转基因番茄的可见/近红外光谱快速无损检测方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物技术的快速发展,特别是基因工程技术的发展使得人类可以将外源基因插到受体物种的基因组中,从而使物种产生抗逆性、抗虫性及其它新的特性,这影响着人类生活的方方面面,包括农业、家禽业、工业和药业。全球转基因作物的种植面积和种类每年都在持续增长,但此项技术对生态环境、人类健康、伦理道德等可能带来的问题尚不明确,先需进行转基因生物检测和鉴别的相关技术研究。目前转基因生物的检测方法主要有DNA检测和蛋白质检测两大类,但这些方法存在较多不足,如操作复杂,费用高,且蛋白质检测方法只适合检测未加工的产品等。近红外光谱信息来源于有机分子中的含氢基团(C-H、O-H和N-H)振动的合频与各级倍频的吸收,应用其进行检测具有快速、无需复杂的样品预处理、低价和易实现在线等优点。
     转基因番茄是第一个获准进入市场的转基因农产品。本研究综合利用光谱分析技术、分子生物学、植物生理学、光学和化学计量学等诸多领域的知识,以转基因番茄(包括叶、果实、果汁和种子)及其亲本为研究对象,进行基于可见/近红外光谱技术的转基因番茄快速无损鉴别和生理特性指标(包括叶绿素和乙烯合成量)无损检测的研究。用不同的模式识别方法(判别分析(Discriminant analysis, DA).判别偏最小二乘法(Discriminant partial least squares, DPLS)、簇类的独立软模式分类法(Soft independent modeling of class analogy, SIMCA前馈反向传播神经网络(Back propagation neural network, BPNN)、径向基函数神经网络(Radial basis function neural network, RBFNN)和最小二乘支持向量机(Least sqares support vector machine, LS-SVM))进行转基因番茄与其亲本的定性分析,同时对叶片中叶绿素含量和番茄果实的乙烯合成量等生理特性指标与可见/近红外光谱的相关性进行研究,并利用主成分回归(Principal components regression, PCR)、偏最小二乘回归(Partial least squares regression, PLSR)和多元线性回归(Multi linear regression, MLR)建立定量模型。本文的研究目的在于证明利用可见/近红外光谱分析技术进行转基因番茄快速无损鉴别和叶片中叶绿素含量及番茄乙烯合成量等生理特性指标定量检测的可行性,建立基于可见/近红外光谱分析技术的转基因番茄快速无损检测方法体系,为研发具有自主知识产权的转基因番茄高通量快速检测仪器提供方法依据。
     主要研究内容、结果和结论如下:
     (1)分析了光谱仪分辨率和扫描次数对近红外光谱和建模结果的影响。结果表明:分辨率为4 cm~(-1)和8 cm~(-1)时所建立的番茄果实鉴别模型的识别率最高,为78.89%;随着扫描次数的增加,光谱越来越光滑,均方根噪声逐渐变小,方差值也逐渐变小模型的识别率随着扫描次数的增加而提高,扫描次数为128次时,模型的识别率最高;在a=0.05水平上分辨率大小和扫描次数对番茄果实近红外光谱噪声的影响显著,对吸光度的影响不显著。
     (2)分析了转基因番茄叶、果实、果汁和种子与其亲本的光谱差异。结果表明:用配有InGaAs检测器的Nexus智能型FT-NIR光谱仪所采集的转基因番茄叶与其亲本的漫反射光谱图上显示转基因番茄叶的吸光度值在1380 nm前小于亲本的吸光度值,但是在1380 nm后趋势有所改变;用配有Si检测器的Nexus智能型FT-NIR光谱仪所采集的转基因番茄叶与其亲本的可见/近红外漫反射光谱显示转基因番茄叶的吸光度值小于亲本的吸光度值;用微型光纤光谱仪USB4000所采集的番茄叶透射光谱图显示转基因番茄叶的透过率大于亲本的透过率;2)同一成熟期成熟番茄的近红外漫反射光谱图显示转基因番茄的吸光度值较其亲本高;不同成熟期番茄的可见/近红外漫反射光谱图显示转基因红番茄的吸光度值大于其亲本的吸光度值,转基因青番茄的光谱与其亲本在578 nm处交叉,在578 nm前,转基因青番茄的吸光度值大于其亲本的吸光度值,在578 nm后,转基因青番茄的吸光度值小于其亲本的吸光度值;3)转基因番茄汁与其亲本的近红外透射光谱极为相似,放大后能观察到微小差异;4)转基因番茄种子与其亲本的近红外原始光谱显示光谱之间有微小差异。结果表明,无论是转基因番茄叶、番茄果实、番茄汁还是番茄种子,它们的光谱与亲本的光谱间确实存在差异。
     (3)比较了不同仪器和检测方式对鉴别结果的影响。结果表明:1)用微型光纤光谱仪USB4000采集的漫反射光谱建立的转基因番茄叶与其亲本的鉴别模型的判别正确率最高,最适合用于转基因番茄叶与其亲本的鉴别。2)对于同一成熟期的转基因番茄与其亲本的鉴别,使用USB4000采集的漫反射光谱建立的模型对样本鉴别的正确率最高;对于不同成熟期的转基因番茄与其亲本的鉴别,同样是用USB4000采集的光谱建立的模型的鉴别正确率要高于FT-NIR光谱仪采集的光谱建立的模型。
     (4)比较了不同模式识别方法对转基因番茄叶、番茄果实、番茄汁和番茄种子定性分析结果的影响。结果表明:1)对转基因番茄叶与其亲本的判别结果显示,判别分析和判别偏最小二乘结合微分或标准规-化处理都可以实现对所有样本的正确分类。2)同一成熟期转基因番茄与其亲本的判别结果显示,判别分析建立的模型的鉴别效果最好,总体判别正确率为94%,前馈反向传播神经网络和最小二乘支持向量机模型的总体判别效果相同。对于不同成熟期的转基因番茄与其亲本的鉴别结果显示,SIMCA法所建模型的鉴别总体效果最好,为86.08%。3)对转基因番茄汁与其亲本的判别结果显示,结合二阶微分光谱,径向基函数神经网络和最小二乘支持向量机建立的模型预测精度最高,识别率均达到了100%。4)对转基因番茄种子与其亲本的鉴别结果显示,在全波段,判别分析结合25点平滑处理光谱所建的转基因番茄种子与其亲本鉴别模型的性能最优,对样本鉴别的总体正确率达到了95.81%。结果表明,利用可见/近红外光谱,可实现对转基因番茄与其亲本的鉴别。
     (5)用连续投影算法提取光谱特征波长后重新建立了转基因番茄与其亲本的鉴别模型。结果表明:随着波长数的增加,模型的判别正确率逐渐增加,但是运算所需的时间也逐渐增加。重建模型的结果显示:与模型重建前相比,对于同一成熟期转基因番茄与其亲本的鉴别,判别偏最小二乘法的重构模型的性能提高了,鉴别速度提高了45倍。对于不同成熟期转基因番茄与其亲本的鉴别,SIMCA方法建立的模型最优,总体判别正确率为84.36%。结果表明,利用连续投影算法提取光谱的特征波长后重新建立转基因番茄与其亲本的鉴别模型,可以提高鉴别速度。
     (6)对番茄叶叶绿素含量和番茄果实的乙烯合成量进行了定量分析。在剔除光谱异常样本和浓度异常样本的基础上,用PLSR, PCR和MLR方法建立了模型,比较了不同光谱预处理方法对模型的影响;对于番茄果实的乙烯合成量,还研究了不同建模波段对模型的影响。结果表明:1)番茄叶在全波段(670~1100 nm)的原始光谱所建的叶绿素含量的PLSR模型性能最优,相关系数r、校正均方根误差(Root mean square error of calibration, RMSEC)、预测均方根误差(Root mean square error of prediction, RMSEP)和交叉验证均方根误差(Root mean square error of cross validation, RMSECV)分别为0.961、1.50、2.25和3.00。2)光谱经多元散射校正后在全波段范围内所建的PLSR模型最适合于乙烯合成量的定量分析,模型的相关系数r达到了0.904。结果表明,利用可见/近红外光谱结合化学计量学技术,可实现对番茄叶的叶绿素含量和番茄果实的乙烯合成量的定量分析。
The tremendous recent progress in biotechnology and particularly in genetic engineering techniques has enabled the introduction of exogenous sequences which confer new characteristics, such as herbicide tolerance, resistance to insects and solutions to other problems associated with commercial agriculture. It made revolutionary impacts on every aspects of human activities include agriculture, livestock, industry and medicine. The scope and number of genetically modified (GM) crops planted each year continues to grow. However, the potential problems of GM organisms (GMOs) for environmental, ethical and religious impact are unknown. It is necessary to research on the detection of GMOs and detection technique, which is one of the most important consumer concerns regarding food safety and quality. There are several commonly used GMOs testing protocols mainly including nucleic acid-based and protein-based detection methods. Some of the drawbacks of those methods include the use of multiple procedres in the protocol and high costs. Protein-based methods are only suited to the inspection of raw materials. Near infrared (NIR) spectroscopy is sensitive to major organic compounds (e.g. vibration overtones of C-H, O-H and N-H). It has increasingly been adopted due to its advantages:rapidity of analysis, no need for complex sample preparation or processing, low cost, and its suitability for on-line process monitoring and quality control.
