基于几何代数表示原理的时间序列模式分类问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时间序列广泛存在于科学实验、经济金融、工业控制以及生物医学等各个领域。快速、有效的分析时间序列类型数据,挖掘其背后蕴含的信息有助于揭示事物发展变化规律,为正确认识事物本质和科学决策提供依据。时间序列数据挖掘作为数据挖掘的一个重要分支,具有重要的理论研究价值和现实应用意义。
     时间序列的模式分类是时间序列数据挖掘的重要任务之一。合理的时间序列表示是实现正确分类的前提和基础。针对目前时间序列的表示主要采用基于数值的串行方法,无法提取特征之间的关联信息,不能实现有效降维的问题,本文提出基于几何代数表示原理的时间序列模式分类方法。该方法将时间序列的多个特征嵌入几何代数空间进行并行表示与并行处理,实现了多特征的有效融合。具体主要完成以下三方面工作:
     首先研究单变量和多变量时间序列的多向量特征几何代数嵌入表示一般化模型;基于所提出模型,在对原始时间序列进行小波包多尺度分析基础上,提取四个节点的小波包系数特征并嵌入四元数并行表示;采用四元数主成分分析算法进行多尺度特征序列的并行降维处理,再对得到的四元数主成分进行几何积运算,利用几何积反映特征之间的关联信息。针对正常和癫痫两类脑电时间序列进行分类实验,讨论四元数主成分个数和小波类型对模式分类结果的影响,并与传统时间序列串行特征表示与提取方法进行对比。
     然后进行时间序列多维特征几何对象表示与几何结构特征提取方法研究。该方法将原始时间序列进行子空间划分,在每个时序子空间提取多维度特征并映射为高维空间中的点,将代表多子空间的特征点构成高维特征空间的几何对象表示。研究利用几何代数语言描述特征空间几何对象并利用几何代数运算法则提取几何结构特征的方法。在二维空间和三维空间构建心电信号的多形态特征三角形表示,确定最有效的几何结构特征参数,针对MIT/BIH心律失常数据库中五类心电时间序列进行模式分类。
     最后研究时间序列多特征四元数融合符号化表示与符号熵特征提取问题。给出时间序列多个高阶累积量几何代数嵌入表示方法,将高阶累积量嵌入四元数并行表示;计算四元数分量矩阵的2-范数值和行列式值作为多个高阶累积量的融合;基于符号聚合近似算法对融合特征值序列进行符号化表示并提取符号熵特征。针对失神性癫痫大鼠三个不同状态的脑电时间序列进行分类实验研究,给出不同脑电节律在癫痫发作不同状态下高阶累积量融合特征符号序列和符号直方图表示,讨论不同符号化参数时三类脑电信号的四元数融合符号熵特征。
     研究结果表明,本文提出的基于几何代数表示原理的时间序列模式分类方法能够简洁的并行表示原始时间序列的多个特征并进行有效融合,以此来实现正确的模式分类。几何代数可以作为时间序列数据挖掘一个新的数学工具,应用于其他更多领域的时间序列模式分类问题。
Time series is widely applied in many fields, such as the scientific experiments,economy and finance, industrial control, and biomedicine. Efficient analysis of time seriestypes of date and mining the information contained in the data help reveal regular indeveloping and changing to provide evidences in correctly understanding the things natureand making scientific decision. Therefore, as an important branch of data mining the timeseries data mining has important theoretical research value and practical applicationsignificance.
     Time series pattern classification is an important task of the time series data mining.Reasonable time series representation is the prerequisite and basis for the correctclassification. There is the problem that related information among the features does notbe extracted and effective dimension does not be reduced, with serial fusion method usedby currently time series representation. This paper proposed a time series patternclassification method based on geometric algebra representation principle. This methodmakes the multiple characteristics of time series embedded in algebraic geometry spacefor parallel representation and parallel processing to achieve the effective integration ofmulti-features. The three parts of the paper are as follows:
     Firstly, this paper researches the generalized model of geometric algebra embeddedrepresentation for univariate and multivariate time series. Based on the proposed model,we extracted four nodes wavelet packet coefficient characteristics of original time series,giving the parallel representation of the embedd quaternion. Using quaternion principalcomponent analysis algorithm for parallel wavelet packet sequence dimension reduction,and carrying out geometric product operation for the quaternion principal components,Geometry product reflects the associated informations of the features. Classificationexperiments were done for normal and epileptic EEG time series data set, discussing theaffection for the classification results of two key algorithms parameters: the number ofquaternion principle components and wavelet type respectively. Meanwhile, we comparedwith the traditional time series serial feature representation and extraction methods.
