结合光栅结构的液晶光子学器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文将介绍结合光栅结构的一系列液晶光子学器件的研究和开发。我们利用液晶折射率电控可调的特性,结合特定的光栅结构设计,在较宽电磁频段内设计实现了一系列具有应用前景的液晶光子学器件。我们通过理论模拟和光学设计优化器件的结构参数,然后利用微纳加工技术手段完成了偏振无依赖的快速响应光开关、基于双层金属光栅的液晶显示增亮膜以及包括自偏振太赫兹相移器、可调太赫兹四分之一波片、太赫兹可调滤波器在内的三种太赫兹液晶光子学器件的设计开发。论文的主要研究内容分为如下三个部分:
     1.提出了一种基于正交平行结构取向液晶的光开关设计,从理论上对其偏振无依赖性进行了论证,并利用光控取向技术实际制备了液晶光栅从实验上进行了验证。针对实验中存在的问题,分析了其影响因素,进而提出了一种改进的结构设计方案。通过引入正交混合取向的结构设计结合双频液晶材料,利用固定电压调节频率来实现开关响应,这样既能保持器件的偏振无依赖性又使开关响应的速率提高了一个数量级以上。经过进一步优化结构参数,最终获得了开关比超过20dB、偏振无依赖性能优异、响应时间达到亚毫秒量级的光开关,并分析讨论了进一步提高这类器件性能的可能方案。
     2.针对液晶显示器中光能利用率偏低这一现实问题,我们提出了一种有效的改进方案。具体为利用亚波长金属光栅的偏振选择特性取代液晶显示面板中的吸收型后偏振片,结合液晶显示背光模组的退偏特性,最终通过反射部分光能的循环利用达到面板增亮的效果。通过对普通单层线栅的模拟,我们认为其偏振对比度不够高,无法满足代替传统吸收型偏振片的要求,因此我们进一步提出了新型双层金属线栅的结构,并采用严格耦合波分析法对所设计的双层线栅的光学性质进行模拟和优化,得出了一组最优的光栅结构参数,最终计算获得了采用该金属光栅增亮膜后液晶显示面板的理论增亮效果,较比传统吸收型偏振片能够增亮80%。我们初步进行了利用纳米压印技术实现上述亚波长金属线栅偏光片的制备尝试,获得了周期180nm的双层金属光栅结构,但工艺尚待进一步摸索优化。
     3.针对太赫兹波段可调控光子学器件的广阔应用前景和独特要求,利用液晶与光栅结构的结合,我们设计并实现了三种太赫兹波段的液晶光子学器件。首先,考虑到太赫兹波段的暂无合适的透明电极薄膜材料这一实际情况,我们利用亚波长金属光栅的导电性及其对不同偏振的选择性,提出在液晶盒中引入亚波长光栅既作为透明电极,又作为整个器件的偏振片这一设计。基于上述设计,我们实现了太赫兹液晶相移器的制备,在0.2-1.8THz的有效测量范围内,实现了最大66°的相移,且相移值大小可由外加电压来连续调节。基于上述工作,我们进一步设计了太赫兹可调四分之一波片。近太赫兹源(?)侧电极设计不变,另一侧电极尺寸扩大至波长量级,使其依然可以承担透明电极的作用但不再具有波长选择特性。同时,我们通过光控取向技术更精确地控制液晶层的初始取向,并引入在太赫兹波段呈现大双折射率的液晶材料,在实现相同调制量的前提下明显降低了盒厚。基于上述设计,我们实现在0.7-2.0THz波段通过外场调节精确匹配对应频率的位相延迟达到四分之一波长。最后,基于厚金属光栅的亚波长介质狭缝中电磁波传播的类F-P效应,我们设计了一种太赫兹滤波器,并进一步将液晶材料作为金属光栅狭缝中的介质,利用液晶的外场折射率可调特性改变透射峰位,进而实现了太赫兹可调滤波的制备。我们通过仿真计算对该器件结构参数进行了优化,并通过温调液晶折射率获得了初步的实验结果验证。
This thesis introduces the design, fabrication and characterization of several liquid crystal (LC) photonic devices combined with grating structures. We utilize the electro-tunability of LCs and the unique properties of grating structures with different size and shape to design some photonic devices at different working wavelengths. Through theoretical analysis and simulation, optical design and finally various micro/nano fabrication method, we have developed a fast response optical switch with polarization independence, a bilayer metallic grating as the brightness enhancement film in an LCD panel and three Terahertz (THz) LC devices including self-polarizing phase shifter, tunable quarter wave plate and tunable filter.