     Transgenic tomato is the first transgenic produce that received administrative approval. Utilizing the knowledge of different fields, such as spectral analysis, molecular biology, optics and chemometrics, etc, combining independent innovation, taking transgneic tomatoes and their parents as object investigated, this research focuses on non-invasive discriminant methods and physiological property (chlorophyll content and ethylene content) detection based on visible/near infrared (Vis/NIR) spectroscopy. In this dissertation, classifications of transgenic tomato leaf, fruit, juice, seed and their parent were studied using Vis/NIR spectroscopy technique and pattern recognition methods. The relationship between physiological property indexes and Vis/NIR spectra was analyzed. Quantitative models were established based on Vis/NIR spectra for chlorophyll and ethylene content determination. This study is to prove the feasibility of transgenic product discrimination and build a rapid and non-invasive detection method to quantify chlorophyll and ethylene content based on spectroscopy technology. It will provide basis to research and develop high throughput and rapid detection equipment to realize the rapid discrimination of transgenic tomato.
     The main results and conclusions were listed as follows:
     (1) The influence of spectral acquisition parameters on spectra and modeling results were analyzed. Taking an FT-NIR spectrometer as an example, the influence of resolution and scan number on tomato fruit spectra and modeling results were analyzed. The results indicated that:The discriminant rate was relatively high when the resolution was 4 cm~(-1) and 8 cm~(-1), the value was 78.89%. With the increasing of scan number, the spectra was smoother and the root mean square noise (RMSN) and variation value decreased. The discriminant rate increased with scan number. The difference of spectral absorbance at different resolutions and scan number was not distinct (a= 0.05). For RMSN, the difference was distinct (a= 0.05).
     (2) The difference of spectra acquired from transgenic tomato leaf, fruit, juice, seed and their parent was analyzed. The results indicate:1) The Vis/NIR diffuse reflectance spectra of transgenic leaves absorb less light than their parents below 1380 nm. The trend altered above 1380 nm. The transmittance of transgenic leaf spectra is higher than their parents.2) The NIR diffuse reflectance spectra of transgenic red tomato fruits at the same ripeness stage absorb more light than their parents. The Vis/NIR diffuse reflectance spectra of transgenic red tomato fruits absorb more light than their parents. There is a cross for transgenic green tomato fruits and their parents at 578 nm. The spectra of transgenic green tomato fruits absorb more light than their parents before 578 nm. The trend alters below 578 nm.3) The original transmission spectra of transgenic tomato juice and its parent are similar. The slight difference could be found by magnification.4) Slight difference between transgenic tomato seeds and their parents diffuse reflectance spectra exists. The results indicate that the difference between the spectra of transgenic tomato leaf, fruit, juice and seed and the spectra of their parents does exist.
     (3) The influence of different spectrometers (or detectors) and detection modes on discriminant accuracy was compared.1) For transgenic tomato leaves and their parents, discriminant accuracy of models based on diffuse reflectance spectra using a miniature optic fiber spectrometer USB4000 were 100%, which was more suitable for transgenic tomato leaves and their parents discriminant.2) For transgenic tomatoes and their parents at the same ripeness stage, discriminant accuracy of models using USB4000 was highest. For tomatoes at the different ripeness stages, discriminant accuracy of models based on diffuse reflectance spectra using USB4000 was much better than the accuracy of models using an FT-NIR spectrometer.