     Secondly, this paper reasearches the geometry object representation of time seriesmulti-dimensional characteristics and geometry feature extraction method. The originaltime series was first divided into sub-space, then extracting multi-dimensional features ineach sub-sequence space and mapping to points in high-dimensional space, and giving the geometry object representation in high-dimensional feature space of the feature points,finally extracting the geometric features of the geometry object. One task of the reasearchis to use geometry algebraic language to describe geometric objects of feature space andusing geometry calculation to extract geometric features. In the two-dimensional spaceand three-dimensional space to build multi-ECG morphology triangles, determining themost effective parameters of the geometric structure and the pattern classification weredone on five types of ECG time series of the MIT/BIH arrhythmia database.
     Lastly, this paper researches the symbol representation of time series multi-featurequaternion fusion and symbolic entropy feature extraction method. Geometric algebraembedding representation of time series multiple high-order cumulant were given, thehigh-order cumulant were embedded in quaternion to represent in parallel, and calculatingthe2–norm values and the determinant value of quaternion components matrix as theintegration of multiple high-order cumulants. On the basis of symbolic aggregationapproximation algorithm, conducting symbolic representation and extracting symbolentropy features of the integration features sequence. Classification experiment researcheswere done on three different states of EEG time series data of absence epilepsy rats,symbolic representation of the high-order cumulant integration features of different EEGrhythms in different states of seizures, symbol histogram and quaternion integrationsymbolic entropy characteristics of three types of EEG under different symbols parameterswere given.
     The research results show the proposed time series pattern classification methodbased on the principle of geometric algebra representation can briefly represent multiplefeatures of the original time series in parallel and conduct effective integration andclassification. Geometric algebra can be used as a new mathematical tool for time seriesdata mining and can be applied to other areas of time series pattern classification.
引文
[1]杨叔子,吴雅,轩建平.时间序列分析的工程应用[M].武汉:华中理工大学出版社,2007:1-20.
    [2]吴怀宇.时间序列分析与综合[M].武汉:武汉大学出版社,2004:1-15.
    [3]王黎明.应用时间序列分析[M].上海:复旦大学出版社,2009:1-12.
    [4] George E.P.Box.时间序列分析:预测与控制[M].第三版,北京:人民邮电出版社,2005:5-8.
    [5] Jiawei Han, Micheline Kamber(范明,孟小峰译).数据挖掘概念与技术[M].北京:机械工业出版社,2007:12-15.
    [6]董琳,数据挖掘实用机器学习技术[M].北京:机械工业出版社,2006:6-9.
    [7]贾澎涛,何华灿,刘丽,孙涛.时间序列数据挖掘综述[J].计算机应用研究,2007,24(11):15-18.
    [8] Lin Weiqiang, Orgun M A, Williams G J. An overview of temporal data mining[C]. In:Proceedings of the1stAustralian Data Mining Workshop,2002:83-90.
    [9] Zhang Hui, Ho Tu-bao, Lin Mao-song. A non-parametric wavelet feature extractor for time seriesclassification[C]. In: Proceedings of8thPacific-Asia Conf Knowledge Discovery and DataMining,2004:595-603.
    [10]周鹏.管道流量泄露时间序列分类的算法研究[J].计算机工程与应用,2009,45(13):166-169.
    [11] Ogilvie T, Swidenbank E, Hogg B W. Use of data mining techniques in the performancemonitoring and optimization of a thermal power plant[J]. IEEE Colloquium on KnowledgeDiscovery and Data mining.1998,7:1-4.
    [12] Richard O D, Hart P. E, Stork D. G. Pattern Classification[M]. Second Edition, USA:JohnWiley&Sons,2000:26-29.
    [13]王珏,石纯一.机器学习研究[J].广西师范大学学报(自然科学版),2003,21(2):1-15.
    [14] Yi, B, Faloutsos, C. Fast time sequence indexing for arbitrary Lp norms[C]. In: Proceedings ofthe26th International Conference on Very Large Data Bases.2000:385-394.
    [15] Keogh, E, Pazzani, M, Relevance feedback retrieval of time series data[C]. In: Proceedings of the4th Pacific-Asia Conference on Knowledge Discovery and Data Mining,2000:122-133.