     1. We introduce the principle and advantages of photo-alignment technology. Based on such technology, we propose a design for polarization independent optical switch by employing orthogonal homogenously-aligned LC cell structure. The polarization independency is analyzed theoretically and then checked experimentally. However, the electro-optical properties of such structure are not good enough with low extinction ratio and slow response. Therefore we modify the structure design and propose an improved LC cell structure with orthogonal hybrid alignments. By introducing special dual-frequency LC materials into such structure, the optical switch based on which could be fast response while keeping the property of polarization independency. Trough simple optimization on structural parameters, we realize by experiment a polarization independent optical switch with over20dB extinction ratio as well as sub-millisecond response time. Further improvements for the performance are also discussed.
     2. We introduce the significance and principle of brightness enhancement (BE) in liquid crystal displays (LCDs). Based on the polarization selectivity of subwavelength metallic gratings, we propose a new type of bilayer subwavelength wire grids to work as a BE film and take place the conventional absorptive polarizer in LCD panels. Through simulation, we optimize grating structures and theoretically obtain the best optical performance we can reach. Then we calculate the BE efficiency by employing a power recycling system, and the result is that our bilayer subwavelength wire grids could bring80%more light intensity compared to commercial absorptive polarizer. Afterwards we try to realize such optimized grating structure experimentally by nanoimprint lithography, however, due to some technical problem, we have not reached satisfied performance yet, which remains to be further improved.
     3. We introduce the unique characteristics and great application potentials of THz waves as well as the importance of developing LC tunable components for THz regions. Trough the combination with gratings, we design and fabricate several liquid crystal photonic components for THz regime. First, taking account into the lack suitable materials for transparent conductive fims in THz region, we introduce subwavelength gratings to act as both transparent electrodes and polarizers. Based on this design, we fabricate a self-polarizing LC phase shifter in THz range. During the effective frequency range of measurement (0.2-1.8THz), we realize a maximal phase shift of66°, and the phase shift values could be tuned by applying external electric fields to the LC cell.
     Secondly, we follow the design for metallic grating as electrodes and propose a quarter wave plate for THz regions. When keeping the grating structure on one substrate to be still subwavelength scale so that it can work as a polarizer for the component, we enlarge the period of grating on the other substrate to wavelength scale, in order to prevent the polarization selectivity of this grating (which means we need a polarizer but not an analyzer) so that the function of quarter wave plate would not be affected. In this work we employ photo-alignment technology to precisely control the alignment directions on both substrates to be strictly parallel to each other. We further introduce large birefringent LC materials into this work. Compared to common nematic LC materials, the birefringence of such material is more than2times larger, so that the required cell gap could be evidently reduced when realizing the same modulation. We realize experimentally precise matching of required phase retardation values at different frequencies by applying different voltages, so that for the region of0.7-2.0THz, quarter wave plate function can be realized for every frequency.
     Finally, we introduce the principle of Fabry-Perot-like behavior in narrow dielectric slits in thick metallic screen. Based on this principle, we propose a metallic grating structure for THz filter and fill LC into the slits so that the resonant peaks could be shifted by tuning the effective refractive index of LCs. We optimize the structural parameters of this grating theoretically and preliminary experimental results are obtained. Further improvements on this work are now on going.
引文
[1]D. Rittenhouse, "An optical problem proposed by F. Hopkinson and solved," J. Am. Phil. Soc.,201,202 (1786)
    [2]M. C. Hutley, Diffraction gratings, London:Academic Press,1982
    [3]M. Neviere, and E. Popov, "Electromagnetic theory of gratings:review and potential applications," Proc. SPIE,3450,2 (1998)
