光子晶体THz器件及光子晶体光纤超连续谱产生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体是具有频率带隙的周期介电材料,自20世纪80年代光子晶体的概念提出以来一直受到广泛的关注。在光子晶体中各种缺陷的引入也为光子晶体的应用和发展提供了广阔的前景。特别是在太赫兹科学及技术这一新兴的前沿学科领域,光子晶体灵活控制电磁波传输的能力使之倍受关注。本文结合理论分析和实验研究,对近红外波段光子晶体光纤(PCF)中超连续谱的产生、THz波在光子晶体中的传输特性进行了系统的研究。利用液晶材料的双折射效应,探索和分析了用光子晶体实现THz功能器件的有效技术途径。论文主要研究内容和创新点包括以下几个方面:
     1、为了将超连续谱应用于相干反斯托克斯拉曼散射共焦成像系统,我们在理论和实验上分析和研究了飞秒激光脉冲与PCF相互作用的多种非线性效应。利用分步傅立叶法对广义的非线性薛定谔方程进行了数值求解,在考虑高阶色散和非线性效应的情况下,对飞秒激光脉冲在PCF中的传输特性进行了模拟分析。研究了高阶色散、自陡峭、脉冲内拉曼散射效应对PCF中超短脉冲的传输以及最后超连续谱产生的影响。并在实验上分析了外界条件如入射激光的功率和中心波长对超连续谱产生的影响。
     2、利用有限元法分析了在空芯PCF纤芯中填充二硫化碳、三氯甲烷、甲苯等高非线性液体后PCF的传输特性、模式及色散特点。在此基础上,系统分析了在液芯高非线性PCF中超连续谱产生的过程及特点。研究结果表明,该类PCF的零色散波长可在800nm左右调节,因此中心波长为800nm的钛蓝宝石飞秒激光可以在较短的距离(几个毫米)和较小的能量下产生比较平坦的超连续谱。
     3、理论分析了THz波段填充液晶的光子晶体波导在磁场调控下的传输特性,在此基础上,提出了一种基于二维光子晶体波导的THz多功能器件的设计方案。利用平面波展开法和时域有限差分法对这种液晶调谐的THz光子晶体开关和滤波器的带隙结构、磁场控制下带隙的变化特点以及传输特性等进行了系统的分析。结果表明:在磁场控制的液晶双折射作用下,该结构的光子晶体波导同时具有开关和可调谐滤波的功能。
     4、提出了一种基于布拉格光纤的高消光比THz开关结构。通过在包层中采用高阻硅和向列相液晶E7构成的周期性一维光子晶体结构,并施加外加磁场来控制液晶的取向,实现了对THz波的开关控制功能。数值模拟结果表明该结构的太赫兹开关消光比可达39.93dB。
     5、通过分析二维正方形光子晶体中点缺陷和线缺陷的缺陷模特性以及缺陷模之间的耦合特性,提出了一种基于电场控制的液晶双折射THz可调谐窄带滤波器。此滤波器可实现中心频率从0.94THz到0.996THz的连续可调谐窄带(0.02THz)滤波。
     6、提出了一种由两个点缺陷和上下载波导构成的波分复用和窄带滤波器的设计方案。当输入波导和输出波导平行时,这种光子晶体结构的透射谱中有两个窄带峰,其最小宽度可到0.015THz,可作为一种很好的波分复用系统。而当输入波导和输出波导垂直时,其中一个峰消失,此时可做为一种较好的窄带滤波器。
Photonic crystals (PCs), in which dielectric materials with different dielectric constants are periodically arrayed in one or more dimensions, are formed naturally or artificially. The essential property of photonic crystals is the photonic band gaps (PBGs) where light with certain wavelength cannot propagate through it. The designed defect in PCs is also a very important issue. Most applications of PCs are based on how to introduce the defects into the PCs. The PC products have been growing rapidly.