    [16] Keogh, E, Chakrabarti, K.Mehrotra, S, Pazzani, M. Locally adaptive dimensionality reduction forindexing large time series databases[C]. In: Proceedings of the2001ACM SIGMOD InternationalConfernece on Management of Data,2001:151-163.
    [17] Lee, S, Kwon, D, Lee, s. Dimensionality reduction for indeing time series based on the miniumdistance[J]. Journal of Information Science and Engineering,2003,19(4):697-711.
    [18] Park, S, Kim, S, Chu, W.W. Segment-based approach for subsequence searches in sequencedatabases[C]. In: Proceedings of the16thACM Symposium on Applied Computing,2001:248-252.
    [19] Keogh, e., Pazzani, M., An enhanced representation of time series which allows fast and accurateclassification, clustering and relevance feedback[C]. In:.Proceedings of the Fourth ACMSIGKDD International Conference on Knowlede Discovery and Data Mining,1998:239-341.
    [20] Fu, T.C., Chung, f.l., Kwok, K.Y., Ng, C.M. Stock time series visualization based on data pointimprotace [J]. Engineering Applications of Artificial Intelligence,2008,21(8):1217-1232.
    [21] Perng, C.S, Wang, H, Zhang, R, Parker, D. Landmarks: a new model for similarit-based patternquerying in time series databases[C]. In: Procedings of the16thIEEE International Conference onData Engineering,2000:33-42.
    [22] Man, P, Wong, M.H. Efficient and robust feature extraction and pattern matching of time seriesby a lattice structure[C]. In: Proceedings of the10thACM International Conference onInformation and Knowledge Management.2001:271-278.
    [23] Pratt, B, Fink, E. Search for patterns in compressed time series[J]. International Journal of Imageand Graphics.2002,2(1):89-106.
    [24] Bao, D.A., Generalized model for financial time series representation and prediction[J]. AppliedIntelligence,2008,29(1):1-11.
    [25] Leng, m, Lai, X, Tan, G, Xu, X. Time series representation for anomaly detection[C]. In:Proceedings of the Second IEEE International Conference on Computer Science and InformationTechnology,2009:965-968.
    [26] Yang, Z, Zhao, G. Appplication of symbolic techniques in detecting determinism in timeseries[C]. In: Proceedings of the20thAnnual International Conference of the IEEE Engineering inMedicine and Biology Society.1998,20(5):2670-2673.
    [27] Lin, J, Keogh, E, Wei, L, Lonardi, S. Experiencing SAM: a novel symbolic representation of timeseries[J]. Data Mining and Knowledge Discovery,2007,15(2):107-144.
    [28] Agrawal, R, Psaila, G, Wimmers, E.L., Zait, M., Quering shapes of histories[C]. In: Proceedingsof the21stInternational Conference on Very Large Databases,1995:502-514.
    [29]蒋嵘,李德毅.基于形态表示的时间序列相似性搜索[J].计算机研究与发展.2000,37(5):601-608.
    [30] Agrawal, R, Faloutsos, C, Swami, A. Efficient similarity search in sequence databases[C]. In:Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery andData Mining,1993,69-84.
    [31] Chan, K.P, Fu, A., Yu, C., Haar wavelets for efficient similarity search of time series: with andwithout time warping[J]. IEEE Rransactions on Knowledge and Data Engineering.2003,15(3):685-705.
    [32] Dasha, P.K., Nayaka, m., Senapatia, M, Senapatia, m.r., Lee, I.W.C. Mining for similarities intime series data using wavelet-based feature vecrtors and neural networks[J]. EngineeringApplications of Artificial Intelligence.2007,20(2):185-201.
    [33] Lesch, R, Caille, y, Lowe, D. Component analysis in financial time series[C]. In: Proceedings ofthe IEEE Conference on Computational Intelligence for Financial Engineering.1999:183-190.
    [34] Korn, F, Jagaciish, H.V, Faloutsos, C. Efficientl supporting ad hoc queries in large data sets oftime sequences[C]. In: Proceedings of the1997ACM SIGMOD International Conference onManagement of Data.1997:289-300.
    [35] Azzouzi, M, Nabney, I.T. Analysing time series structure with Hidded Markov Models[C]. In:Proceedings of the IEEE Conference on Neural Networks and Signal Processing.1998:402-408.