    [4]E. G. Loewen and E. Popov, Diffraction gratings and application, Marcel Dekker, Inc., (1997)
    [5]J. O. White, M. Croningolomb, B. Fischer, and A. Yarive, "Coherent oscillation by self-induced gratings in the photorefractive crystals BaTiO3," Appl. Phys. Lett.,40,450 (1982)
    [6]G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase-and group-delay scanning with a grating-based phase control delay line," Opt. Lett., 22,1811 (1997)
    [7]B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, "Integrated tunable fiber gratings for dispersion management in high-bit rate systems,"J.Lightw. Technol.,18,1418 (2000)
    [8]J. Turunen, A. Vasara, J. Westerholm, G. Jin, A. Salin, "Optimisation and fabrication of grating beamsplitters,"J. Phys. D,21, S102 (1988)
    [9]H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, "Polarizing reflection grating beamsplitter for the 10.6-μm-wavelength," Opt. Eng.,32,1860 (1993)
    [10]G. Cincotti, "Polarization gratings:design and applications," IEEE J. Quantum Electron.,39,1645(2003)
    [11]T. K. Gaylord, and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proc. IEEE,73,894 (1985)
    [12]G. Nordin, and P. Deguzman, "Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region," Opt. Express,5,163 (1999)
    [13]J. Voros, J. J. Ramsden, G. Csucs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, "Optical grating coupler biosensors," Biomaterials,23,3699 (2002)
    [14]H. Machida, J. Nitta, A. Seko, and H. Kobayashi, "High-efficiency fiber grating for producing multiple beams of uniform intensity," Appl. Opt.,23,330 (1984)
    [15]A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors,"J. Lightw. Technol.,15, 1442 (1997)
    [16]H. Takahashi, Y. Hibino, and I. Nishi, "Polarization-insensitive arrayed-wave-guide grating wavelength multiplexer on silicon," Opt. Lett.,17, 499(1992)
    [17]K. Okamoto, M. Okuno, A. Himeno, and Y. Ohmori, "16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches," Electron. Lett.,32,1471 (1996)
    [18]D. Strickland, and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun.,56,219 (1985)
    [19]P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, "Generation of ultrahigh peak power pulses by chirped pulse amplification," IEEE J. Quantum Electron.,24,398(1988)
    [20]V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, "Quantitative model of volume hologram formation in photopolymers," J. Appl. Phys.,81,5913 (1997)
    [21]V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, "Volume holographic image storage and electrooptical readout in a polymer-dispersed liquid-crystal film," Opt. Lett.,20,1325 (1995)
    [22]M. Born and E. Wolf, Principles of optics:electromagnetic theory of propagation, interference and diffraction of light. Oxford:Pergamon,1980
    [23]J. W. Goodman, Introduction to Fourier optics. San Fransisco:McGraw-Hill, 1968
    [24]P. Petit, Electromagnetic theory of gratings. Berlin:Springer-Verlag,1980
    [25]S. L. Chuang, and J. A. Kong, "Wave scattering and guidance by dielectric wave guides with periodic surfaces," J. Opt. Soc. Am.,73,669 (1983)
    [26]P. C. Waterman, "Scattering by periodic surfaces," J. Acoust. Soc. Am.,57,791 (1975)
    [27]L. Rayleigh, Proc. Roy. Soc. A,79,399 (1907)
    [28]T. W. Preist, N. P. K. Cotter, and J. R. Sambles, "Periodic multi-layer gratings of arbitrary shape," J. Opt. Soc. Am.,72,839 (1982)
    [29]L. F. Li, and J. Chandezon, "Improvement of the coordinate transformation method for surface-relief gratings with sharp edges," J. Opt. Soc. Am. A,13, 2247(1996)
    [30]M. G Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction,"J.Opt. Soc. Am.,71,811 (1981)
    [31]M. G. Moharam and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A,12,1068(1995)
    [32]Y. Ohkawa, Y. Tsuji, and M. Koshiba, "Analysis of anisotropic dielectric grating diffraction using the finite-element method," J. Opt. Soc. Am. A,13,1006 (1996)
    [33]K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media," IEEE Trans. Antennas Propagat, AP14, 302 (1966)
    [34]D. W. Peters, S. A. Kemme, and G. R. Hadley, "Effect of finite grating, waveguide width, and end-facet geometry on resonant subwavelength grating reflectivity," J. Opt. Soc. Am. A,21,981 (2004)
    [35]T. K. Gaylord, W. E. Baird, and M. G. Moharam, "Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings," Appl. Opt.,25,4562 (1986)
    [36]V. V. Nevdakh, N. S. Leshenyuk, and L. N. Orlov, "Experimental investigation of the polarization properties of reflective diffraction gratings for CO2 lasers," J. Appl. Spectrosc.,39,1249 (1983)
