多孔型微细通道强化传热结构的制造及传热性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用微细通道内的强迫对流换热已被证实是最具发展潜力的高效冷却解决方案之一。本文基于流-固强化换热原理,采用模压固相烧结技术制造多孔复合微细通道强化传热结构。鉴于微细尺度下,流-固表面结构对流体的影响巨大,而本文涉及多孔结构表面复杂,因此对多孔微细通道的传热性能进行了重点研究。主要内容如下:
     (1)基于固相烧结技术的强化换热结构的优化设计与制造
     根据微细尺度下强迫对流换热的特点,设计了四种多孔微细通道结构。提出采用模压固相烧结法制造多孔型微细通道换热芯的制作方法及工艺流程,并通过实验总结对各加工参数进行了优化。鉴于铜粉难以制造高孔隙的多孔材料,提出利用多齿切削法制作的铜纤维来制造低孔隙率的多孔烧结微通道换热芯。实验证明采用固相烧结法制造的多孔型通道结构具有精度高、可控性好、工艺简单等优点,而使用铜纤维制备的烧结多孔材料,孔隙率调节范围宽、热导率高,非常适合作为微通道换热芯。
     (2)微通道流-固耦合传热数值模拟
     针对微细尺度下,通道传热特性与流-固接触表面张力、流体粘性以及通道直径的限制,综合采用变流体物性、低雷诺数k-ε湍流模型以及混合沸腾相变模型对微通道内单相及沸腾局部传热特性进行数值模拟。模拟结果表明:流体物性强烈影响微通道内的对流及传热特性;采用变物性方法,对单相流态下的通道入口发展段、换热系数、压降特性等的数值模拟,均很好地符合实验结果;利用混合相变模型可以有效捕捉到通道内的气-液相分布特性,对换热器的设计制造有很好的指导意义。
     (3)多孔复合沟槽微细通道换热芯的传热性能测试
     多孔复合沟槽微细通道换热结构,通道底部烧结一层不规则铜粉。单相流条件下,多孔层颗粒度最大的换热芯传热性能最好,相对于平滑通道传热系数提高了约30%;多孔复合通道的摩擦系数高于平滑通道,并利用现有数据拟合了它们的摩擦系数关联式。沸腾两相流通道中,流体出现剧烈的波动现象,并观测到了多种两相流态,其中环状流是占主导地位的流态;多孔层有利于降低通道沸腾过热度,在通道干度较小时有利于提高其传热性能,但强烈沸腾的通道中无强化传热效果。
     (4)不同孔隙率及骨架材料的多孔微细通道传热性能测试?
     对铜粉及铜纤维构成四种孔隙率的烧结多孔微细通道换热芯进行对比测试。实验发现,相同流速下,孔隙率低的铜粉通道传热性能最好,但其压降也更大。耗费相同泵功下,孔隙率为70%铜纤维通道传热效率最高。沸腾发生时,多孔微细通道中没有观测到强烈的压降波动现象。
     从小型强迫对流换热器的角度总结了多孔复合沟槽型及多孔型两种微细通道换热结构的传热特点。较低泵功下多孔复合沟槽通道传热效率高;而较高泵功下低孔隙多孔通道传热效率高,且更适合沸腾相变传热。
To use forced convective heat transfer in the micro-channel has been already proven to be one of the most promising high efficient cooling solutions. Based on flow-solid enhanced heat transfer theory, mould pressing solid-phase sintering technology was used to fabricate the enhanced heat transfer structure of porous composite micro-channel. Due to huge influence of flow-solid surface structure to heat transfer in micro scale and complex structure of porous material, the heat transfer performances were also researched in detail. The major contents are as following:
     (1) Optimization design and manufacture of enhanced heat transfer structural based on solid-phase sintering technology
     According to the forced convection heat transfer characteristics in micro-scale, four kinds of porous micro-channel structures were designed. The fabrication methods and technics processes of using molded compression solid-phase sintering to fabricate porous micro-channel heat transfer core were proposed. The processing parameters were optimized through experiments summarizations. Since it is difficult to manufacture high-porosity porous material by using the copper powder, copper fibers made through the multi-tooth cutting method were proposed to fabricate low-porosity porous sintered micro-channel heat exchanger core. It is proved by the experiment that porous channel structure manufacturing by solid state sintering is of high precision, controllable, and easy process, and so on. The copper fiber sintered porous materials is of wide porosity adjustment range, high thermal conductivity, very suitable used for micro-channel heat exchanger.