     (4) The influence of different pattern recognition methods, including discriminant analysis (DA), soft independent modeling of class analogy (SIMCA), discriminant partial least squares (DPLS), back propagation neural networks (BPNN), radial basis function neural networks (RBFNN) and least squares support vector machines (LS-SVM) was compared.1) For discriminating transgenic tomato leaves and their parents, the correct classifications for transgenic and non-transgenic tomato leaves were both 100% using DA and DPLS after derivative or standard normal variate spectral pretreatment.2) For discriminating transgenic tomato fruits and their parents at the same ripeness stage, discriminant accuracy of DA models was highest. The rate was 94%. The discriminant results of BPNN and LS-SVM models were same. For tomatoes at the different ripeness stages, discriminant accuracy of SIMCA models was highest. The value was 86.08%.3) For juice, RBFNN and LS-SVM models using second derivative spectral data produced the highest level of classification rate. An overall classification accuracy of 100% was reached, both for transgenic and non-transgenic tomato juice, which demonstrated the perfect discriminatory power to differentiate transgenic and non-transgenic samples.4) For seed, DA model after 25 points smoothing using diffuse reflectance spectra in 800-2500 nm turned out highest results. An overall classification accuracy of 95.81% was reached. It can be concluded that transgenic tomatoes (leaf, fruit, juice and seed) can be classified from their parents based on Vis/NIR spectroscopy technique.
     (5) Successive projections algorithm (SPA) was used to extract characteristic wavelength. Discriminant accuracy increased with the number of wavelengths for transgenic and non-transgenic tomatoes. But the time cost for modeling also increased. Models were rebuilt using several characteristic wavelengths. The results indicate that for DPLS rebuilt model, when transgenic tomatoes and their parents at the same ripeness stage were discriminated, discriminant accuracy of calibration and validation increased. The performance of other methods was reverse. Models were rebuilt using 7 characteristic wavelengths when transgenic and non-transgenic tomatoes at different ripeness stages were discriminated. The results indicates that discriminant accuracy of linear and non-linear pattern recognition methods decreased. The discriminant accuracy of SIMCA models was highest. The value was 84.36%. The results indicate that transgenic tomatoes and their parents discriminant models can be built only with characteristic wavelengths by SPA to shorten classification time.
     (6) Quantitative models were established based on Vis/NIR spectra for determination of chlorophyll content in tomato leaves and ethylene content in tomato fruits. Based on the removal of spectra and concentration outliers, models by different calibration methods of partial least squares regression (PLSR), principal components regression (PCR) and multi linear regression (MLR) were built. The influence of different spectral pretreatments on model performance was analyzed. The influence of different wave bands on ethylene content deternimation models was also researched. I) The performance of PLSR chlorophyll content model established in 670~1100 nm with original spectra was much better, the correlation coefficients (r) was 0.961. Root mean square error of calibration (RMSEC), root mean square standard error of prediction (RMSEP) and root mean square error of cross validation were 1.50,2.25 and 3.00, respectively.2) After multiplictive scatter correction pretreatment, the performance of PLSR ethylene content models in full spectral region was much better, correlation coefficients of PLSR model was 0.904. It could be concluded that chlorophyll content in tomato leaves and ethylene content in tomato fruits can be determinated based on Vis/NIR spectra.
引文
1. Morin, X.K. Genetically modified food from crops:progress, pawns, and possibilities. Analytical and Bioanalytical Chemistry.2008,392:333-340.
    2. Gachet, E., Martin, G.G., Vigneau, F., Meyer, G Detection of genetically modified organisms (GMOs) by PCR:a brief review of methodologies. Trends in Food Science and Technology.1999,9:380-388.
    3.朱宏飞,王海英,刘莹.转基因食品的利弊分析.中国科技信息.2007,1:256-258.
    4.关海宁,徐桂花.转基因食品安全评价及展望.食品研究与开发.2006,27(4):172-175.
    5.王玉秋,钱茜.我国转基因作物的发展现状及安全管理.国土资源科技管理.2003,20(6):12-16.
    6.徐惠喜.全球转基因作物种植快速发展究.北京商报.[2008-3-11].http://news.cnfol.com/080311/101,1278,3890472,00.shtml.
    7.刘治先,乔峰,张铭堂,丁照华,杨菲,刘朋.世界转基因农作物的应用现状和发展趋势.山东农业科学.2008,7:113-115.
    8.全球转基因农作物的种植面积持续扩展.中国品牌农业网.[2009-2-18].http://news.zgppny.com/info58098.shtml.
    9.钱海丰,胡宝兰.转基因作物发展现状与生态安全性.现代化农业.2001,10:14-15.
    10.连丽君,王雷,张可炜.转基因食品安全性的争论与事实.食品与药品.2006.8(11A):12-16.
    11.冯华.用好“转基因”这把双刃剑.2006.http://www.cas.ac.cn/html/Dir/2005/06/23/0467.htm.
    12.张文银,安永平,王彩芬,马静.主要转基因作物研究现状及其产业化进展生物技术通报.2008.5:1-4.
    13.邓启明,王景辉,张秋芳,吴兴南.转基因生物及其产品的发展现状与安全管理.中国食物与营养.2004,11:13-16.
    14.转基因重大专项专题研究.http://www.ne wlife, org. cn/newsview.php?table=news&id=7634.
    15. Castle, W.E. Mendel's law of heredity. Science.1903,18(456):396-406.
    16.段武德.对农业转基因生物安全性问题争论的探究.农业环境与发展.2007,6:7-11.
    17.刘经纬.植物基因工程的风险评估与安全管理研究[博士论文].黑龙江:东北林业大学.2004.
    18. Losey, J.E., Rayor, L.S., Carter, M.E. Transgenic pollen harms monarch larvae. Nature.1999,399:214.
    19.金天,田阔川.《转基因生物安全法》加快立法步伐,凸现知情权.北京:新华通讯社,经济参考报.[2005-5-30]. http://jjckb.xinhuanet.com/www/Article/2005530101212-1.shtml.