     In this thesis, the supercontinuum spectra generation in photonic crystal fiber (PCF) and the propagation properties of THz waves in PCs are studied theoretically and experimentally. Based on the electrically or magnetically birefringence of liquid crystal, several efficient methods for the realization of THz devices by using PCs are proposed. The details are described as follows:
     1. To provide a supercontinuum light source for the corherent anti stokes Raman scarring (CARS) confocal system, the supercontinuum spectra generation in PCF pumped with femtosecond laser pulses are studied theoretically and experimentally. The nonlinear processes responsible for the generation of supercontinuum spectra, including high order dispersion, self phase modulation, self-steepening and intra-pulse Raman scattering effects, are identified through the simulation of the nonlinear Schrodinger equation by split-step fast Fourier transform method. The experimental results demonstrated the effects of parameters of the femtosecond laser on the generation of supercontinuum.
     2. We proposed a novel method to achieve highly nonlinear PCF by filling highly nonlinear liquid including carbon disulfide, chloroform, and methylbenzene in the core of hollow-core PCF. The propagation, dispersion properties and mode characteristics are studied by using the finite element method (FEM). Simulation results indicate that the zero-dispersion wavelengths (ZDWL) of the liquid-filled PCFs are adjustable around 800 nm. Hence the femtosecond laser pulses with central wavelength at 800 nm can propagate in the anomalous dispersion regime of PCFs, which leads to inducing the spectra broadening.
     3. The propagation properties of THz waves in liquid-crystal (LC) -filled PC waveguides are investigated. The effects of magnetic birefringence of LC (E7) on the PBGs and the transmitting properties of two-dimensional PC waveguides with three typical structures are studied by using the plane wave expansion (PWE) and finite-difference time domain (FDTD) methods. The simulation results indicate that the magnetically controlled PC waveguide filled with the LC can serve as not only a THz switch in a wide range of frequencies, but also a acontinuously tunable bandpass filter.
     4. We proposed a THz switch that has high extinction ratio. We utilized Bragg fiber as the basic structure. The PWE method is used to simulate the PBGs of the one-dimensional PC in the cladding of the fiber. The performance of the switch is analyzed by FEM and the results show that the extinction ratio of this switch can reach to 39.93 dB.
     5. The defect modes characteristics of a line defect and point defect in two-dimensional PCs are studied by using PWE and FDTD methods. Based on the analysis on the coupling characteristic between them, we proposed a novel tunable THz narrow-band filter by using electrical birefringence of liquid crystal. Simulation results on the defect modes and output spectra show that the PC consisting of two line defects and one point defect can act as a tunable filter with narrow bandwidth of 0.02 THz.
     6. A wavelength division multiplexer and a narrow-band filter based on two point defects and two waveguides in PCs are proposed. There are two narrow peaks with band width 0.015THz in the transmitting spectrum when the upload and download waveguides are parallel. Thus, it can be used as a wavelength division multiplexer. When the upload and download waveguides are perpendicular, only one peak appears in the transmitting spectrum. Therefore, it can be used as a narrow-band filter.
引文
[1]Yablonovitch E,Inhibited spontaneous emission in solid-state physics and electronics,Phys.Rev.Lett.,1987,58(20):2059-2062.
    [2]John S,Strong localization of photons in certain disordered dielectric superlattices,Phys.Rev.Lett.,1987,58(23):2486-2489.
    [3]Yablonovitch E.Photonic band-gap structures.Journal of the optical society of America B,1993,10(2):283-295.
    [4]Yablonovitch E,Gmtter T J.Photonic band structure:the face-centered-cubic case.Phys.Rev.Lett.1989,63(18):1950-1953.
    [5]http://www.scienceonline.org.
    [6]Ferguson B,Zhang X C.Materials for terahertz seienee and technology.Nature materials 2002,1(1):26-33.
    [7]Darrow J T,Hu B B,Zhang X C,et al.Subpicosecond electromagnetic pulse from large-aperture photo conducting antennas.Opt.Lett.,1990,15(6):323-325.
    [8]Weling A S,Auston D H.Novel sources and deteetors for coherent tunable narrow-band terahertz radiation in free space.Journal of the Optical Society of America B-Optical Physics,1996,13(12):2783-2791.
    [9]许景周,张希成.太赫兹科学技术和应用.北京:北京大学出版社,2007.
    [10]Chen H T,Padilla W J,Zide J M O,et al.Active terahertz metamaterial devices.Nature,2006,444(7119):597-600.