    [36] Berndt, D.J., Clifford. Using dynamic time warping to find patterns in time series[C]. In: AAAIWorking Notes of the Knowledge Discovery in Databases Workshop,1994:359-370.
    [37] Park, S, Kim, S.W, Cho, J.S, Padmanabhan, S. Prefix-querying: an approach for effectivesubsequence matching under time warping in sequence database[C]. In: Proceedings of the10thACM International Conference on Information and Knowlede Management.2000:255-262.
    [38] Keogh, E, Pazzani, M. Derivative dynamic time warping with higher order features [C]. In:Proceedings of the First SIAM International Conference on Data Mining.2001:1-11.
    [39] Vlachos M, Gunopulos D, Kollios G. Discovering similar multidimensional trajectories[C]. In:Pro of the18th IEEE International Conference on Data Engineering.2002:673-684.
    [40] Faloutsos, C, Jagadish. H, Mendelzon A, Milo T. A Signature technique for similarity basedqueries[C]. In: Proceedings of the International Conference on Compression and Complexity ofSeqence,1997:2-20.
    [41] Frank P. M, Koppen-Seliger B. New developments using AI in fault diagnosis[J]. EngineeringApplications of Artificial Intelligence,1997,10(1):3-14.
    [42] Keogh, E, Lin, J, Truppel, W, Clustering of time series subsequences is meaningless: implicationsfor previous and future research[C]. In: Proceedings of the Rhird IEEE International Conferenceon Data Mining.2003:115-122.
    [43] Kohonen T, Self-organized formation of topologically correct feature maps[J]. BiologicalCybenetics,1982,43(1):59-69.
    [44] Keogh E, Pazzani M, Scaling up dynamic time warping for datamining applications[C]. In:Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery andData Mining,2000:285-289.
    [45] Piatetsky-Shapiro G, Fayyad G, Smith P. From data mining to knowledge discovery: anoverview[C]. In: Proceedings of the2nd International Conference on Knowledge Discovery andData Mining,1996:1-35.
    [46] Ng M.K, Huang Z. Data-mining massive time series astronomical data: challenges, problems andsolutions[J]. Information and Software Technology,1999,41(9):545-556.
    [47] Liao,T.W. A clustering procedure for exploratory mining of vector time series[C]. In: Proceedingsof Pattern Recognition.2007:2550-2562.
    [48] Chen G, Wei Q, Zhang H. Discovering similar time-series patterns with fuzzy clustering andDTW methods[C]. In: Proceedings of IFSA World Congress and20th NAFIPS InternationalConference,2001:2160-2164.
    [49] Keogh E, Xi X, Wei L. The UCR Time Series Classification/Clustering Homepage:www.cs.ucr.edu/~eamonn/time_series_data/
    [50] Owsley L.M.D, Atlas L.E, Bernard G.D. Self-organizing feature maps and hidden Markov modelsfor machine tool monitoring[J]. IEEE Trans. Signal Process,1997,45(11):2787-2798.
    [51] Aach J, Church G. Aligning gene expression time series with time warping algorithms[J].Bioinformatics,2001,17(6):495-508.
    [52] Caiani E G, Porta A, Baselli G, Turiel M, Muzzupappa S, Pieruzzi F, Crema C, Malliani A, CeruttiS. Warped-average template technique to track on a cycle by cycle basis the cardiac filling phaseson left ventricular volume[J]. IEEE Computers in Cardiology,1998,25(3):73-76.
    [53] Abour Moustafa K F, Cheriet M, Suen C Y. A generative-discriminative hybrid for sequential dataclassification[C]. In: Proceedings of the IEEE International Conference on Acoustics and SignalProcessing.2004:805-808.
    [54] B Yi, Jagadish H. V, Faloutsos C. Efficient retrieval of similar time sequences under timewarping[C]. In: Proceedings of the4th International Conference on Data Engineering.Washington: IEEE Computer Society.1998:201-208.
    [55]涂宇,刘玉葆,方仲康等.基于重要点的多分辨率检索法的时间序列表示[J].计算机研究与发展,2009,46(S2):526-531.
    [56]杨一鸣,潘嵘,潘嘉林,杨强,李磊.时间序列分类问题的算法比较[J].计算机学报.2007,30(8):471-489.
    [57] Dasgupta D, Forrest S. Novelty detection in time series data using ideas from immunology[C]. In:Proceedings of the5thInternational Conference Intelligent Systems.1996:82-87.