    20.蒋建平.吃转基因玉米老鼠肾脏变小,可能威胁人类健康.北京:新华通讯社.[2005-5-24].http://news.xinhuanet.com/health/2005-05/24/content_2993667.htm
    21.韩梅.农业转基因生物安全管理现状及对策.江苏农业科学.2007,6:282-284.
    22.程国强.转基因农产品贸易与政策研究[硕士论文].北京:中国农业科学院.2002.
    23.王娜.国际法对转基因产品国际贸易的管制[博士论文].北京:中国政法大学.2005.
    24.许晶.转基因技术在美国和欧洲的认知及传播.前沿.2006,2:204-208.
    25.于文轩,王灿发.国外生物安全立法及对中国立法的思考.科技与法律.2005,4:98-104.
    26. Anklam, E., Gadani, F., Heinze, P., Pijnenburg, H., Van Den Eede, G.Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products. European Food Research and Technology.2002,214(1):3-26.
    27.杨云霞,蒋士强,赵明,董志强.转基因食品的检测.现代科学仪器.2005,1:23-26.
    28.袁铁琰.转基因大豆及其加工产品的检测技术研究[硕士论文].上海:上海师范大学.2004.
    29. Gall, G.L., Dupont, M.S., Mellon, F.A., Davis, A.L., Collins, G.J., Verhoeyen, M.E., Colquhoun, I.J. Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. Journal of Agricultural and Food Chemistry.2003,51(9):2438-2446.
    30. Joung, J.Y., Kasthuri, GM., Park, J.Y., Kang. W.J., Kim. H.S., Yoon, B.S., Joung, H., Jeon. J.H. An overexpression of chalcone reductase of pueraria montana var. lobata alters biosynthesis of anthocyanin and 5'-deoxyflavonoids in transgenic tobacco. Biochemical and Biophysical Research Communications.2003,303(1):326-331.
    31. Wu, K., Tian. L., Hollingworth, J., Brown, D., Miki, B. Functional analysis of tomato Pti4 gene in Arabidopsis. Plant Physiol.2002,128:30-37.
    32.高秀丽.基因芯片检测转基因植物方法学的建立[硕士论文].北京:中国科学院.2004.
    33.潘云娣,杨文鸽.现代生物技术在食品检测中的应用.生物技术通报.2004,6:26-29.
    34. Meyer, R. Detection of genetically engineered plants by polymerase chain reaction (PCR) using the FLAVR SAVR tomato as an example. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung.1995,201 (6):583-586.
    35. Hurst, C.D., Knight, A., Bruce, I. PCR detection of genetically modified soya and maize in foodstuffs. Molecular Breeding.1999,5(6):579-586.
    36. Vollenhofer, S., Burg, K., Schmidt, J., Kroach, H. Genetically modified organisms in food screening and specific detection by polymerase chain reaction. Journal of Agricultural and Food Chemistry.1999,47:5038-5043.
    37. Meyer, R. Development and application of DNA analytical methods of the detection of GMOs in food. Food Control.1999,10:391-399.
    38.吕山花,邱丽娟.转基因植物食品检测技术研究进展.生物技术通报.2002,4:34-38.
    39.孟陆丽,程谦讳,张谦益.转基因产品检测方法及应用.粮食与油脂.2006,10:10-13.
    40. Brett, G.M., Chambers, S.J., Huang, L., Morgan, M.R.A. Design and development of immunoassays for detection of proteins. Food Control.1999,10(6):401-406.
    41. Stave, J.W. Detection of new on modified proteins in novel foods derived from GMO-future needs. Food Control. 1999,10(6):367-374.
    42. Duijn, G., Biert, R., Bleeker-Marcelis, H., Boeijen, I., Adan, A.J., Jhakrie, S., Hessling, M. Detection of genetically modified organisms in foods by protein-and DNA-based techiniques:Bridging the methods. Journal of AOAC International.2002,85(3):787-791.
    43. Lipton, C.R., Dautlick, J.X., Grothaus, G.D., Hunst, P.L., Magin, K.M., Mihaliak, C.A., Rubio, F.M., Stave, J.W. Guidelines for the validation and use of immunoassays for determination of introduced proteins in biotechnology enhanced crops and derived food ingredients. Food and Agricultural Immunology.2000,12(2):153-164.
    44. Hiibner, P., Waiblinger, H., Pietsch, K., Brodmann, P. Validation of PCR methods for quantitation of genetically modified plants in food. Journal of AOAC International.2001,84(6):1855-1864.
    45. Stave, J.W. Proteim Immunoassay methods for detection of biotech crop:applications, limitations, and practical considerations. Journal of AOAC International.2001,85(3):780-786.
    46. Duijn, G., Biert. R., Bleeker-Marcelis, H., Peppelman, H., Hessing, M. Detection methods for genetically modified crops. Food Control.1999,10(6):375-378.
    47.刘金华,魏春艳,罗雁菲,孙玉.食品中转基因成分的检测.东北农业大学学报.2004,35(5):634-638.
    48. Rogan, G.J, Dudin, Y.A., Lee, T.C., Magin, K.M., Astwood, J.D., Bhakta, N.S., Leach, J.N., Sanders, P.R., Fuchs, R.L. Immunodiagnostic methods for detection of 5-enolpyruvylshikimate-3-phosphate synthase in Roundup Ready soybeans. Food Control.1999,10(6):407-414.
    49.周萍萍,吴永宁,张建中.转基因食品检测方法的现状与进展.中国食品卫生杂志.2004.16(3):254-258.
    50.王艳斌,褚小立,陆婉珍.近红外光谱定量与定性分析规范介绍.见:陆婉珍,袁洪福,禇小立,王艳斌编.当代中国近红外光谱技术—全国第一届近红外光谱学术会议论文集.北京:中国石化出版社,2006,99-105.
    51.严衍禄,赵龙莲,韩东海,等.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005.
    52.傅霞萍.水果内部品质可见/近红外光谱无损检测方法的实验研究[博士论文].杭州:浙江大学.2008.
    53.陆婉珍.现代近红外光谱分析技术.北京:中国石化出版社,2006.
    54.贾春晓.现代仪器分析技术及其在食品中的应用.北京:中国轻工业出版社,2005.