    [37]R. M. A. Azzam, "Polarizing beam splitters for infrared and millimeter waves using single-layer coated dielectric slab or unbacked films," Appl. Opt.,25,4225 (1986)
    [38]S. Habraken, O. Michaux, Y. Renotte, and Y. Lion, "Polarizing holographic beam splitter on a photoresist," Opt. Lett.,20,2348 (1995)
    [39]W. J. Yu, T. Konishi, T. Hamamoto, H. Toyota, T. Yotsuya, and Y. Ichioka, "Polarization-multiplexed diffractive optical elements fabricated by subwavelength structures," Appl. Opt.,41,96 (2002)
    [40]Z. N. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,"Appl. Phys. Lett.,77,927 (2000)
    [41]H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Express,15,15457 (2007)
    [42]C. J. Min, P. Wang, C. C. Chen, Y. Deng, Y. H. Lu, H. Ming, T. Y. Ning, Y. L. Zhou, and G. Z. Yang, "All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials," Opt. Lett.,33,869 (2008)
    [43]L. H. Cescato, E. Gluch, and N. Streibl, "Holographic quarterwave plates," Appl. Opt.,29,3286(1990)
    [44]Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett.,27,285(2002)
    [45]N. Dahan, A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Thermal image encryption obtained with a SiO2 space-variant subwavelength grating supporting surface phonon-polaritons," Opt. Lett.,30,3195 (2005)
    [46]F. Reinitzer, Monatschr. Chem.,9,421 (1888)
    [47]P. G. deGennes and J. Prost, The physics of liquid crystals, New York:Oxford University Press,1993
    [48]S. T. Wu, "Birefringence dispersions of liquid crystals," Phys. Rev. A,33,1270 (1986)
    [49]D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices, England:John Wiley & Sons Ltd.,2006
    [50]徐寿颐编写,液晶与液晶显示,北京:清华大学出版社,1996
    [51]松本正义、角田市良合著,刘瑞祥译,液晶之基础与应用,台北:国立编译馆,2002
    [52]G. H. Heilmeie, L. A. Zanoni, and L. A. Barton, "Dynamic scattering in nematic liquid crystals" Appl. Phys. Lett.,13,46 (1968)
    [53]C. Deutsch, and P. N. Keating, "Scattering of coherent light from nematic liquid crystals in dynamic scattering mode," J. Appl. Phys.,40,4049 (1969)
    [54]G. H. Heilmeie, and L. A. Zanoni, "Guest-host interactions in nematic liquid crystals. A new electro-optic effect," Appl. Phys. Lett.,13,91 (1968)
    [55]M. Schadt, and W. Helfrich, "Voltage-dependent optical activity of a twisted nematic liquid crystal," Appl. Phys. Lett.,18,127 (1971)
    [56]C. Z. Vandoorn, "Dynamic behavior of twisted nematic liquid-crystal layers in switched fields,"J. Appl. Phys.,46,3738 (1969)
    [57]Y. Takiguchi, A. Kanemoto, H. Imura, T. Enomoto, S. Ida, T. Toyoka, H. Ito, and H. Hara, "Achromatic super twisted nematic LCD having a polymeric liquid-crystal compensator," Eurodisplay 90,96 (1990)
    [58]T. P. Brody, "The Thin Film Transistor—A Late Flowering Bloom," IEEE Trans. Elect. Dev., ED-31,1614 (1984)
    [59]F. Libsch and R. Troutman, "Modeling and Parameter Extraction of Amorphous Silicon Thin-Film-Transistors for Active-Matrix Liquid-Crystal Displays," IEEE IEDM,855 (1990)
    [60]H. Takano, S. Suzuki, and H, Hatoh, "Cell design of gray-scale thin-film-transistor-driven liquid-crystal displays," IBM J. Research & Dev.,36, 23 (1991)
    [61]M. Ohe, and K. Kondo, "Electro-optical characteristics and switching behavior of the in-plane switching mode," Appl. Phys. Lett.,67,3895 (1995)
    [62]S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optical characteristics and switching principle of a nemaatic liquid crystal cell controlled by fringe-field switching," Appl. Phys. Lett.,73,2881 (1998)
    [63]Y. Koike, and K. Okamoto, "Super high quality MVA-TFT liquid crystal displays," Fujitsu Sci.& Technol. J.,35,221 (1999)
    [64]C. Cai, A. Lien, P. S. Andry, P. Chaudhari, R. A. John, E. A. Gallligan, J. A. Lacey, H. Ifill, W. S. Graham, and R. D. Allen, "Dry vertical alignment method for multi-domain homeotropic thin-film-transistor liquid crystal displays," Jpn. J. Appl. Phys.,40,6913 (2001)
    [65]G. Gu, P. E. Burrows, S. Venkatesch, S. R. Forrest, and M. E. Thompson, "Vacuum-deposited, nonpolymeric flexible organic light-emitting devices," Opt. Lett.,22,172(1997)
    [66]P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, "Achieving full-color organic light-emitting devices for lightweight, flat-panel displays," IEEE Trans. Electron Devices,44,1188 (1997)
    [67]S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, "Theory of the blue phase of cholesteric liquid-crystals," Phys. Rev. Lett.,46,1216 (1981)
    [68]H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, "Polymer-stablized liquid crystal blue phases," Nat. Mater.,1,64 (2002)