    [58] Ma J, Perkins S. Online novelty detection on temporal sequences[C]. In: Proceedings of theInternational Conference on Knowledge Discovery and Data Mining. New York: ACM Press,2003:24-27.
    [59] Jagadis H V, Koudas N, Muthukrishna S. Mining deviants in a time series database[C]. In:Proceedings of the25th International Conference on Very Large Data Bases. San Francisco:Morgan Kaufmann Publishers.1999:102-113.
    [60] Shahabi C, Tian X, Zhao W. Tsa-tree: A wavelet-based approach to improve the efficiency ofmulti-level surprise and trend queries[C]. In: Proceedings of the12th International Conference onScinetific and Statistical Database Management. Washington: IEEE Computer Society,2000:55-68.
    [61] Keogh E, Lonardi S, Chiu U. Finding surprising patterns in a time series database in linear timeand space[C]. In: Proceedings of the8th ACM SIGKDD International Conference on KnowledgeDiscovery and Data Mining. New York: ACM Press,2002:550-556.
    [62] Yamanishi K, Takeuchi Jun-ichi. Aunifying framework for detecting outliers and chage pointsfrom non-stationary time series data[C]. In: Proceedings of the8th ACM SIGKDD InternationalConference on Knowledge Discovery and Data Mining. New York: ACM Press,2002:676-681.
    [63] Van Wijk JJ, Van Selow E.R. Cluster and calendar ased visualization of time series data[C]. In:Proceedings of the IEEE Symposium on Information Visualization.1999:4-9.
    [64] Weber M, Alexa M, Muller W. Visualizing time series on spirals[C]. In: Proceedings of the IEEESymposium on International Visualization.2001:7-14.
    [65] Keogh, E, Hochheiser H, Shneiderman. B. An augmented visual query mechanism for fidingpatterns in time series data[C]. In: Proceedings of the5th International Conference on FlexibleQuery Answering Systems.2002:240-250.
    [66] Lin J, Keogh E, Lonardi S. Visualizing and discovering non-trivial patterns in large time seriesdatabases[J]. Infromation Visualization.2005,4(2):61-82.
    [67]毛云建,杜秀华.基于形态特征的时间序列相似性搜素算法[J].计算机仿真,2008,25(1):80-83.
    [68]杨引霞,谢康林,朱建秋.基于像素的时序数据可视化分析方法TSD-PVAP[J].计算机工程,2004,30(18):74-85.
    [69]韩媛媛,成长生,苏厚勤.时序数据挖掘在AFC系统运营管理中的分析与应用[J].计算机应用与软件,2010,27(11):160-162.
    [70]黄培之, Poh-Chin Lai.时间序列空间数据可视化中有关问题的研究[J].武汉大学学报,信息科学版,2004,29(7):584-587.
    [71] Lasenby. A, Doran D. Geometric Algebra for Physicists[M]. Cambridge: Cambridge U. Press,2002:12-18.
    [72] Dorst L, Doran C, Lasenby J. Applications of Geometrical Algebra in Computer Science andEngineering [M]. Boston: Birkhauser,2002:36-38.
    [73] John Vince. Geometric Algebra for Computer Graphics[M]. London, Springer Press,2008:33-45.
    [74] Venzo de Sabbata. Bidyut Kumar Datta. Geometric Algebra and Applications to Physics[M].Taylor&Francis group, CRC Press,2007:62-80.
    [75]李茂宽,关键.基于几何代数的彩色光流场计算[J].光学学报,2009,29(10):2837-2841.
    [76]方茹,曹喜滨,张锦绣.几何代数及其在摄动Kepler问题中的应用[J].哈尔滨工业大学学报,2008,40(2):282-286.
    [77]邹晖,陈万春,殷兴良.几何代数及其在飞行力学中的应用[J].飞行力学.2004,22(4):60-64.
    [78]何天成,曹文明,谢维信.基于Clifford代数传感网络覆盖理论的平面目标覆盖分析[J].电子学报,2009,37(8):1681-1685.
    [79]倪振松.机构运动学分析中若干问题的几何代数法研究[D].[北京邮电大学博士论文],2010:46-48.
    [80]徐永红,洪文学,高直.模式特征的几何代数多向量表示方法[J].燕山大学学报.2010,34(2):119-122.