    55. Ozaki, Y., McClure, W.F., Christy, A.A. Near-infrared Spectroscopy in Food Science and Technology. Wiley & Sons, Inc., Hoboken, New Jersey.2007.
    56. ASTM E1655 Standard Practices for Infrared Multivariate Quantitative Analysis.
    57. ASTM E1790 Standard Practice for Near Infrared Qualitative Analysis.
    58. Cai, W., Li, Y., Shao, X. A variable selection method based on uninformative varable elimination for multivariate calibration of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems.2008,90:188-194.
    59. Brereton, R.G. Chemometris Data Analysis for the Laboratory and Chemical Plant, Wiley, Chichester, England, 2003.
    60. Dong, J.G., Olson, D., Silverstone, A., Yang. S.F. Sequence of a cDNA coding for a 1-aminocyclopropane-I-Carboxylate oxidase homology from apple fruit. Plant Physiology.1991,98:1530-1531.
    61. Atkinson, R.G. A cDNA clone for endopolygalacturonase from apple. Plant Physiology.1994,105:1437-1438.
    62. Gonsalves, D., Ferreira. S., Manshardt, R., Fitch, M., Slightom, J. Transgenic virus resistant papaya:new hope for controlling papaya ringspot virus in Hawaii. American Phytopathological Society.1998. http://www.apsnet.org/education/feature/papaya/Top.htm.
    63. Terada, R., Nakajima, M., Isshiki, M., Okagaki. R.J., Wessler, S.R., Shimamoto, K. Antisense waxy genes with highly active promoters effectively suppress waxy gene expression in transgenic rice. Plant and Cell Physiology. 2000,41(7):881-888.
    64. Krishnamurthy, K..Giroux. M.J. Expression of wheat puroindoline genes in transgenic rice enhances gain softness. Nature Biotechnology.2001,19:162-166.
    65. Momma, K., Hashimoto, W., Ozawa, S., Kawai, S., Katsube, T.. Takaiwa, F., Kito, M., Utsumi, S., Murata, K. Quality and safety evaluation of genetically engineered rice with soybean glycinin:analyses of the grain composition and digestibility of glycinin in transgenic rice. Bioscience, Biotechnology, and Biochemistry.1999, 63(2):314-318.
    66. Moon, E., Wu, R. Genetic modification of a rice glutelin cDNA and expression of the engineered glutelin gene in transgenic rice plants. In Rice Genetics Ⅲ:Proc.3rd Intern. Rice Genet. Symp. (eds. By G. S. Khush).1996, 814-816. IRRI, Philippines.
    67. Lucca, P., Hurrell, R., Potrykus, I. Approaches to improving the bioavailability and level of iron in rice seeds. Journal of the Science of Food and Agriculture.2001,81:828-834.
    68. Goto, F., Yoshihara, T., Shigemoto, N., Toki, S., Takaiwa, F. Iron fortification of rice seed by the soybean ferritin gene. Nature Biotechnology.1999,17(3):282-286.
    69. Roussel, S.A., Hardy, C.L., Hurburgh, C.R., Rippke, G.R. Detection of roundup readyTM soybeans by near-infrared spectroscopy. Applied Spectroscopy.2001.55:1425-1430.
    70. Bautista, J.A., Tracewell, C.A., Schlodder, E., Cunningham, F.X., Brudvig, G.W., Diner, B.A. Construction and characterization of genetically modified synechocystis sp. PCC 6803 Photosystem II core complexes containing carotenoids with shorter π-conjugation than β-carotene. The Journal of Biological Chemistry.2005,280(46): 38839-38850.
    71. Chowdhury, M.H., Julian, A.M. Detection of differences in oligonucleotide-influenced aggregation of colloidal gold nanoparticles using absorption spectroscopy. Journal of Biomedical Optics.2004,9(6):1347-1357.
    72. Hurgurgh, C.R., Heithoff, C., Rippke, G.R. Near infrared spectroscopy system and method for the identification of genetically modified grain. WO/2000/071993.
    73.芮玉奎,罗云波,黄昆仑,王为民,张录达.近红外光谱在转基因玉米检测识别中的应用.光谱学与光谱分析.2005,25(10):1581-1583.
    74.芮玉奎,黄昆仑,王为民,郭晶,金银花,罗云波.近红外光谱技术在检测转基因油菜籽中介酸和硫甙上的应用研究.光谱学与光谱分析.2006,26(12):2190-2192.
    75.芮玉奎,黄昆仑,田惠琴,罗云波.用近红外光谱分析转基因抗虫棉根际全氮和有机质含量.光谱学与光谱分析.2006.27(1):35-35.
    76.于海燕,应义斌,谢丽娟,傅霞萍.光程对黄酒金属元素近红外透射光谱分析精度的影响.光谱学与光谱分析.2007,27(6):1118-1120.
    77. Burns, D.A., Ciurczak, E.W. Handbook of Near-Infrared Analysis. Marcel Dekker, New York.1992.
    78.于海燕.黄酒品质和酒龄的近红外光谱分析研究[博士学位论文].杭州:浙江大学.2007.
    79.李勇.近红外分析模型稳健性研究[博士学位论文].陕西:西北农林科技大学.2005.
    80. Shenk, J.S., Westerhaus, M.O. Population definition, sample selection, and calibration procedures for near infrared reflectance spectroscopy. Crop Science.1991,31:469-474.
    81. Egan, W.J., Morgan, S.L. Outlier detection in multivariate analytical chemical data. Analytical Chemistry.1998,70: 2372-2379.
    82. Campbell, J.K., Canene-Adams, K., Lindshield, B.L., Boileau, T.W.M. Tomato phytochemicals and prostate cancer risk. Journal of Nutrition.2004,134:3486S-3492S.
    83. Jha, S.N., Matsuoka, T. Non-destructive determination of acid-brix ratio of tomato juice using near infrared spectroscopy. International Journal of Food Science and Technology.2004,39(4):425-430.
    84. Pedro, A.M.K., Ferreira, M.M.C. Nondestructive determination of solids and carotenoids in tomato products by near-infrared spectroscopy and multivariate calibration. Analytical Chemistry.2005,77:2505-2511.