    [69]Z. B. Ge, S. Gauza, M. Z. Jiao, H. Q. Xianyu, and S. T. Wu, "Electro-optics of polymer-stablized blue phase liquid crystal displays," Appl. Phys. Lett.,94, 101104(2009)
    [70]M. F. Schiekel, and K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields," Appl. Phys. Lett.,19,391 (1971)
    [71]T. Ikeda, and O. Tsutsumi, "Optical switching and image storage by means of azobenzene liquid-crystal films," Science,168,1873 (1995)
    [72]U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, "Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams," Opt. Express,18,8697 (2010)
    [73]Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, "Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal," Opt. Express,12,1221 (2004)
    [74]G. Zhu, B. Y Wei, L. Y. Shi, X. W. Lin, W. Hu, Z. D. Huang, and Y. Q. Lu, "A fast response variable optical attenuator based on blue phase liquid crystal," Opt. Express,21,5332(2013)
    [75]J. S. Patel, M. A. Saifi, D. W. Berreman, C. L. Lin, N. Andredakis, and S. D. Lee, "Electrically tunable optical filter for infraraed wavelength using liquid-crystals in a Fabry-Perot etalon," Appl. Phys. Lett.,57,1718 (1990)
    [76]K. Hirabayashi, H. Tsuda, and T. Kurokawa, "Tunable liquid-crystal Fabry-Perot-inferometer filter for wavelength-division multiplexing communication systems,"J. Lightw. Technol.,11,2033 (1993)
    [77]J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, "Full C-Band External Cavity Wavelength Tunable Laser Using a Liquid-Crystal-Based Tunable Mirror," IEEE Photon. Technol. Lett.,17,681 (2005)
    [78]S. H. Chen, J. C. Mastrangelo, and R. J. Jin, "Glassy liquid crystal films as broadband polarizers and relectors via spatially modulated photoacemization," Adv. Mater,11,1183(1999)
    [79]R. M. Matic, "Blazed phase liquid crystal beam steering," Proc. SPIE,2120,194 (1994)
    [80]P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Hobbs, S. Douglas, M. Holz, S. Liberman, H. Q. Nguyen, P. Daniel, R. C. Sharp, and E. A. Wastson, "Optical phased array technology," Proc. IEEE,84,268 (1996)
    [81]D. J. Broer, J. Lub, and G. N. Mol, "Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient," Nature,378,467 (1995)
    [82]R. Yamaguchi, T. Nose, and S. Sato, "Liquid-crystal polarizers with axially symmetrical properties,"Jpn. J. Appl. Phys.,28,1730 (1989)
    [83]J. Ertel, R. Helbing, C. Hoke, D. Landolt, K. Nishimura, P. Robrish, and R. Trutna, "Design and performance of a reconfigurable liquid-crystal-based optical add/drop multiplexer," J. Lightw. Technol.,24,1674 (2006)
    [84]A. Di Falco, and G. Assanto, "Tunable wavelength-selective add-drop in liquid crystals on a silicon microresonator," Opt. Commun.,279,210 (2007)
    [85]H. R. Morris, C. C. Hoyt, P. Miller, and P. J. Treado, "Liquid crystal tunable filter Raman chemical imaging,"Aool.Spectro.,50,805 (1996)
    [86]H. P. Chen, D. Katsis, J. C. Mastrangelo, S. H. Chen, S. D. Jacobs, and P. J. Hood, "Glassy liquid-crystal films, with opposite chirality as high-performance optical notch filters and reflectors," Adv. Mater.,12,1283 (2000)
    [87]N. Gupta, R. Dahmani, and S. Choy, "Acousto-optic tunable filter based visible-to near-infrared spectropolarimetric imager," Opt. Eng.,41,1033 (2002)
    [88]N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y Takanishi, K. Ishikawa, and H. Takezoe, "Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals," Nat. Mater.,1,43 (2008)
    [89]W. M. Gibbons and S. T. Sun, "Optically generated liquid crystal gratings," Appl. Phys. Lett.,65,2542 (1994)
    [90]V. K. Gupta, and N. L. Abbott, "Design of surfaces for patterned alignment of liquid crystals on planar and curved substrates," Science,276,1533 (1997)
    [91]H. W. Ren, Y. H. Fan, and S. T. Wu, "Prism grating using polymer stabilized nematic liquid crystal," Appl. Phys. Lett.,82,3168 (2003)
    [92]B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys.,41,1232 (2002)
    [93]V. V. Presnyakov, K. E. Asatryan, and T. V. Galstian, "Polymer-stabilized liquid crystal for tunable microlens spplications," Opt. Express,10,865 (2002)
    [94]H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystal," Appl.Phys. Lett.,83,1515 (2003)
    [95]T. Kurokawa, and S. Fukushima, "Spatial light modulators using ferroelectric liquid crystal," IEEE Photon. Technol. Lett.,7,965 (1995)
    [96]J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, "Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,' Appl. Opt.,39,1549(2000)
    [97]J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, "Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator," Appl. Optics,39,1549 (2000)