     (2) Heat transfer numerical simulation of flow-solid coupling in micro-channel
     For the limitations of the channel heat transfer characteristics and fluid-solid contact surface tension, fluid viscosity and the channel diameter in micro scale, numerical simulation of single-phase and boiling part heat transfer characteristics in micro-channel was taken by synthetically using variable fluid properties, low Reynolds number k-e turbulence model and hybrid boiling phase change model. The results of the simulation show that: fluid properties strongly affect the convection and heat transfer characteristics in the micro-channel; at single-phase flow, numerical simulation of fluid entry development section, heat transfer coefficient, pressure drop characteristics can meet well with the experimental results; using mixed-phase transition model can effectively capture the gas-liquid phase distribution in the channel, which would be a good guide for design and manufacture of heat exchanger.
     ?(3) Heat transfer performance test of porous composite grooved micro-channel heat transfer core
     In the heat transfer structure of porous composite micro-channel, a layer of irregular copper powder was sintered in the channel bottom. Under the single-phase flow conditions, the heat transfer core with the largest size of porous layer particle has the best heat transfer performance, which was increased by about 30% relative to the heat transfer coefficient of smooth channel; friction coefficient of porous composite channel is higher than that of smooth channel. The correlation of these two friction coefficients were developed by using the existing data.
     In the boiling two-phase flow channel, the phenomenon of sharp fluctuations occurred in fluid, and multiple two-phase states were observed, of which the annular flow is the main flow. Porous layer is helpful to reduce the channel boiling superheat and improve the heat transfer performance when the dryness of the channel is small, but has no effect to enhance heat transfer in a strong boiling heat transfer channel.
     (4) Heat transfer performance test of porous micro-channel with different porosity and skeleton materials
     Tests were taken to compare four kinds of porosity sintered porous micro-channel heat transfer cores fabricated by copper powder and copper fibers. It was found in the experiment that at the same flow rates, copper powder channel with low porosity had the best heat transfer performance, but the pressure drop was greater. At the same pump power cost, copper fiber channel with the porosity rate of 70% had the highest heat transfer efficiency. No strong fluctuation phenomenon of pressure drop was observed in the porous micro-channel while boiling occurred.
     The heat transfer characteristics of porous composite grooved micro-channel heat transfer structure and porous micro-channel heat transfer structure were summarized. Porous composite grooved channel under lower pump power had higher heat transfer efficiency; while porous channel with low porosity under higher pump power had higher heat transfer efficiency, and is more suitable for boiling phase change heat transfer.
引文
[1] Bergles A. E. Heat transfer enhancement the encouragement and accommodation of high heat fluxes[J]. ASME Journal of Heat Transfer,1997,119:8-19
    [2]顾维藻,神家锐,马重芳,等.强化传热[M].北京:科学出版社, 1990
    [3] McGlen R.J., Jachuck R., Lin S.. Integrated thermal management techniques for high power electronic devices[J]. Applied Thermal Engineering, 2004, 24: 1143-1156
    [4] Ross P.E., Beat the heat[J]. Spectrum IEEE, 2004, 41 (5): 38-43
    [5] Tuckerman D.B., Pease R.E.W.. High performance heat sinking for VLSI[J]. IEEE Electronic Device Letters,1981,EDL-2(5): 126-129
    [6] Rohsenow W.M., Hartnett J. P., Ganic, E. N.. Handbook of heat transfer applications[M].2nd edition. New York: McGraw-Hill,1985