    85. Chang, C., Stadler, R. Ethylene hormone receptor action in Arabidopsis. BioEssays.2001,23:619-627.
    86. Deikman, J., Kline, R., Fischer, R.L. Organization of ripening and ethylene regulatory regions in a fruit-specific promoter from tomato (Lecopersicon esculentum). Plant Physiology.1992,100:2013-2017.
    87. Hamilton, A.J., Lycett, G.W., Grierson, D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature.1990,346:284-287.
    88.杨虎清.乙烯受体基因LeETR1釉LeETR2在番茄乙烯受体系统中的生理学功能定位[博士论文].杭州:浙江大学.2003.
    89.许禄,邵学广.化学计量学.北京:科学出版社,2004,第二版.
    90. Savitzky, A., Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry.1964,36:1627-1638.
    91.李民赞,韩东海,王秀.光谱分析技术及其应用.北京:科学出版社,2006.
    92. Barnes, R.J., Dhanoa, M.S., Lister, S.J. Standard normal variate transformation and de-trending of near infrared diffuse reflectance spectra. Applied Spectroscopy.1989.43(5):772-777.
    93. Beebe, K.R., Pell. R.J.. Seasholtz. M.B. Chemometrics:A Practical Guide. Wiley. New York.1998.
    94.闵顺耕,李宁,张明祥.近红外光谱分析中异常值的判别与定量模型优化.光谱学与光谱分析.2004,24(10):1205-1209.
    95. Hodge, V.J., Austin, J. A survey of outlier detection methodologies. Artificial Intelligence Review.2004T 22: 85-126.
    96. Martens, H., Naes, T. Multivariate Calibration.2nd ed. John Wiley & Sons, Ltd. Chichester, United Kingdom. 1989.
    97. Cozzolino, D., Smyth, H.E., Gishen, M. Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins. Journal of Agricultural and Food Chemistry.2003,51:7703-7708.
    98. Casale, M., Abajo, M.J.S., Saiz, J.M.G., Pizarro, C., Forina, M. Study of the aging and oxidation processes of vinegar samples from different origins during storage by near-infrared spectroscopy. Analytica Chimica Acta.2006, 557:360-366.
    99. Christy, A.A., Kasemsumran, S., Du. Y., Ozaki, Y. The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics. Analytical Sciences.2004,20:935-940.
    100. Chen, Y., Xie, M.Y, Yan, Y., Zhu, S.B., Niu, S.P., Li, C., Wang, Y.X., Gong, X.F. Discrimination of Ganoderma lucidum according to geographical origin with near infrared diffuse reflectance spectroscopy and pattern recognition techniques. Analytica Chimica Acta.2008,618(2):121-130.
    101. Ding, H.B., Xu, R.J. Near-infrared spectroscopic technique for detection of beef hamburger adulteration. Journal of Agricultural and Food Chemistry.2000,48(6):2193-2198.
    102. Ruoff, K., Luginbuhl, W., Bogdanov, S., Bosset, J.O., Estermann, B., Ziolko, T., Amado, R. Authentication of the botanical origin of honey by near-infrared spectroscopy. Journal of Agricultural and Food Chemistry.2006.54(18): 6867-6872.
    103. Chen, Q., Zhao, J., Zhang, H., Liu, M., Fang, M. Qualitative identification of tea by near infrared spectroscopy based on soft independent modeling of class analogy pattern recognition. Journal of Near Infrared Spectroscopy. 2005,13:327-332.
    104. Prieto, N., Andres, S., Giraldez, F.J., Mantecon, A.R., Lavin, P. Discrimination of adult steers (oxen) and young cattle ground meat samples by near infrared reflectance spectroscopy (NIRS). Meat Science.2008,79(1):198-201.
    105. Ni, L.J., Zhang, L.G., Xie, J., Luo, J.Q. Pattern recognition of Chinese flue-cured tobaccos by an improved and simplified K-nearest neighbors classification algorithm on near infrared spectra. Analytica Chimica Acta.2009, 633(1):43-50.
    106. Cozzolino, D., Chree, A., Scaife, J.R., Murray, I. Usefulness of near-infrared reflectance (NIR) spectroscopy and chemometrics to discriminate fishmeal batches made with different fish species. Journal of Agricultural and Food Chemistry.2005,53(11):4459-4463.
    107. Downey, G., McElhinney, J., Fearn, T. Species identification in selected raw homogenized meats by reflectance spectroscopy in the mid-infrared, near-infrared, and visible ranges. Applied Spectroscopy.2000,54(6):894-899.
    108. Liu, L., Cozzolino, D., Cynkar, W.U., Gishen, M., Colby, C.B. Geographic classification of Spanish and Australian Tempranillo red wines by visible and near-infrared spectroscopy combined with multivariate analysis. Journal of Agricultural and Food Chemistry.2006,54(18):6754-6759.
    109. Kasemsumran, S., Thanapase, W., Kiatsoonthon, A. Feasibility of near-infrared spectroscopy to detect and to quantify adulterants in cow milk. Analytical Sciences.2007,23(7):907-910.
    110. Roggo, Y., Duponchel, L., Huvenne, J.P. Comparison of supervised pattern recognition methods with McNemar's statistical test. Application to qualitative analysis of sugar beet by near-infrared spectroscopy. Analytica Chimica Acta.2003,477:187-200.
    111. Chen, Q., Zhao, J., Zhang, H., Wang, X. Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration. Analytica Chimica Acta.2006,572:77-84.
    112. Woo, Y., Cho, C., Kim, H., Yang, J., Seong, K. Classification of cultivation area of ginseng by near infrared spectroscopy and ICP-AES. Microchemical Journal.2002,73:299-306.
    113. Delwiche, S.R. Classification of scab-and other mold-damaged wheat kernels by near-infrared reflectance spectroscopy. Transactions of the ASAE.2003,46(3):731-738.
    114. Wang, D., Dowell, F.E., Lacey, R.E. Single wheat kernel color classification using neural networks. Transactions of the ASAE.1999,42(1):233-240.
    115. Wang, D., Ram, M.S., Dowell, F.E. Classification of damaged soybean seeds using near-infrared spectroscopy. Transactions of the ASAE.2002,45(6):1943-1948.
    116. Fu, X., Ying. Y, Zhou, Y., Xu. H. Application of probabilistic neural networks in qualitative analysis of near infrared spectra:Determination of producing area and variety of loquats. Analytica Chimica Acta 2007,598:27-33.
