175-183.
    [82]贾沛璋,吴连大.已知e或a的先验值的初轨迭代算法[J].紫金山天文台台刊, 1999, 18(1): 18-25.
    [83] A. Milani, G.F. Gronchi, et al. Orbit Determination with Very Short Arcs I. Admissible Regions[J]. Celest. Mech. Dyn. Astron. 90 (2004):59-87
    [84] A. Milani, G.F. Gronchi, et al. Orbit Determination with Very Short Arcs II. Identifications[J]. Icarus, 179(2005):350-374
    [85] A. Milani. The Asteroid Identification Problem I. Recovery of Lost Asteroids[J]. Icarus, 137(1999):269-292.
    [86] A. Milani, Giovanni B, Valsecchi. The Asteroid Identification Problem:II Target Plan Confidence Boundaries[J]. Icarus 140(1999): 408-422
    [87] A. Milani, etc. The Asteroid Identification Problem:III Proposing Identification[J]. Icarus 144(2000): 39-53
    [88] A. Milani, etc. The Asteroid Identification Problem: IV Attributionss[J]. Icarus 151(2001): 150-159
    [89] A. Milani, M.E. Sansaturio, et al. Multiple Solutions for Asteroid Orbits: Computational Procedure and Applications[J]. Astron. Astrophys., 431(2005):729-746.
    [90]刘学军,龚健雅.约束数据域的Delaunay三角剖分与修改算法[J].测绘学报,2001, 30(1): 82-88.
    [91]刘少华,程朋根,史文东.约束Delaunay三角网生成算法研究[J].测绘通报,2004 (3): 4-7.
    [92]邵春丽,胡鹏,黄承义等. Delaunay三角网的算法详述及其应用发展前景[J].测绘科学,2004, 29(6): 68-71.
    [93] J. Sharma. Orbit Determination Applications with the Space-Based Visible Space Surveillance Sensor[C]. 10th AAS/AIAA Space Flight Mechanics Mtg., Clearwater, Fla., 23–26 Jan.2000: 275–286.
    [94] Grant Stokes, Ronald Sayer. Space-Based Space Surveillance: Thoughts on theNext Step[C]. Proceedings of the 1998 Space Control Conference, MIT Lincoln Laboratory, Lexington, Massachusetts, 1998:119-127.
    [95] Manfredi Porfilio, Fabrizio Piergentili, and Filippo Graziani. Two-site orbit determination: The 2003 GEO observation campaign from Collepardo and Mallorca[J]. Advances in Space Research ,2006, 38(9):2084-2092
    [96]杨争斌.对机动目标的单站无源定位跟踪关键技术研究[D].国防科技大学博士学位论文,长沙, 2007.
    [97] Aidala V. J. Kalman Filter Behavior in Bearings-Only Tracking Applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979,15 (1):29-39.
    [98] Steven M. K. Fundamentals of Statistical Signal Processing Volume I: Estimation Theory[M],Pearson Education, Inc, 1993.
    [99] Sanjeev M., et al. A Tutorial on Particle Filter for Online Nonlinear Non-Gaussian Bayesian Tracking[J].IEEE Transactions on Signal Processing, 2002,50 (2):174-188.
    [100] Fearnhead P. Sequential Monte Carlo Methods in Filter Theory[D]. Oxford Univ, Oxford, 1998.
    [101]万丽,刘焰春,皮亦鸣. EKF、UKF、PF目标跟踪性能的比较[J].雷达科学与技术,2007, 5(1): 13-16.
    [102] Sitz A., Schwarz U., Kurths J. The Unsented Kalman Filter, A Powerful Tool for Data Analysis[J].International Journal of Bifurcation and Chaos, 2004,14 (6):2093-2105.
    [103] Julier S., Uhlmann J. K. Unscented Filtering and Nonlinear Estimation[J]. Proceedings of the IEEE, 2004,92 (3):401-422.