    [81] Buchholz S, Sommer G. Learning geometirc transformations with Clifford neurons[C]. In:Proceedings of AFPAC,2000:144-153.
    [82]曹文明,冯浩.仿生模式识别与信号处理的几何代数方法[M].北京:科学出版社,2010:18-21.
    [83]李洪波.共形几何代数—几何代数的新理论和计算框架[J].计算机辅助设计与图形学学报,2005,17(11):2383-2393.
    [84]李洪波.共形几何代数与几何不变量的代数运算[J].计算机辅助设计与图形学学报,2006,18(7):902-911.
    [85] Daniel Fontijne, Leo Dorst, Modeling3D euclidean geometry-performance and elegnce of fivemodels of3D euclidean geometry in a ray tracing application[J]. IEEE Trans.on ComputerGraphics and Applications.2003,23(2):68-78.
    [86] D. Hestenes, R. Ziegler. Old Wine in New Bottles: A new algebrain framework computationalgeometry[C]. In: Proceedings of Advances in Geometric Algebra with Applications in Scienceand ngineering, Birkhauser, Boston.2001:1-14.
    [87]袁林旺;俞肇元;罗文.基于共形几何代数的GIS三维空间数据模型[J].中国科学:地球科学,2010,40(12):1740-1751.
    [88]李洪波.共形几何代数与运动和形状的刻画[J].计算机辅助设计与图形学学报,2006,18(7):895-901.
    [89]李茂宽,关键.基于共形几何代数与二次规划的分类器设计[J].光电工程,2010,37(7):114-118.
    [90]李茂宽,关键.基于共形几何代数与Radon变换的圆检测方法[J].光电工程,2010,37(4):72-82.
    [91]邢燕,檀结庆.图形变换和运动的共形几何代数表示方法[J].计算机应用研究.2008,25(9):2842-2844.
    [92] http://www.perwass.de/clu/index.html.
    [93] http://www.cgl.waterloo.ca/~smann/GABLE.
    [94] http://www.mrao.cam.ac.uk/~majal/software/GA
    [95] Schtte H D, Wenzel J. Hypercomplex numbers in digital signal processing[J]. IEEE Int Symp,Circuits, Syst.1990,45(11):1557-1560.
    [96]李文亮.四元数矩阵[M].长沙:国防科技大学出版社,2002:48-54.
    [97]文成林,周东华.多尺度估计理论及其应用[M].北京:清华大学出版社,2002:22-24.
    [98] Jaideva C, Goswami, Andrew K.Chan著,许天周,黄春光译.小波分析理论、算法及其应用
    [M].北京:国防工业出版社,2007:36-39.
    [99]王大凯,彭进业.小波分析及其在信号处理中的应用[M].北京:电子工业出版社,2006:11-15.
    [100]吴婷,颜国正,杨帮华.基于于小波包分解的脑电信号特征提取[J].仪器仪表学报,2007,28(12):2230-2234.
    [101]刘毅,张彩明,赵玉华.基于多尺度小波包分析的肺音特征提取与分类[J].计算机学报,2006,29(5):769-776.
    [102]张海军,王浩川,赵雨斌.基于小波包技术的EEG信号特征波提取分析[J].计算机工程与应用,2008,44(23):246-249.
    [103]任亚莉.基于小波包熵的运动意识任务分类研究[J].生物物理学报,2008,24(6):227-234.
    [104]周红标,陈若珠,李军红.基于小波包变换的癫痫脑电信号特征提取[J].电子测量技术,2009,32(10):36-41.
    [105]郎方年,周激流,钟钒,宋恩彬,闫斌.基于四元数的图像信息并行融合[J].自动化学报,2007,33(11):1136-1143.
    [106] Le Bihan N, Sangwine S J. Quaternion principal component analysis of color iamge[C]. In:Proceedings of International Conference on Image Processing.Barcelona. Spain: IEEE,2003:809-812.
    [107]张富强,李均利,李纲,满家巨.陈刚.基于四元数奇异值分解的视频质量评价方法[J].电子学报,2011,31(1):219-223.
    [108]邢燕.四元数及其在图形图像处理中的应用研究[D].[合肥工业大学博士论文].2009:1-12.
    [109]刘镝,孙冬梅,李志超,顾广华,裘正定.基于四元数并行融合的手指纹区域识别[J].仪器仪表学报,2010,31(5):1064-1069.