    [11]Pickwell E,and Wallace V P.Biomedical applications of terahertz technology.J.Phys.D:Appl.Phys.,2006,39(17):301-310.
    [12]Li N,Shen J,Sun J,et al.Study on the THz spectrum of methamphetamine.Opt.Express,2005,13(18),6750-6755.
    [13]Federici J F,Schulkin B,Huang F,et al.THz imaging and sensing for security applications-explosives,weapons and drugs.Semicond.Sci.Technol.,2005,20(7),266-280.
    [14]Holzwarth R,Udem Th,Hansch T W,et al.Optical frequency synthesizer for precision spectroscopy.Phys.Rev.Lett.,2000,85(11):2264-2268.
    [15]Hartl J,Li X D,Chudoba C,Ghanta RK,et al.Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber.Opt Lett,2001,26(9):608-610.
    [16]McConnell G.Confocal laser scanning fluorescence microscopy with a visible continuum source.Opt.Express,2004,12(13):2844-2850.
    [17]Kano H,Hamaguchi H.Ultrabroadband(>2500 cm~(-1)) multiplex coherent anti-stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber [J]. Appl. Phys. Lett., 2005, 86(12) :121113-121115.
    [18] Kano H and Hamaguchi H. In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber. Opt. Express, 2006, 14(7):2798-2804.
    [19] Sigalas M M, Soukoulis C M. Elastic-wave propagtion through disordered and /or absorptive layered systems. Phy. Rev.B., 1995,51(5):2780-2789.
    [20] Fink Y, Winn J N , Fan S, et al. A dielectric omnidirectional refleetor. Seience, 1998, 282(5394):1679-1682.
    
    [21] Kushwaha M S, Halevi P, Dobrzynsi L, Djafari-Rouhani B. Acoustic band structure of periodic elastic composites. Phy.Rev.Lett., 1993,71(13):2022-2025.
    [22] Brown E R, Parker C D, Yablonovitch E. Radiation properties of a planar antenna on a photonic-crystal substrate. Opt. Soc.Am.B, 1993,10(2):404-407.
    [23] Yablonovitch E, Gmitter T J, and Soukoulis C M. Phys.Rev.Lett., 1991, 67(17):2295-2298.
    [24] Psarobas I E, Stefanou N, Modinos A. Photonic crystals with planar defects. Phys.Rev. B., 2000, 62(9):5536-5540.
    [25] Chung K B, Kim S H. Defect modes in a two-dimensional square-lattice photonic crystal. Opt.Commun., 2002,209(4-6):229-235.
    
    [26] 黄昆,固体物理学,北京,高等教育出版社,1988.
    
    [27] Joannopoulos J D, Mead R D, Winn J N. Photonic crystals: Molding the flow of light. Princeton, Princeton University Press, 1995.
    
    [28] Guo S. Photonic crystals: Modeling and simulation.[Dissertation], Old.
    [29] Ho K M, Chan C T, Soukoulis C M. Existence of a photonic bandgap in periodic dielectric structures. Phys. Rev. Lett., 1990, 65(25):3152-3155.
    [30] Pendry J B, et al. Calculation of photon dispersion relations. Phys. Rev. Lett., 1992, 69(19):2772-2775.
    [31] David M.Sheen, Sami M.A11 et al. Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits. IEEE Transactions on Microwave Theory and Techniques, 1990,38(7):849-557.
    [32] Raineri F, Dumeige Y, Levenson A, et al. Nonlinear decoupled FDTD code: phase-matching in 2D defective photonic crystal. Electronics Letters, 2002, 38(25): 1704-1706.
    [33] Figotin A and Godin Y A. The computation of spectra of some 2D photonic crystals. J.Comp.Phy., 1997,136(2):585-598.
    [34] Koshiba M, and Saitoh K. Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures. Appl. Opt., 2003, 42(31) 6267-6275.
    [35] Yonekura J, Ikeda M, Baba T et al. Analysis of finite 2D photonic crystals of columns and lightwave devices using the scattering matrix method.J.Lightwave Technol.,1999,17(8):1500-1508.
    [36]Sigalas M,Soukoulis C M,Economous E N,et al.Photonic bandgaps and defects in two dimensions:studies of the transmission coefficient.Phys.Rev.B.,1993,48(19):14121-14126.