    117. Moros, J., Inon, F.A., Garrigues, S., De la Guardia, M. Near-infrared diffuse reflectance spectroscopy and neural networks for measuring nutritional parameters in chocolate samples. Analytica Chimica Acta.2007,584:215-222.
    118.苏高利,秦钟,于强.基于最小二乘支持向量机的农田水汽通量建模.生物数学学报.2007.22(1):171-177.
    119. Vapnik, V.N. The Nature of Statistical Learning Theory. Springer-Verlag, New York. USA.1995.
    120. Suykens, J.A.K., Van Gestel, T., De Brabanter. J.. De Moor, B., Vandewalle, J. Least Squares Support Vector Machines. World Scientific Pub. Co., Singapore.2002.
    121. Suykens, J.A.K., Vandewalle, J. Least squares support vector machine classifiers. Neural Processing Letters,1999, 9:293-300.
    122. Yu, H.Y., Lin, H.J., Xu, H.R., Ying, Y.B., Li, B.B., Pan, X.X. Prediction of enological parameters and discrimination of rice wine age using least-squares support vector machines and near infrared spectroscopy. Journal of Agricultural and Food Chemistry.2008,56(2):307-313.
    123. Zhao, J., Chen, Q., Huang, X., Fang, C.H. Qualitative identification of tea categories by near infrared spectroscopy and support vector machine. Journal of Pharmaceutical and Biomedical Analysis.2006,41:1198-1204.
    124. Sun, T., Lin, H., Xu, H., Ying, Y. Effect of fruit moving speed on predicting soluble solids content of'Cuiguan' pears (Pomaceaepyrifolia Nakai cv. Cuiguan)using PLS and LS-SVM regression.Postharvest Biology and Technology.2009,51(1):86-90.
    125. Park, B., Abbott, J.A.. Lee. K.J., Choi, C.H., Choi,CH.,CHoi,K.H.Near-infrared diffuse.reflectance for quantitative and qualitative measurement of soluble solids and firmness of delicious and Gala apples.Transactions of the ASAE 2003,46(6):1721-1731.
    126. Berardo. N., Pisacane, V. Battilani, P., Scandolara,A.,Pietri,A.,Marocco,A.Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy.Journal of Agricultural and Food Chemisty.2005, 53(21):8128-8134.
    127. Gayo, J., Hale. S.A., Blanchard, S.M. Quantitative analysis and detection of adulteration in crab meat using visibe and near-infrared spectroscopy. Journal of Agricultural and Food Chemisty.2006,54(4):1130-1136.
    128. Liu. Y.D.. Ying. Y.B., Yu. H.Y., Fu. X.P. Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits.Journal of Agriculturl and Food Chemistry.2006,54(8): 2810-2815.
    129. Yu. H.Y.. Niu. X.Y.. Lin. H.J., Ying. Y.B., Li, B.B., Pan,X.X.A feasibility study on-line determination of rice wine composition by Vis-NIR spectroscopy and least-squares support vector machines. Food Chemistry.2009, 113(1):291-296.
    130. Zhang. Y., Cong. Q.,Xie,Y, Yang. J. Zhao. B. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine. Spectrochim.Acta,Part A.Molecular and Biomolecular Spectroscopy.2008.71(4):1408-1413.
    131. Da Costa Filho. P.A. Rapid determination of sucrose in chocolate mass using near infrared spectroscopy.Analyhtica Chimica Acta.2009.631 (2):206-211.
    132. Kmen. V.G. Acar. J. Fumaric acid in apple juice:a poential indicator of microbial spoilage of apples used as raw naterial. Food Additives and Contaminants.2004.21(37):626-631.
    133褚小立.袁洪福.陆婉珍近红外分析中光谱预处理及波长选择方法进展与应用.化学进展2004.16(4):528-542
    134. Centner, V., MasSart, D.L., De Nooed, O.E. Elimination of uninformative variables for multivariate calibration. Analytical Chemistry.1996,68:3851-3858.
    135. Araujo, M.C.U., Saldanha, T.C.B., Galvao. R.K.H., Yoneyama. T., Chame, H.C., Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and
    136.Honorato,F.A.,Galvao,R.K.H.Pimentel.M.F.,Neto,B.B.,Araujo.M.C.U.,Carvalho.F.R.Robust modeling for multivariate calibration transfer by the successive projections algorithm.Chemometrics and Intelligent Laboratory Systems.2005,76:65-72.
    137.Nezio,M.S.D.,Pistonesi,M.F.,Fragoso,W.D.,Pontes,M.J C.,Goicoechea,H.C.,Araujo.M.C.U.,Band,e B.S.F. Successive projections algorithm improving the multivariate simultaneous direct spectrophotometric determination of five phenolic compounds in sea water.Microchemical Journal.2007.85(2):194-200.138.赵丽丽,赵龙莲,李军会,张录达,严衍禄.傅里叶交换近红外光谱仪扫描条件对数学模型预测精度的影响.光谱学与光谱分析.2004,24(1):41.44.
    139.刘宏欣,张军,黄富荣,黄泳,何丽君,曾玉萍,陈星旦,卢鳄.近红外光谱法快速测定啤酒的主要品质参数.光谱学与光谱分析.2008,28(2):313.316.
    140.王一兵,王红字,翟宏菊.芦菲,吴卫红.王海水,席时权.近红外光谱分辨率对定量分析的影响.分析亿学.2006,34(5):699-701.
    141.秦西云,李军会,杨虹.蔡贵民.国产光栅近红外光谱仪扫描条件对检测结果的影响.光谱学与光谱分析.2007,27(2):411-413.
    142.张璐.郝永忱,刘桂宾,李元.近红外光谱法测定豆粕中常规化学成分的研究.检验检疫科学.2003,13(1):25-27.
    143.段焰青,杨涛,孔祥勇.汤丹瑜,李青青样品粒度和光谱分辨率对烟草烟碱NIR预测模型的影响.云南犬学学报.2006,28(4):340-344.
    144.段焰青,者为,杨涛,李青青.影响烟草近红外光谱分析结果准确性的因素.光谱实验室.2007,24t4):705-710.