    [98]C. Y. Chen, C. L. Pan, C. F. Hsieh, Y. F. Lin, and R. P. Pan, "Liquid-crystal-based terahertz tunable Lyot filter," Appl. Phys. Lett.,88,101107 (2006)
    [99]R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, "Liquid crystal based electrically switchable Bragg structure for THz waves," Opt. Express,17,7377 (2009)
    [100]D. Dolfi, M. Labeyrie, P. Joffre, and J. P. Huignard, "Liquid-crystal microwave phase-shifter," Electron. Lett.,29,926 (1993)
    [101]F. Z. Yang and J. R. Sambles, "Microwave liquid crystal wavelength selector," Appl. Phys. Lett.,79,3717 (2001)
    [102]S. D. Jacobs, K. A. Cerqua, K. L. Marshall, A. Schmid, M. J. Guardalben, and K. J. Skerrett, "Liquid-crystal laser optics:design, fabrication, and performance,"J. Opt. Soc. Am. B.,5,1962 (1988)
    [103]V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett.,23,1707 (1998)
    [104]H. Finkelmann, S.T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater,13,1069(2001)
    [105]H. Coles, and S. Morris, "Liquid-crystal lasers," Nat. Phton.,4,676 (2010)
    [106]S. Harris, "Characterization and application of a liquid crystal beam steering device," Proc. SPIE,4291,109 (2001)
    [107]S. Baek, S. Roh, J. H. Na, Y. Jeong, C. Jeong, S. D. Lee, and B. Lee, "Liquid-crystal-cladding fiber bragg gratings with electrically controllable polarization-dependent characteristics," Jpn. J. Appl. Phys.,45,4044 (2006)
    [108]H. Sakata, "Analysis of tunable codirectional vertical couplers with liquid crystal overlays for integrated dye lasers," Opt. Quant. Electron.,37,407 (2005)
    [109]M. Xu, H. P. Urbach, D. K. G. de Boer, and H. J. Cornelissen, "Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon," Opt. Express,13,2303 (2005)
    [110]H. H. Lin, and M. H. Lu, "Design of hybrid grating for color filter application in liquid crystal display,"Jpn. J. Appl. Phys.,46,5414 (2007)
    [111]D. C. Flanders, D. C. Shaver, and H. I. Smith, "Alignment of liquid crystals using submicrometer periodicity gratings," Appl. Phys. Lett.,32,597 (1978)
    [112]E. L. Wood, G. W. Bradberry, P. S. Cann, and J. R. Sambles, "Determination of azimuthal ahcoring energy in grating-aligned twisted nematic liquid-crystal layers," J. Appl. Phys.,82,2483 (1997)
    [113]C. V. Brown, M. J. Towler, V. C. Hui, and G. P. Bryan-Brown, "Numerical analysis of nematic liquid crystal alignment on asymmetric surface grating structures," Liq. Crys.,27,233 (2000)
    [114]D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, "Cholesteric gratings with field-controlled period," Appl. Phys. Lett.,71,3323 (1997)
    [115]A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and R. Manohar, "Single walled carbon nano-tube, ferroelectric liquid crystal composites:Excellent diffractive tool" Appl. Phys. Lett.,99,201106 (2011)
    [116]M. Bouvier, and T. Scharf, "Analysis of nematic-liquid-crystal binary gratings with high spatial frequency," Opt. Eng.,39,2129 (2000)
    [117]L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, "Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings," Appl. Phys. Lett.,87,201106 (2005)
    [118]R. G. Lindquist, J. H. Kulick, G. P. Nordin, J. M. Jarem, S. T. Kowel, M. Friends, and T. M. Leslie, "High-resolution liquid-crystal phase grating formed by fringing fields from interdigitated electrodes," Opt. Lett.,19,670 (1994)
    [119]J. Yan, Y. Li, and S. T. Wu, "High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal," Opt. Lett.,36,1404 (2011)
    [120]R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, "Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes," Chem. Mater.,5,1533 (1993)
    [121]Y. Q. Lu, F. Du, and S. T. Wu, "Polarization switch using thick holographic polymer-dispersed liquid crystal grating," J. Appl. Phys.,95,810 (2004)
    [122]J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, "An electro-optically controlled liquid crystal diffraction grating," Appl. Phys. Lett.,67,2588 (1995)
    [123]W. Y. Wu, and A. Y. G. Fuh, "Rewritable liquid crystal gratings fabricated using photoalignment effect in dye-doped poly(vincl alcohol) film," Jpn. J. Appl. Phys.,46,6761 (2007)
    [124]J. Kim, J. H. Na, and S. D. Lee, "Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting," Opt. Express 20, 3034(2012)
    [125]V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials:Physics and Applications. England:Johns & Wiley,2008
    [126]G. Fernandez, "Liquid-crystal polymers:Exotic actuators," Nat. Mater.12, 12(2013)
    [1]C. R. Giles, V. Aksyuk, B. Barber, R Ruel, L. Stulz, and D. Bishop, "A silicon MEMS Optical Switch Attenuator and Its Use in Lightwave Subsystems," IEEE J. Sel. Top. Quant. Electron.,5,18 (1999)