    [7] Balaras C.A.. A review of augmentation techniques for heat transfer surfaces in single- phase heat exchangers[J]. Energy, 1990, 15(10): 899-906
    [8] Bergles A.E.. Some perspectives on enhanced heat transfer second Generation heat transfer technology[J]. Journal of Heat Transfer,1988,110: 1082-1096
    [9] Webb R.L., Bergles A.E.. Heat transfer enhancement: second generation technology. Mechanical Engineering, 1983, 115(6): 60-67
    [10]凯斯W M,伦敦A L.紧凑式热交换器[M].北京:科学出版社, 1997
    [11]夏再忠.导热和对流换热过程的强化与优化[D].北京:清华大学工学博士学位论文, 2001
    [12] Singh R., Akbarzadeh A., Mochizuki M.. Sintered porous heat sink for cooling of high-powered microprocessors for server applications[J]. International Journal of Heat and Transfer, 2009, 52: 2289-2299
    [13] T’Joen C., Y Park., Wang Q., et al. A review on polymer heat exchangers for HVAC&R applications[J]. International Jounal of Refrigeration, 2009, 32: 763-779
    [14] Hetsroni G., Gurevich M., Rozenblit R.. Sintered porous medium heat sink for cooling of high-power mini-devices[J]. International Journal of Heat and Fluid Flow, 2006, 27:259-266
    [15] Kandlikar S.G.. Fundamental issues related to flow boiling in minichannels and microchannels[J]. Experimental thermal and fluid science, 2002, 26: 389-407
    [16] Kandlikar S.G., Grande W.J.. Evolution of Microchannel Flow Passages- Thermohydraulic Performance and Fabrication Technology[J]. Heat Transfer Engineering, 2002, 25(1): 3-17
    [17] Kawaji M., Chung P.M.Y.. Unique Characteristics of Adiabatic Gas-Liquid Flows in Microchannels: Diameter and Shape Effects on Flow Patterns, Void Fraction and Pressure Drop[A]. Proceedings of the First International Conference on Microchannels and Minichannels[C]. New York: ASME. 2003: 115-127
    [18] Ali M.I., Sadatomi M., Kawaji M.. Two-Phase Flow in NarrowChannels between Two Flat Plates[J]. canadian journal of chemical engineering, 1993, 71(5): 449-456
    [19] Mehendal S.S., Jacobi A.M., Shah R.K.. Fluid flow and heat transfer at micro-and meso-scales with application to heat exchanger design [J]. Applied Mechanics Reviews, 2000, 53 (7), 175-193
    [20] John R. T.. Boiling in microchannels: a review of experiment and theory[J]. International Journal of Heat and Fluid Flow, 2004, 25: 128-139
    [21] Fritz W.. Berechnung des maximal volume von Dampfblasen[M]. Phys Zeit, 1935, 36: 379-388
    [22] Kew P., Cornwell K.. Correlations for prediction of boiling heat transfer in small diameter channels[J]. Application Thermal Engineering, 1997, 17(8-10): 705-715
    [23] Lin L., Pisano A.P.. Bubble forming on a micro line heater[A]. Micromechanical sensors, actuators and systems[C]. DSC/ASME, 1991, 32: 147-164
    [24] George Em Karniadakis, Ali Beskok. Micro flows: fundamentals and simulation[M]. New York: Springer, 2002
    [25] Celata G.P.. Heat Transfer and Fluid Flow in Microchannels[M]. New York: Begell House Inc., 2004
    [26] Nikuradse J.. Strmunsgesetze in rauhen rohren[M]. VDI Forschungsheft, 1933, 361:1-22
    [27] Moody L.F., Friction factors for pipe flow[J]. Journal of Heat Transfer, 1944, 66: 671-684
    [28] Koo J., Kleinstreuer C.. Analysis of surface roughness effects on heat transfer in micro-conduits[J]. International Journal of Heat Mass Transfer, 2005, 48: 2625-2634
    [29] Croce G., D’Agaro P.. Numerical analysis of roughness effects on microtube heat transfer[J], Super Lattices Microstruct, 2004, 35: 601-616
    [30] Croce G., D’Agaro P.. Numerical simulation of roughness effect on microchannel heat transfer and pressure drop in laminar flow[J]. J. Phys. D: Appl. Phys., 2005, 38: 1518-1530
    [31] Wu H.Y., Cheng P.. An experimental study of convective heat transfer in silicon micro channels with different surface conditions[J]. International Journal of Heat Mass Transfer, 2003, 46: 2547-2556
    [32] Gui F.J., Scaringe R.P., Enhanced heat transfer in the entrance region of microchannels[A]. Proceedings of the 30th Intersociety Energy Conversion Engineering Conference[C], 1995, 2, 289-294