    145.段焰青,周红,王明锋,湛双英.柱度对烟末总糖、总氮和烟碱含量NIR预测值的影响.烟草科技.2005,7:22-23.40.
    146.陈兴苗,曾桂兰,刘燕德.南丰蜜桔维生素c的可见光,近红外漫反射光谱检测.2007年中国农业工程学会学术年会,2007.
    147.李军会,秦西云,张文娟,蔡贵民,杨字虹,赵龙莲,常志强,赵丽丽,张录达.样品装样,测试条件等因素对近红外检测结果的影响与分析误差源比较研究.光谱学与光谱分析.2007,27(9):1751·1753.
    148.吴静珠,王一鸣,张小超,徐云.样品状态与装样条件对近红外光谱测定的影响研究.现代科学仪器.2006,1:69.71
    149.蒋焕煜,彭永石,谢丽娟,应义斌.扫描次数对番茄叶漫反射光谱和模型精度的影响研究.光谱学与光谱分析.2007,27(9):1751-1766.
    150.蒋焕煜,谢丽娟,彭永石,应义斌.温度对叶片近红外光谱的影响.光谱学与光谱分析.2008,28(7):1510-1513.
    151.魏秀丽,高闽光,陆亦怀,刘文清,刘建国,徐亮,张天舒、刘志明.傅里叶变换近红外光谱分辨率对氯仿测量精度的影响.大气与环境光学学报.2008,3(6):432-436.
    152.罗长兵,陈立伟,严衍禄,王文真,王忠义.小麦PLS近红外定量分析中温度修正的研究.光谱学与光谱分析.2007,27(10):1993-1996.
    153.张军,陈华才,陈星旦.近红外光谱温度修正定量分析模型的研究.光谱学与光谱分析.2005,25(6):890-893.
    154.褚小立,袁洪福,王艳斌,陆婉珍.近红外稳健分析校正模型的建立(I)--样品温度的影响.光谱学与光谱分析.2004,24(6):666-671.
    155.王韬,张录达,劳彩莲,李军会,赵龙莲,严衍禄.PLS回归法建立适应温度变化的近红外光谱定量分析模型.中国农业大学学报.2004,9(6):76-79.
    156.王云.温度对近红外光谱技术检测牛奶成分影响的研究[硕士论文].天津:天津大学.2006.
    157.李鑫.水分、粒度对玉米和小麦傅立叶近红外预测模型准确性影响的研究[硕士论文].四川:四川农业大学.2006.
    158.韩冉.傅立叶近红外测定豆粕、菜籽粕的常规化学成分以及粒度对模型的影响[硕士论文].四川:四川农业大学.2007.
    159.赵环环,严衍禄.噪声对近红外光谱分析的影响及相应的数学处理方法.光谱学与光谱分析.2006,26(5):842-845.
    160.石师林,严衍禄,吕冬.付里叶变换近红外漫反射光谱分析仪器参数的确定.北京农业大学学报.1990,16:67-71.
    161.王文真.样品粒度对近红外分析结果的影响.分析仪器.1993,2:52-54.
    162.朱志华,王文真.刘三才,李为喜,张晓芳,刘方,李燕.近红外漫反射光谱分析技术在作物种质资源品质性状鉴定中的应用.现代科学仪器.2006,1:63-66.
    163. Lister, S.J., Dhanoa, M.S., Stewart, J.L., Gill, M. Classification and comparison of Gliricidia provenances using near infrared reflectance spectroscopy. Animal Feed Science and Technology.2000,86:221-238.
    164. Dou, Y., Mi, H., Zhao, L., Ren, Y., Ren, Y. Determination of compound aminopyrine phenacetin tablets by using artificial neural networks combined with principal components analysis. Analytical Biochemistry.2006,351(2):
    174-180.
    165. Kelly, J.F.D., Downey, G. Detection of sugar adulterants in apple juice using Fourier transform infrared spectroscopy and chemometrics. Journal of Agricultural and Food Chemistry.2005,53:3281-3286.
    166. Leon, L., Kelly, J.D., Downey, G. Detection of apple juice adulteration using near-infrared transflectance spectroscopy. Applied Spectroscopy.2005,59(5):593-599.
    167. Gestal, M., Gomez-Carracedo, M.P., Andrade, J.M., Dorado, J., Fernandez, E., Prada, D., Pazos, A. Classification of apple beverages using artificial neural networks with previous variable selection. Analytica Chimica Acta.2004, 524:225-234.
    168. Fuzzati, N. Analysis methods of ginsenosides. Journal of Chromatography B.2004,812:119-133.
    169. Inon, F.A., Llario, R., Garrigues, S., Guardia, M. Development of a PLS based method for determination of the quality of beers by use of NIR:spectral ranges and sample-introduction considerations. Analytical Bioanalytical Chemistry.2005,382:1549-1561.
    170. Andre, M. Multivariate Analysis and classification of the chemical quality of 7-Aminocephalsporanic acid using near-infrared reflectance spectroscopy. Analytical Chemistry.2003,75:3460-3467.
    171. Sogi, D.S., Bawa, A.S., Garg, S.K. Sedimentation system for seed separation from tomato processing waste. Joarnal of Food Science Technology.2000,37(5):539-541.
    172. Avelino, A., Avelino, H.T., Roseiro, J.C., Collaco, M.T.A. Saccharification of tomato pomace for the production of biomass. Bioresource Technology.1997,61 (2):159-162.
    173. Sogi, D.S., Bawa, A.S. Dehydration of tomato processing waste. Indian Food Packer.1998.52:26-29.
    174. Gierlinger, N., Schwanninger, M., Wimmer, R. Characteristics and classification of Fourier-transform near infrared spectra of the heartwood of different larch species (Larix sp.). Journal of Near Infrared Spectroscopy.2004,12: 113-119.
    175. Alexander, L., Grierson, D. Ethylene biosynthesis and action in tomato:a model for climacteric fruit ripening. Journal of Experimental Botany.2002,53(377):2039-2055.
    176. Klee, H.J. Control of ethylene-mediated processes in tomato at the level of receptors. Journal of Experimental Botany.2002,53(377):2057-2063.
    177. Lincoln, J.E., Fischer, R.L. Regulation of gene expression by ethylene in wild-type and rin tomato (Lycopersicon esculentum) fruit. Plant Physiology.1988,88:370-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700