    [37]Maradudin A A,McGum A R.Photonic band structure of a truncated two dimensional periodic dielectric medium.J.Opt.Soc.Am.B.,1993,10(2):307-313.
    [38]Bimer A.,Wehrspohn R B,Gosele U,et al.Silicon-based photonic crystals.Adv.Mater.,2001,13(6):377-388.
    [39]Han H,Park H,Cho M,et al.Terahertz pulse propagation in a plastic photonic crystal fiber.Appl.Phys.Lett.,2002,80(15) 2634-2636.
    [40]Fleming J G,Lin S Y,EI-Kady I,et al.All-metallic three-dimensional photonic crystals with a large infrared bandgap.Nature,2002,417,52-55.
    [41]Thomas F Krauss,Richard M De La Rue.Photonic crystals in the optical regime-past,present and future.Progress in Quantum Electronics,1999,23(2):51-96.
    [42]Ozbay E,Michel E,Tuttle G,et al.Terahertz spectroscopy of three-dimensional photonic band-gap crystals.Opt.Lett.,1994,19(15):1155-1157.
    [43]Katsarakis N,Bender M,Singleton L,et al.Two dimensional metallic photonic band gap crystals fabricated by LIGA.Microsystem technologies,2002,8(2-3)74-77.
    [44]Jukam N and Sherwin M S.Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si.Appl.Phys.Lett.,2003,83(1):21-23.
    [45]Knight J C,Birks T A,Russell P S,et al.All-silica single-mode optical fiber with photonic crystal cladding,Optics Letters,1996,21(19):1547-1549.
    [46]Miklyaev Y V,Meisel D C.Three-dimensional face-centered-cub,photonic crystal templates by laser holography:fabrication optical characterization,and band-structure calculations.Appl.Phys.Lett,2003,82(8):1284-1286.
    [47]仪桂云,董鹏,王晓冬等.三维有序大孔聚苯乙烯的制备及表征.物理学报,2004.53f101.3311-3315.
    [48]Rick C.Schroden,Mohammed A1-Daous,and Andreas Stein.Self-modification of spontaneous emission by inverse opal silica photonic crystals.Chem.Mater.,2001,13(9):2945-2950.
    [49]谢旭,钟华,袁韬等.使用太赫兹技术研究航天飞机失事的原因.物理,2003,32(9):583-584.
    [50]http://en.scientificcommons.org/r_w_mcmillan.
    [51]Guo L,Hu Y,Zhang Y,et al.Vibrational spectrum of γ-HNIW investigated using terahertz time-domain spectroscopy.Opt.Express,2006,14(8):3654-3659.
    [52]Wang X,Cui Y,Sun W,et al.Terahertz pulse reflective focal-plane tomography.Opt.Express,2007,15(22):14369-14375.
    [53]Liu D,Yuan X,Yan Y,et al.Coupled-mode theory of coaxial THz gyrotron with two electron beams.Infrared,millimeter and terahertz waves.2008.IRMMW-THz 2008.33~(rd) international conference on,Publication Date:15-19 Sept.2008:1-2.
    [54]Yang Q,Zhang H,Liu Y,et al.An artificially garnet crystal materials using in terahertz waveguide.Chinese Phys.Lett.,2008,25(11):3957-3960.
    [55]Liu H,Yao J,Xu D,Wang P.Propagation characteristics of two-dimensional photonic crystals in the terahertz range.Applied Physics B,2007,87(1):57-63.
    [56]Geng Y,Tan X,Wang P,et al.Design of terahertz photonic crystal fibers by finite difference frequency domain method.Journal of optics.A,Pure and applied optics,2007,9(11):1019-1023.
    [57]Liu H,Yao J,Xu D,et al.Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals.Opt.Express,2007,15(2):695-703.
    [58]Golant M B,Alekseenko Z T,Korotkova Z S,et al.Wide band generators of submillimeter range.Pribory I Tekhnika Eksp.,1969,3:231-236.
    [59]Huang L,Sun B,Yao J,et al.Collinear phase-matching study of terahertz-wave generation via difference frequency mixed in GaAs and Inp.Optoelectronics letters,2008,4(3):234-238.