    [33] Wang B.X., Peng X.F.. Experimental investigation on liquid of forced convection heat transfer through microchannels[J]. International Journal of Heat Mass Transfer, 1994, 37(1): 73-82
    [34] Jiang P.X., Fan M.H., Si G.S., et al. Thermal-hydraulic performance of small scale micro-channel and porous-media heat exchangers[J]. International Journal of Heat and Mass Transfer, 2001, 44: 1039-1051
    [35] Stanley R.S., Barron R.F., Ameel T.A.. Two-phase flow in microchannels[A]. Proceedings of Micro Electro Mechanical Systems (MEMS)[C]. DSC/ASME, 1997, 62: 143-152
    [36]过增元.国际传热研究前沿微细尺度传热[M].力学进展. 2000, 30(2):16
    [37] Celata G. P., Cumo M., Gulielmi M., et al. Experimental investigation of hydraulic and single phase heat transfer in 0.130mm capillary Tube[J]. Nanoscale and MicroscaleThermophysical Engineering, 2002, 6(2): 85-97
    [38] Harms T.M., Kazmierczak M.J., Cerner F.M., et al. Experimental investigation of heat transfer and pressure drop through deep microchannels in a <1 0 0> silicon substrate[A]. Proceedings of the ASME Heat Transfer Division[C]. HTD-351, 1997: 347-357
    [39] Choi S.B., Barron R.F., Warrington R.O., Fluid flow and heat transfer in microtubes[A]. Micromechannical Sensors, Actuators and Systems[C]. ASME DSC. Atlanta: GA, 1991: 123-134
    [40] Yu D., Warrington R.O., Barron R., et al. An experimental and theoretical investigation of fluid flow and heat transfer in microtubes[A]. Proceedings of ASME/JSME Thermal Engineering Joint Conference[C]. Maui. HI, 1995: 523-530
    [41] Peng X.F., Wang B.X.. Forced convection and flow boiling heat transfer for liquid flowing through microchannels[J]. Internal Journal of Heat and Mass Transfer, 1993, 36: 3421-3427
    [42] Qu W., Mala G.M., Li D.. Heat transfer for water flow in trapezoidal silicon microchannels[J]. International Jounal of Heat and Transfer, 2000, 43: 3925-3936
    [43] Bucci A., Celata G.P., Cumo M., et al. Water single-phase fluid flow and heat transfer in capillary tubes[J]. Therm. Sci. Eng., 2003, 11(6): 81-89
    [44] Lelea D., Nishio S., Takano K.. The experimental research on microtube heat transfer and fluid flow of distilled water[J]. Int. J. Heat Mass Transfer, 2004, 47: 2817-2830
    [45] Hausen H.. Neue Gleichungen für die W?rmeübertragung bei freier oder erzwungener Str?mung[J]. Allg. Waermetech, 1959(9): 75-79
    [46] Shah R.K., London A.L.. Advances in Heat Transfer. Supplement 1: Laminar Forced Convection in Ducts[M]. Academic Press, New York, 1978
    [47] Gnielinski V., New equations for heat transfer in turbulent pipe and channel flow[J]. Int. Chem. Eng., 1976, 16: 359-368
    [48] Dittus F.W., Boelter L.M.K.. Heat transfer in automobile radiators of tubular type[M]. Univ. California, Berkeley, Publ. Eng., 1930, 2(13): 443-461
    [49] Petukhov B., Kurgano V., Gladuntsov A.. Heat transfer in turbulent pipe flow of gases with variable properties[J]. Heat Transfer Sov. Res., 1973, 5: 109-116
    [50] Rosa P., Karayiannis T.G. , Collins M.W., Review of Single-phase heat transfer in microchannels: The importance of scaling effects[J]. Appl. Therm. Eng. (2009), doi:10.1016/ j.applthermaleng.2009.05.015
    [51]甘云华.硅基微通道内流动与传热的可视化测量及其规律的研究[D].广州:中国科学院热能物理研究所博士论文, 2006
    [52] Zhao T.S., Bi Q.C., Co-current air-water two-phase flow patterns in vertical trigangular microchannels[J]. International Journal of Multiphase Flow, 2001, 27: 765-782
    [53] Yang C.Y., Shieh C.C.. Flow pattern of air-water and two-phase R-134a in small circular tubes[J]. International Journal of Multiphase Flow, 2001, 27(7):1163-1177
    [54] Coleman J.W., Garimella S.. Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a[J]. International Journal of Refrigeration, 2003, 26: 117-128
    [55] Xu J.L., Cheng P., Zhao T.S.. Gas-liquid two-phase flow regimes in rectangular channels with mini/micro gaps[J]. International Journal of Multiphase Flow, 1999, 25: 411-432