    [2]R. T. Chen, H. Nguyen, and M. C. Wu, "A High-Speed Low-Voltage Stress-Induced Micromachined 2X2 Optical Switch," IEEE Photon. Technol. Leff.,11,1396(1999)
    [3]V. Kaman, X. Z. Zheng, R. J. Helkey, C. Pusarla, and J. E. Bowers, "A 32-Element 8-Bit Photonic True-Time-Delay System Base on a 288X288 3-D MEMS Optical Switch," IEEE Photon. Technol. Lett.,15,849 (2003)
    [4]E. Gros and L. Dupont, "Ferroelectric Liquid Crystal Optical Waveguide Switches Using the Double-Refraction Effect," IEEE Photon. Technol. Lett.,13, 115(2001)
    [5]Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, "A Polarization Insensitive 2×2 Optical Switch Fabricated by Liquid Crystal-Polymer Composite,"Appl. Phys. Lett.,86,041115 (2005)
    [6]A. L. Zhang, K. T. Chan, M. S. Demokan, V. W. C. Chan, P. C. H. Chan, H. S. Kwok, and A. H. P. Chan, "Integrated Liquid Crystal Optical Switch Based on Total Internal Reflection," Appl. Phys. Lett.,86,211108 (2005)
    [7]J. Yang, Q. Zhou, and R. T. Chen, "Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect," Appl. Phys. Lett.,81,1947 (2002)
    [8]A. Sharkawy, S. Y. Shi, D. Prather, and R. Soref, "Electro-optical switching using coupled photonic crystal waveguides," Opt. Express,10,1048 (2002)
    [9]D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and D. K. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightw. Technol.,14,1005 (1996)
    [10]S. E. Harris, and Y. Yamamoto, "Photon switching by quantum interference," Phys. Rev. Lett.,81,3611 (1998)
    [11]J. Yan, Y. Li, and S. T. Wu, "High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal," Opt. Lett.,36,1404 (2011)
    [12]N. K. Shankar, J. A. Morris, C. R. Pollock, C. P. Yakmyshyn,S. Springs, T. W. Whitehead, and N. C. Raleigh, "Optical switches using cholesteric or chiral nematic liquid crystals and method of using same," U. S. Patent:4,991,924
    [13]B. G. Wu, J. H. Erdmann, and J. W. Doane, "Response times and voltages for PDLC light shutters," Liq. Cryst.,5,1453 (1989)
    [14]V. Chigrinov, A. Muravski, and H. S. Kwok, "Anchoring properties of photoaligned azo-dye materials," Phys. Rev. E,68,061702 (2003)
    [15]H. Akiyama, T. Kawara, H. Takada, H. Takatsu, V. Chigrinov, E. Prudnikova, V. Kozenkov, and H. Kwok, "Synthesis and properties of azo dye aligning layers for liquid crystal cells," Liq. Cryst.,29,1321 (2002)
    [16]V. G. Chigrinov, V. M. Kozenkov, H. S. Kwok, Photoalignment of Liquid Crystalline Materials:Physics and Applications, Wiley, England, (2008)
    [17]R. Magnusson, and T. K. Gaylord, "Diffraction efficiencies of thin phase gratings with arbitrary grating space," J. Opt. Soc. Am.,68,806 (1978)
    [18]Y. H. Fan, H. W. Ren, X. Liang, Y. H. Lin, and S. T. Wu, "Dual-frequency liquid crystal gels with submillisecond response time," Appl. Phys. Lett.,85,2451 (2004)
    [19]I. C. Khoo, and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals, Singapore, World Scientific,1993
    [20]Y. Q. Lu, X. Liang, Y. H. Wu, F. Du, and S. T. Wu, "Dual-Frequency Addressed Hybrid-Aligned Nematic Liquid Crystal," Appl. Phys. Lett.,85,3354 (2004)
    [21]X. J. Wang, Z. D. Huang, J. Feng, X. F. Chen, X. Liang and Y. Q. Lu, "Liquid crystal modulator with ultra-wide dynamic range and adjustable driving voltage," Opt. Express,16,13168 (2008)
    [1]R. C. Allen, L. W. Carlson, A. J. Ouderkirk, M. F. Weber, A. L. Kotz, T. J. Nevitt, C. A. Stover, and B. Majumdar, "Brightness enhancement film," U. S. Patent: 6,111,696
    [2]J. M. Jonza, M. F. Weber, A. J. Ouderkirk, and C. A. Stover, "Optical film," U. S. Patent:5,882,774
    [3]崔铮著,微纳米加工技术及其应用,北京:高等教育出版社,2005
    [4]H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, "Sub-50 nm period patterns with EUV interference lithography," Microelectron. Eng.,67,56 (2003)
    [5]J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Appl. Phys. Lett.,89,141105 (2006)
    [6]K. Nummila, M. Tong, A. A. Ketterson, and I. Adesida, "Fabrication of sub-100-nm T gates with SiN passivation layer," J. Vac. Sci. Technol. B,9,2870 (1991)
    [7]Y. Chen, D. Macintyre, E. Boyd, D. Moran, I. Thayne, and S. Thoms, "Fabrication of high electron mobility transistors with T-gates by nanoimprint lithography," J. Vac. Sci. Technol. B,20,2887 (2002)
    [1]B. Ferguson, and X. C. Zhang, "Materials for terahertz science and technology," Nat. Mater.,1,26 (2002)
    [2]A. G. Markelz, A. Roitberg, and E. J. Heilweil, "Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz," Chem. Phys. Lett.,320,42 (2000)
    [3]M. Wan Exter, Ch. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Opt. Lett.,14,1128 (1989)