    [60]Benicewicz P K,Roberts J P,Taylor A J.Scaling of terahertz radiation from large-aperture biased photoconductors.Opt.Soc.Am.B.,1994,11(12):2533-2546.
    [61]赵尚弘,陈国夫,赵卫,等.THz射线产生技术及应用最新进展.激光技术.2000,24(6):351-356.
    [62]Benicewicz P K,Roberts J P,Taylor A J.Scaling of terahertz radiation from large-aperture biased photoconductors.Opt.Soc.Am.B.,1994,11(12):2533-2546.
    [63]Auston D H,Cheung K P,Smith P R.Picosecond photoconducting hertzian dipoles.Appl.Phys.Lett.,1984,45(3):284-286.
    [64]Han P H,Tani M,Zhang X C.A direct comparison between terahertz time-domain and far-infrared Fourier transform spectroscopy.J.Appl.Phys.,2001,89(4):2357-2359.
    [65]He M X,Azad A K,Ye S H.Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy.Opt.Comm.,2006,259(1):389-392.
    [66]Mickan S,Abbott D,Munch J,et al.Analysis of system trade-offs for terahertz imaging.Microeletronics Journal,2000,31(7):503-514.
    [67]Schall M,Walther M,Jepsen P U.Fundamental and seeond-order phonon processes in CdTe and ZnTe.Phys.Rev.B,2001,6409(9):339-344.
    [68]Wang K,Mittleman D M.Metal wires for terahertz wave guiding.Nature,2004,432:376-379.
    [69]Russell P St J.Knight J C,Birks T A,et al.Recent progress in photonic crystal fibers.Pore.OFC.,2000,3:98-100.
    [70]Knight J C,Broeng J,Birks T A,et al.Photonic bandgap guidance in optical fibers,Seience,1998,282(5393) 1476-1478.
    [71] Luan F, Knight J C, Russell P St J, et al. Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers, Opt. Express, 2004, 12(5) 835-840.
    [72] Goto M, Quema A, Takahashi H, et al. Teflon photonic crystal fibers as terahertz waveguide, Jpn. J. Appl. Phys. 2004, 43 : L317-L319.
    [73] Zhang B, Yu R. Hollow-core optical fiber for terahertz wave propagation. 27th International Congress on High-Speed Photography and Photonics. Proceedings of the SPIE, 2007, 6279(3): 62796O.1-62796O.6.
    [74] Meade R D, Devenyi A, Joannopoulos J D, et al. Novel Applications of Photonic Band Gap Materials: Low-loss Bends and High G Cavities. J. Appl. Phys., 1994, 75(9): 4753-4755.
    [75] Tokushima M, Kosaka H, Tomita A, et al. Light wave propagation through a 120 degree sharply bent single-line-defect photonic crystal waveguide. Appl. Phys. Lett., 2000, 76(8):952-954.
    [76] Lin C, Chen C, Schneider G J, et al. Wavelength scale terahertz two-dimensional photonic crystal waveguides. Opt. Express, 2004,12(23):5723-5728.
    [77] Villeneuve P R, Fan S, Joannopoulos J D. Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency. Phys.Rev.B, 1996,54(1).7837-7842.
    [78] Yablonovitch E, Gmitter T J, Meade R D, et al. Donor and a aceptor modes in photonic bandstructure. Phys.Rev.Lett., 1991, 67(24):3380-3383.
    [79] Zhao Y, Grisckowsky D R. 2-D terahertz metallic photonic crystals in parallel-plate waveguides. IEEE transactioins on microwave theory and techniques, 2007, 55(4) 656-663.
    [80] Li J, He J, Hong Z. Terahertz wave switch based on silicon photonic crystals. Appl. Opt., 2007, 46(22):5034-5037.
    [81] Ghattan Z, Hasek T, Wilk R, et al. Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liqud crystals. Opt. Comm., 2008, 281(18):4623-4625.
    [82] Fan S. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl. Phys. Lett., 2002, 80(6):908-910.
    [83] 周梅,陈效双,王少伟等. THz波段 的F2P光子晶体滤波器, 物理学报, 2006,55(7):3725-3729.