    [56] Kandlikar S.G., Steinke M.E., Tian S., et al. High speed photographic observation of flow boiling of water in parallel minichannels[A]. National Heat Transfer Conference[C]. Anaheim, California: ASME, 2001
    [57] Hetsroni G., Mosyak A., Segal Z., et al. Two-phase flow pattern in parallel micro-channels[J]. International Journal of Multiphase Flow, 2003, 29: 341-360
    [58] Feng Z., Serizawa A.. Two-phase flow patterns in ultra-smallchannels[a]. Second Japanese-European Two-Phase Flow Group Meeting[C]. Tsukuba, Japan, 2000
    [59] Triplett K.A., Ghiaasiaan S.M., Abdel-Khalik S.I., et al. Gas-liquid two-phase flow in micro-channels, Part I:Two phase flow patterns[J]. Int. J. Multiphase Flow, 1999, 25: 337-394
    [60] Katto, Y., Yokoya, S.. Experimental study of nucleate pool boiling in case of making interference-plate approach to the heating surface[A]. Proc. 3rd International Heat Transfer Conference[C]. Chicago, 1966, 33: 219-227
    [61] Kandlikar S.G.. Fundamental issues related to flow boiling in minichannels and microchannels[J]. Exp. Therm. Fluid Sci., 2002, 26 (2-4): 389-407
    [62] Jones R.C., Judd R.L.. An investigation of dryout/rewetting in subcooled two-phase flow boiling[J]. Int. J. Heat Mass Transfer, 2003, 46: 3143-3152
    [63] Qu W., Mudawar I.. Measurement and prediction of pressure drop in two-phase micro-channels heat sinks[J]. Int. J. Heat Mass Transfer, 2003, 46: 2737-2753
    [64] Bergles A.E.. Subcooled Burnout in Tubes of Small Diameter[J], ASME Paper No. 63-WA-182, 1963
    [65] Brutin D., Tadrist L.. Pressure drop and heat transfer analysis on flow boiling in a minichannel: Influence on the inlet condition on twophase flow stability[J]. Int. J. Heat Mass Transfer , 2004, 47(10-11): 2365-2377
    [66] Guo Z. Y.. Mechanism and control of convective heat transfer-Coordination of velocity and heat flow fields[M]. Chinese Science Bulletin, 2001, 46(7): 596-599
    [67]刘晋春,赵家齐.特种加工[M].第2版,北京:机械工业出版社, 1993
    [68] Ramasawmy H., Blunt L., Rajurkar K .P.. Investigation of the relationship between the white layer thickness and 3D surface texture parameters in the die sinking EDM process[J]. Precision Engineering, 2005, 29: 479-490
    [69]夏劲武,徐家文,赵建社.电火花加工表面质量的研究及进展[J].电加工与模具, 2008, 6: 11-15
    [70]黄培云.粉末冶金原理[M].北京:冶金工业出版社, 2004: 256-338
    [71]汪强兵,汤慧萍,奚正平.涂膜工艺对微孔金属钛滤膜性能的影响[J].稀有金属材料与工程, 2005, (增刊3): 10-11
    [72]李西兵.烧结式微热管的制造方法及其传热性能研究[D].广州:华南理工大学博士毕业论文
    [73]奚正平,汤慧萍.烧结金属多孔材料[M].北京:冶金工业出版社, 2009: 169-170
    [74] Bai P.F., Liu X.K., Yan H., et al. Surface treating of the 3D outside serrated integral-fin Tube Manufactured by rolling and extrusion processing[J]. Transactions of Nonferrous Metals Society of China, 2010, 20: 844-848
    [75]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社, 1995: 295-298
    [76] Tadrist L., Miscevic M., Rahli O., et al. About the use of fibrous materials in compact heat exchangers[J]. Experimental Thermal and Fluid Science, 2004, 28: 193-199
    [77]李加中.金属纤维加工[J].制造技术与机床, 1994, 2: 45-48
    [78]李加中.金属纤维的形成机理及切削规律[J].制造技术与机床, 1994, 3: 46-49
    [79] Wan Z.P., Tang Y., Liu Y.J., et al. High efficient production of slim long metal fibers using bifurcating chip cutting[J]. Journal of Materials Processing Technology, 2007, 189: 273-278
    [80] Zhou W., Tang Y., Pan M.Q.. Experimental investigation on uniaxial tensile properties of high-porosity metal fiber sintered sheet[J]. International Journal of Hydrogen energy, 2009, 34: 9745-9753
    [81] Palm B.. Heat transfer in microchannels[J]. Microscale Thermophysical Engineering, 2001, 5(3): 155-175
    [82] Hassan I., Phutthavong P., Abdelgawad M.. Microchannel heat sinks: an overview of the state-of-the-art[J]. Microscale Thermophys. Eng., 2004, 8: 183-205
    [83] Bayraktar T., Pidugu S.B., Characterization of liquid flows in microfluidic systems[J]. Int. Heat Mass Transfer, 2006, 49: 815-824