    [110] Minh Tuan Pham, Kanta Tachibana, Eckhard M. S. Hitzer, Tomohiro Yoshikawa, TakeshiFuruhashi. Classification and clustering of spatial patterns with geometric algebra[C]. In:Proceedings of Applied Geometric Algebras in Computer Science and Engineering,2008:231-247.
    [111] Mohammad ARZI. A new method for continuous ECG analysis using geometric algebra andfuzzy clustering[C]. In: Proceedings of the2nd International Symposium on Bio-and MedicalInformatics and Cybernetics,2008:1-6.
    [112] http://www.meb.uni-bonn.de/epileptologie/
    [113] http://www.prtools.org/prtools.html
    [114] http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
    [115] N.F. Gulera E.D. Ubeylib, I. Guler. Recurrent neural networks employing Lyapunov exponentsfor EEG signals classification[J]. Expert Systems with Applications.2005,29(4):506-514.
    [116] A. Subasia, E. Ercelebi. Classification of EEG signals using neural network and logisticregression[J]. Computer Methods and Programs in Biomedicine.2005,78(2):87-99.
    [117] N. Kannathala,b, M.L. Choob, U.R. Acharyab, P.K. Sadasivana. Entropies for detection ofepilepsy in EEG[J]. Computer Methods and programs in Biomedicine.2005,80(3):187-194.
    [118] H.R.Mohseni, A.Maghsoudi, N.Sadati. Automatic detection of epileptic seizure UsingTime-Frequency Distributions[C]. Advances in Medical, Signal and Information Processing,2006:1-4.
    [119]刘同明,夏祖勋.数据融合技术及其应用[M].北京:国防工业出版社,1998:3-5.
    [120]洪文学.基于多元统计图表示原理的信息融合和模式识别技术[M].北京:国防工业出版社,2008:88-92.
    [121]洪文学.基于多元图图形几何特征的模式识别新方法[J].燕山大学学报,2008,32(5):377-381.
    [122]徐永红.基于多元数据子空间坐标图表示的可视化模式识别[D].[燕山大学博士论文].2008:28-34.
    [123]孟辉.基于图表达蛋白质组学质谱模式的癌症诊断可视化方法研究[D].[燕山大学博士论文].2011:36-42.
    [124] Ramon Gonzalez Calvet. Treatise of plane geometry through geometric algebra[M]. Treatise ofPlane Geometry,2007:16-26.
    [125] http://www.physionet.org/physiobank/database/mitdb/
    [126]李乔华,周胜华.临床心律失常心电图与心脏电生理图谱[M].长沙:湖南科学技术出版社,2003:25-28.
    [127] Nicholas Tufillaro, Warren Weckesser. Symolic dynamics in mathematics, physics andengineering[M]. IMA Industrial Problems Seminar,1997:18-24.
    [128] Daw C.S. Symbol statistics: a new tool for understanding multiphase folw pheomena[M].ASME International Congress&Exposition,1998:115-120.
    [129]李毕琼.瞬态信号的符号化分析及其工程应用[D].[武汉理工大学博士论文].2006:48-52.
    [130] Godelie J, Letellier C. Symbolic sequence statistical analysis for free liquid jets[J]. PhysicalReview,2000:62(6):7973-7981.
    [131] Holste D, Grosse I, Hertzel H. Statistical analysis of the DNA sequence of human chromosome22[J]. Physical Review E64,2001:041917.
    [132] Lkhagva Battuguldur, Suzuki Yu, Kawagoe Kyoji. Extended SAX: Extension of symbolicaggregate approximation for financial time series data representation[C]. In: Proceedings ofDEWS20064A-i8:1-4.
    [133]钟清流,蔡自兴.基于统计特征的时序数据符号化算法[J].计算机学报,2008,31(10):1857-1864.
    [134]张贤达.时间序列分析—高阶统计量方法[M].北京:清华大学出版社.1996:26-35.
    [135]邱天爽,张旭秀,李小兵,孙永梅.统计信号处理—非高斯信号处理及其应用[M].北京:电子工业出版社.2005:38-42
    [136]连德忠.四元数向量和矩阵的秩[J].数学研究,2003,36(3):314-317.
    [137]张贤达.矩阵分析与应用[M].北京:清华大学出版社.2004:69-72.
    [138]欧阳高翔.癫痫脑电信号的非线性特征识别与分析[D].[燕山大学博士论文].2009:27-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700