    [84] Krumbholz N, Gerlach K, Rutz F, et al. Omnidirectional terahertz mirrors: a key element for future terahertz communication systems. Appl. Phys. Lett., 2006, 88(20), 202905-202907.
    [85] Drysdale T D, Gregory I S, Baker C, et al. Transmittance of a tunable filter at terahertz frequencies. Appl. Phys. Lett., 2004 85(22):5173-5175.
    [86] Chen C Y, Hsieh C F, Lin Y F, et al. Magnetically tunable room-temperature 2n liquid crystal terahertz phase shifter. Opt. Express, 2004, 12(12):2630-2635 (2004).
    [87]Chen C Y,Pan C L,Hsieh C F,et al.Liquid-crystal-based terahertz tunable lyot filter.Appl.Phys.Lett.,2006,88(10):101107-101109.
    [88]Pan C L,Hsieh C F,Pan R P,et al.Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal.Opt.Express,2005,13(11):3921-3930.
    [89]Grigorenko A N.Negative refractive index in artificial metamaterials.Opt.Lett.,2006,31(16):2483-2485.
    [90]Nozaki K,Bbaa T,Quasiperiodic photonic crystal microcavity lasers.Appl.Phys.Lett.,2004,84(24):4875-4877.
    [91]Colombelli R,Srinivasan K,Troccoli M.Quantum Cascade Surface-Emitting Photonic Crystal Laser.Science,2003,302(5649):1374-1377.
    [92]贾东方,余震虹,等译.非线性光纤光学原理及应用[M].北京:电子工业出版社,2002.
    [93]Ranka J K,Windeler R S,Stentz A J.Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm.Opt.Lett.,2000,25(1):25-27.
    [94]Hasegawa A,Tappert F.Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.Appl.Phys.Lett.,1973,23(3):142-144.
    [95]Fang X,Karaswaa N,Morita R,et al.Nonlinear propagation of a-few-optical-cycle pulses in a photonic cyrstal fiber-experimental and theoretical sutdies beyond the slowly vayring-envelope approximation.IEEE Phootn.Tech.Lett.,2003,15(2):233-235.
    [96]Schreiber T,Limpert J,Zellmer H.High average power supercontinuum generation in photonic cyrstal fibers.Opt.Comm.,2003,228(1):71-78.
    [97]Agrawal G P.Nonlinear fiber optics(Optics and Photonics),Third Edition,Academic Press,San Diego,2001.
    [98]Fleck J A,Morris J R,Feit M D.Time-dependent propagation of high energy laser beams through the atmosphere.Appl.Phys.1976,10(2):129-160.
    [99]Lxa M,Batteh J H,Agrawal G P.Channeling of intense electromagnetic beam.J.Appl.Phys.,1981,52(1):109-125.
    [100]Feit M D,Fleck J A.Light propagation in graded-index optical fibers.Appl.Opt.,1978,17(24):3990-3998.
    [101]Agrawal G P.Fast-Fourier-transform based beam-propagation model for stripe-geometry semiconductor lasers:Inclusion of axial effects.J.Appl.Phys.,1984,56(11 ):3100-3109.
    [102]Sziklas E A,Siegman A E.Fast Fourier transform method.Appl.Opt.1975,14(8):1874-1889.
    [103]Lax M,Agrawal G P,Belic M,et.al.Electromagnetic field distribution in loaded unstable resonators.J.Opt.Soc.Am.A,1985,2(5):731-742.
    [104]Thylen L,Wright E M,Stegeman G I,et al.Beam propagation method analysis of a non-linear directional coupler. Opt. Lett., 1986,11(11):739-741.
    [105]Yu C P, Chang H C. Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers. Optics Express, 2004, 12(25):6165-6177.
    [106]BeamPROP, http://www.rsoftdesign.com..
    [107]Comsol, http://www.comsol.com. [
    108]Husakou A V, Herrmann J. Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers. J. Opt. Soc. Am. B, 2002,19(9):2171-2182.
    [109]Genty G, Lehtouen M, Ludvigsen H. Effect of cross-phase modulation on supercontinuum generation in microstructured fibers with sub-30fs pulses. Opt. Express, 2004, 12(19):4614-4624.
    [ 110] Martelli C, Canning J, Lyytikainen K, et al. Water-core Fresnel fiber, Opt. Express, 2005, 13(10):3890-3895.