    [104] Julier S., Uhlmann J. K. The Scaled Unscented Transformation[C].Proceedings of American Control Conference. 2002:4555–4559.
    [105] Julier S., Uhlmann J. K. A New Extension of the Kalman Filter to Nonlinear Systems[C].Proceedings of 11th International Symposium Aerospace/Defense Sensing, Simulation and Controls. 1997:182-193.
    [106]潘泉,杨峰,叶亮等.一类非线性滤波器-UKF综述[J].控制与决策,2005, 20(5): 481-489.
    [107] Aidala V. J., Hammel S. E. Utilization of Modified Polar Coordinates for Bearings-Only Tracking[J]. IEEE Transactions on Automatic Control, 1983,28 (3):283-294.
    [108]龚享铱.一种基于极坐标的无源定位与跟踪稳定算法研究[J].信号处理,2005, 21(4): 402-404.
    [109] Allen R. R., Blackman S. S. Implementation of An Angle-Only Tracking Filter[J].Signal and Data Processing of Small Targets of SPIE, 1991,vol.1481 292-303.
    [110] Grossman W. Bearing-Only Tracking: A Hybrid Coordinates System Approach [A]. Proceeding of the 30th Conference on Decision and Control, England, December 1991:2032-2037.
    [111]周丰.纯方位目标跟踪极坐标模型的状态空间变换方法[J].火控雷达技术,2004, 33(2): 32-35.
    [112]徐娇杰,陈红林,张耀中.混合坐标系下的一种纯角度跟踪算法[J].电光与控制,2005, 12(2): 34-36.
    [113]高磊,徐德民,崔海英等.混合坐标系下的卡尔曼滤波应用于水下被动目标跟踪[J].西北工业大学学报,2001, 19(2): 254-257.
    [114]王博,徐德民.混合坐标系下基于U变换的水下机动目标被动跟踪[J].系统过程理论与实践,2007 (3): 145-149.
    [115]傅建国,王孝通,金良安等. Sigma点卡尔曼滤波及其应用[J].系统工程与电子技术,2005, 27(1): 141-144.
    [116] X. Rong Li, Vesselin P. Joilkov A Survey of Maneuvering Target Tracking Part II: Ballistic Target Models[C]. Proceedings of the 2001 SPIE Conference on Signal and Data Processing of Small Target. 2001:559-581.
    [117]张瑜,房建成.基于Unscented卡尔曼滤波器的卫星自主天文导航研究[J].宇航学报, 2003,24 (6):646-650.
    [118]张云飞.基于数据库的空间目标分类方法及统计分析研究[D].解放军信息工程大学硕士学位论文,郑州,2006
    [119]韩蕾,陈磊,周伯昭. SDP4/SGP4模型用于空间碎片轨道预测的精度分析[J].中国空间科学技术,2004(8): 65-71.
    [120] Hoots F. R., Roehrich R. L. Models for Propagation of NORAD Element Sets-Project Spacetrack Report No.3. Aerospace Defense Command, United States Air Force, Dec. 1980.
    [121] David A. Vallado, Paul Crawford, and Richard Hujsak. Revisiting Spacetrack Report #3. AIAA, 2006-6753.
    [122] David A. Vallado. Fundamentals of Astrodynamics and Applications (3rd Edition)[M]. Microcosm Press, 2007.
    [123] Byoung-Sun Lee. NORAD TLE conversion from osculating orbital element[J]. J Astron Space Sci, 2002, 19 (4): 395~402.
    [124] Dwight E Andersen. Computing NORAD Mean Orbital Elements From A State Vector [D]. Air Force Institute of Technology, Wright-Patterson Air ForceBase, Ohio, 1994.
    [125] Oliver Montenbruck, Eberhard Gill. Real-time estimation of SGP4 orbital elements from GPS navigation data[C]. International Symposium Space Flight Dynamics[A], Biarritz, France, 2000-6-6~30
    [126] Osweiler V P. Covariance Estimation and Autocorrelation of NORAD Two-Line Element Sets [D]. Air Force Institute of Technology, Wright-Patterson Air ForceBase, Ohio, 2006.