    [84] Morini G.L.. Single-phase convective heat transfer in microchannels: a review of experimental results[J]. Int. J. Thermal Sci. 2004, 43: 631-651
    [85] Li J., Peterson G.P., Cheng P.. Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow[J]. Int. J. Heat Mass Transfer, 2004, 47: 4215-4231
    [86] Toh K.C., Chen X.Y., Chai J.C.. Numerical computation of fluid flow and heat transfer in microchannels[J]. Appl. Thermal Eng. 2005, 25: 1472-1487
    [87] Tuckerman D.B.. Heat transfer microstructures for integrated circuits[D]. Ph.D. thesis,Stanford University, 1984
    [88] Herwig H., Mahulikar S.P.. Variable property effects in single-phase incompressible flows through microchannels[J]. Int. J. Thermal Sci., 2006, 45: 977-981
    [89] Li Z.G., Huai X.L., Tao Y.J., et al. Effects of thermal property variations on the liquid flow and heat transfer in microchannel heat sinks[J]. Applied Thermal Engineering, 2007, 27: 2803-2814
    [90] Sherman F. S.. Viscous Flow[M]. New York: McGraw-Hill,1990
    [91] Holman J. P.. Heat transfer[M]. 8th ed. London:McGraw-Hill,1997
    [92]云和明.细通道单相流动和传热特性的研究[D].济南:山东大学博士论文, 2007
    [93] Fluent Inc., FLUENT Users Guide[M]. 2005
    [94] Tong L. S., Tang Y. S.. Boiling Heat Transfer and Two-Phase Flow[M]. Series in Chemical and Mechanical Engineering. Washington D.C.: Taylor and Francis, 1997:147-166
    [95] Schiller L., Naumann A.. A Drag Coefficient Correlation[J]. V.d.i. Zeitung, 1935, 77: 318-320
    [96] Lee W. H.. A Pressure Iteration Scheme for Two-Phase Flow Modeling (Technical Paper No. LA-UR-79-975)[C]. Los Alamos, New Mexico, USA: Los Alamos National Laboratory, 1979
    [97] Shen S., Xu J.L. Zhou J.J., Chen Y.. Flow and heat transfer in microchannels with rough wall surface[J]. Energy Conversion and Management, 2006, 47: 1311-1325
    [98] Peng X. F., Peterson G. P., The effect of theromofluid and geometrical parameters on convection of liquids through rectangular microchannels[J], Int. J. Heat Mass Transfer,1996, 38: 755-758
    [99] Incropera F. P., DeWitt D. P.. Introduction to heat transfer[M].4th ed, New York:John Wiley&Sons,Inc., 2001
    [100] Xu J.L., Gan Y.H., Zhang D.C., et al. Microscale heat transfer enhancement using thermal boundary layer redeveloping concept[J]. International Journal of Heat and Mass Transfer, 2005, 48: 1662-1674
    [101] Bennett G.A., Briles S.D.. Calibration procedure developed for IR surface-temperature measurement[J]. IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1989, 12: 690-695
    [102] Hapke I., Boye H., Schmidt J.. Onset of nucleat boiling in minichannels[J]. International Journal of Thermal Sciences, 2000, 39: 505-513
    [103] Holman J.P.. Experimental Methods for Engineers[M], 4th ed., McGraw-Hill, New York, 1984
    [104] Samson E.C., Machiroutu S.V., Chang J.Y., et al. Interface material selection and a thermal management technique in second-generation platforms built on Intel CentrinoTM mobile technology[J]. Intel Technology Journal, 2005, 9(1): 75-86
    [105] Dunn P.D., Reay D.A.. Heat Pipes[M], Pergamon Press, Great Britain, 1994
    [106] Soliman M. M., Berenson P. J.. Effective thermal conductivity of dry and liquid saturated sintered fiber metal wicks[M]. ASME paper 70-HT/SPT40: June, 1970
    [107] Alexander E.G.. Structure-property relationships in heat pipe wicking materials[D], Ph.D. thesis, North Carolina State University, NC, USA, 1972
    [108] Huang P.C., Yang C.F., Hwang J.J., et al. Enhancement of forced-convection cooling of multiple heated blocks in a channel using porous covers[J]. International Journal of Heat and Mass Transfer 48 (2005) 647-664
    [109] Zhou W., Tang Y., Pan M.Q., et al. Experimental investigation on uniaxial tensile properties of high-porosity metal fiber sintered sheet [J]. Materials Science and Engineering A 525 (2009): 133-137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700