    [4]L. Duvillaret, F. Garet, and J. L. Coutaz, "A reliable method for extraction of material parameters in Terahertz time-domain spectroscopy," IEEE J. Sel. Top. Quant. Electron.,2,739 (1996)
    [5]M. Lin, C. G. Cho, T. M. Lu, X. C. Zhang, S. Q. Wang, and J. T. Kennedy, "Time-domain dielectric constant measurement of thin film in GHz-THz frequency range near the Brewster angle," Appl. Phys. Lett.,74,2113 (1999)
    [6]M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Biittner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett., 80,154 (2002)
    [7]T. Dekorsy, H. Auer, C. Waschke, H. J. Bakker, H. G. Roskos, and H. Kurz, "Emission of submillimeter electromagnetic waves by coherent phonons," Phys. Rev. Lett.,74,738 (1995)
    [8]M. C. Nuss, "Chemistry is right for T-ray imaging," IEEE Circuits & Devices,12, 25(1996)
    [9]许景周,张希成,太赫兹科学技术和应用,北京:北京大学出版社,2007
    [10]D. Loudkov, P. Khosropanah, S. Cherednichenko, A. Adam, H. Merkel, E. Kollberg, and G. Gol'tsman, "Broadband Fourier transform spectrometer (FTS) measurements of spiral and double-slot planar antennas at THz frequencies," 13th Intern. Symp. Space THz Technol.,373 (2002)
    [11]D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett.,53,1555(1984)
    [12]Ch. Fattinger, and D. Grischkowsky, "Point source terahertz optics," Appl. Phys. Lett.,53,1480(1988)
    [13]L. Sun, Z. H. Lv, W.Wu, W. T. Liu, and J. M. Yuan, "Double-grating polarizer for terahertz radiation with high extinction ratio," Appl. Opt.,49,2067 (2010)
    [14]S. K. Awasthi, A. Srivastava, U. Malaviya, S. P. Ojha, "Wide-angle, broadband plate polarizer in Terahertz frequency region," Solid State Commun.,146,506 (2008)
    [15]N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, "Optically implemented broadband blueshift switch in the Terahertz regime," Phys. Rev. Lett.,106, 037403 (2011)
    [16]H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active terahertz metamaterial devices," Nature,444,597 (2006)
    [17]D. M. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett.,83,201 (2003)
    [18]I. C. Ho, C. L. Pan, C. F.Hsieh, and R. P. Pan, "Liquid-crystal-based terahertz tunable Solc filter," Opt. Lett.,33,1401 (2008)
    [19]S. T. Wu, "Birefringence dispersions of liquid crystal," Phys. Rev. A,33,1270 (1986)
    [20]D. M. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, "Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter," Opt. Express,12,2625 (2004)
    [21]H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, "Electrically tunable room-temperature 2 pi liquid crystal terahertz phase shifter," IEEE Photon. Technol.Lett.,18,13(2006)
    [22]C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, "Electrically controlled liquid crystal phase grating for terahertz waves," IEEE Photon. Technol. Lett.,21, 730 (2009)
    [23]D. W. Berreman, "Solid surface shape and the alignment of an adjacent nematic liquid crystal," Phys. Rev. Lett.,28,1683 (1972)
    [24]I. C. Khoo, and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore,1993)
    [25]C. S. Yang, C. J. Lin, R. P. Pan, C. T. Que, K. Yamamoto, M. Tani, C. L. Pan, "The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range," J. Opt. Soc. Am. B,27,1866 (2010)
    [26]L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, "Large birefringence liquid crystal material in terahertz range," Opt. Mater. Express,2,1314 (2012)
    [27]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A, Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, 391,667(1998)
    [28]J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett.,83,2845 (1999)
    [29]D. X. Qu, D. Grischkowsky, and W. L. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett.,29,896 (2004)
    [30]H. Cao, and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express,12,1004 (2004)
    [31]C. Genet, and T. W. Ebbesen, "Light in tiny holes," Nature,445,39 (2007)
    [32]U. Schroter, and D. Heitmann, "Surface-plasmon-enhanced transmission through metallic gratings," Phys. Rev. B,58,15419 (1998)
    [33]C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett.,76,140(2000)
    [34]M. M. J. Treacy, "Dynamical diffraction in metallic optical gratings," Appl. Phys. Lett.,75,606 (1999)
    [35]Y. Takakura, "Optical resonances in a narrow slit in a thick metallic screen," Phys. Rev. Lett.,86,5601(2001)
    [36]F. Z. Yang, and J. R. Sambles, "Resonant transmission of microwaves through a narrow metallic slit," Phys. Rev. Lett.,89,063901 (2002)
    [37]M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, "Stationary surface plasmon on a zero-order metal grating," Phys. Rev. Lett.,80, 5667(1998)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700