    [127]史纪鑫,曲广吉.用SGP4模型和卡尔曼滤波实现空间碎片轨道预报[J].航天器环境工程,2005, 22(5): 273-277.
    [128]刘红新. CHAMP卫星定轨方法研究[D].同济大学博士学位论文,上海, 2006.
    [129]赵砚,易东云,潘晓刚等.基于天基光学观测的空间目标可见性分析[J].飞行器测控学报,2007,26(3):5-12
    [130]桑思武,许允楠,刘艳华,叶小宝.空间碎片天基光电光学可见条件与预报[J].天文研究与技术(国家天文台台刊),2006, 3(3): 271-274.
    [131]彭华峰,陈鲸,张彬.天基光电望远镜对空间目标成像的模拟[J].光电工程,2005,32(10):14-17.
    [132]全伟,房建成.高精度星图模拟及有效性验证新方法[J].光电工程,2005, 32(7): 22-26.
    [133]缪永伟,王章野,王长波,刘世光,彭群生.星空背景的建模与仿真[J].系统仿真学报,2005, 17(2): 267-269.
    [134]李骏,高源,安玮,周一宇.天基光学空间目标监视图像仿真研究[J].系统仿真学报,2008, 20(15): 3951-3954.
    [135]许世文,龙夫年等.实时星场模拟器中的坐标变换[J].哈尔滨工业大学学报,1998, 30(5):118-120.
    [136]蓝朝桢.近地空间环境三维建模与可视化[D].解放军信息工程大学硕士学位论文,2005.4
    [137]乐贵明,叶宗海.低高度内辐射带高能质子空间分布位形的研究[J].空间科学学报, 2003, 23(4): 278-285.
    [138]吴振森,窦玉红.空间目标的可见光散射与红外辐射[J].应用光学,2004,25(1):1-4.
    [139]李道勇,王云强,宫彦军,吴振森.空间目标的光散射特性研究[J].烟台大学学报(自然科学与工程版),2004, 17(3): 183-187.
    [140]李淑军,高晓东,朱耆祥.废弃火箭体的光度变化分析[J].飞行器测控学报,2004, 23(2): 51-57.
    [141]张世杰,曹喜滨.卫星进/出地影位置和时间的计算方法[J].上海航天,2001(6):19-22.
    [142]王兆魁,张育林.面向空间目标监视的星图模拟器设计与实现[J].系统仿真学报,2006, 18(5): 1195-1198.
    [143] Deepa Kundur and Dimitrios Hatzinak[J].Blind Image Deconvolution.IEEESingal Processing Magazine, 1996,13(3):43-64.
    [144] Christopher T.F. Kuehl. Combined Earth/Star Sensor for Attitude and Orbit Determination of Geostationary Satellites[D]. Degree of Doctor, University of Stuttgart, 2005.
    [145]孙仲康,周一宇,何黎星.单多基地有源无源定位技术[M],北京:国防工业出版社,1996.
    [146]叶其孝,沈永欢.实用数学手册(第2版)[M],北京:科学出版社, 2006.
    [147]刘林,张强,廖新浩.人卫精密定轨中的算法问题[J].中国科学(A辑),1998, 28(9): 848-856.
    [148]王宏.空间目标动态信息库的设计与实现[D].解放军信息工程大学硕士学位论文,郑州,2004
    [149]张涛.地球同步轨道预警卫星系统中的弹道估计技术研究[D].国防科技大学博士学位论文,长沙, 2006.
    [150]杨颖,王琦. STK在计算机仿真中的应用[M],北京:国防工业出版社, 2005.
    [151]马志昊,陈磊,周伯昭.空间碎片环境与碰撞预警仿真系统设计[J].空间科学学报,2005,25(4): 298-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700