    [111]Yiou S, Delaye P, Rouvie A, et al Stimulated Raman scattering in an ethanol core microstructured optical fiber. Opt. Express, 2005,13(12) 4786-4791.
    [112] Wolinski T R, Czapla A, Ertman S, et al. Spectral properties of photonic liquid crystal fibers. Proc. SPIE, 2007, 6587 658705.
    [113]Matos C J D, Cordeiro C M B, Santos E M D et al. Liquid-core, liquid-cladding photonic crystal fibers. Opt. Express, 2007, 15( 18): 11207-11212.
    [114] Zhang R, Teipel J, Giessen H. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Opt. Express, 2006, 14(15) 6800-6812.
    [115]Samoc A. Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared, J. Appl. Phys., 2003,94(9)6167-6174.
    
    [116] Boyd R W. Nonliear optics. (Academic press, 2002).
    [117] Kumar V V R K, George A K, Reeves W H, et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Express, 2002, 10(25): 1520-1525.
    [118]Fedotov A B, Serebryannikov E E, Ivanov A A, et al. Highly nonlinear photonic crystal fibers for the spectral transformation of Cr: forsterite laser pulses. Opt. Comm., 2006,267(2):505-510.
    [119] McMorrow D, Lotshaw W T, Kenneywallace G A. Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids. IEEE J. Quantum Electron., 1988,24(2):443-454.
    [120] Laurent T, Hennig H, Ernsting N P, et al. The ultrafast optical Kerr effect in liquid fluoroform: an estimate of the collision-induced contribution. Phys. Chem. Chem. Phys., 2000, 2(12) 2691-2697.
    [121] Wu H Y, Hsieh C F, Tang T T, et al. Electrically tunable room-temperature 2 n liquid crystal terahertz phase shifter. IEEE Photonics Technology Letters, 2006, 18(14):1488-1490.
    [122] Wang X J. Liquid crystal optics and liquid crystal display (Science Press, Beijing, 2006).
    [123]Tsai T R, Chen C Y, Pan C L, et al. Terahertz Time-Domain Spectroscopy Studies of the Optical Constants of the Nematic Liquid Crystal 5CB. Appl. Opt., 2003, 42(13): 2372-2376.
    [124] Chen C Y, Hsieh C F,Lin Y F, et al. Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter. Opt. Express 12(12), 2630-2635 (2004).
    [125]Tang T T, Pan R P, Wang Y C, et al. THz time-domain spectroscopic studies of a ferroelectric liquid crystal in the SmA* and SmC* phases. Ferroelectrics, 2008, 364:72-77.
    [126] Dai J M, Zhang J Q, Zhang W L, et al. Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of highresistivity, float-zone silicon," J. Opt. Soc. Am. B, 2004,21(7):1379-1386.
    [127] Yeh P, Yariv A. Theory of Bragg fiber. J. Opt. Soc. Am., 1978, 68(9): 1196-1201.
    [128] Liguda C, Bottger G, Kuligk A, et al. Polymer photonic crystal slab waveguides. Appl Phys Lett,2001,78 (17):2434-2436.
    [129] Chen L J, Chen H W, Tzeng F K, et al. Low-loss subwavelength plastic fiber for terahertz waveguiding. Opt. Lett.,2006, 31(3):308-310.
    [130] Wang K L and Daniel M. Guided propagation of terahertz pulses on metal wires. J. Opt. Soc. Am. B, 2005, 22(9):2001-2008.
    [131]Yu R J, Zhang B, Zhang Y Q, et al. Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding. IEEE Photonics Technology Letters,2007,19(12) 910-912.
    [132] Yeh P. Optical waves in layered media (wiley,New York 1988).
    [133] Johnson S G, Ibanescu M, Skorobogatiy M, et al. Low-loss asymptotically single-mode propagation in large-core omni-guide fibers. Opt. Express, 2001, 9(13) 748-779.
    [134] Knight J C, Birks T A, Russell P St J et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett., 1996, 21(19): 1547-1549.
    [135]Waks E, Vuckovic J. Coupled mode theory for photonic crystal cavity-waveguide interation. Opt. Express, 2005,13(13) 5064-5073.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700