微型光谱仪系统的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光谱仪器是光谱与光谱分析学基本的分析工具,传统的光谱仪器由于体积庞大且价格昂贵,应用范围受到很大的限制,微型化成为其重要的发展方向。本论文研究并实现以光纤作为系统输入、可配置三种型号CCD和多种不同规格光学元件、工作在紫外可见和可见及近红外波段的系列化微型光纤光谱仪,并进一步研究了此类光谱成像系统的增益特性,提出静态双增益编码孔径色散光谱模型。
     在微型光纤光谱仪的电路与探测系统设计中,以相同的硬件同时完成三种型号CCD探测器的驱动,最大程度地精简了电路设计,这种设计在国内外同类仪器中尚属首次。同时,实现了TCD1304AP型号探测器10μs~4.9sec的积分时间调节范围,保证本系统能够满足大多数实际应用的需求,达到并超越了国外最新型此类仪器的水平。此外,在国内首次研究了常规CCD探测器紫外荧光增强方法,提出用于CCD表面荧光增强的荧光粉的性能参数要求及该技术的具体实现方法,保证本微型光谱仪能工作在紫外波段。
     在光学机械系统设计过程中,研究了基于平场全息凹面光栅和交叉非对称Czerny-Turner结构的两种光学系统。从理论上研究了平场全息凹面光栅的优化设计方法,首次引入全局搜索算法对非线性目标方程组进行求解,提高了收敛精度并缩短了设计周期;提出的反向优化和多工作位置的设计思想能提高设计的效率和现有此类光栅的使用灵活性。研究了基于Czerny-Turner结构的微型光谱仪光学系统的设计方法,对比分析选择后者作为本系统的基础光学结构。最后,论文充分利用CodeV、Tracepro和Solidworks等光学机械设计与模拟软件,完成了光谱仪光学机械系统和两类光谱测量附件的设计以及较为全面的系统公差分析。
     论文在软件系统设计部分,不仅完成了对光谱仪的全面控制和常规光谱测量功能,还以两种接口方式实现了二次开发工具箱,实现了软件系统的扩展功能,使整体系统具有更高的实用性和灵活性,达到国外此类仪器的水平。对实际系统进行全面测试,结果表明其性能优良,系列化程度高,具有很强的软硬件扩展性,整体性能达到并超过国外最新型同类产品。目前整个系统已经进入批量生产和销售。
     在成功研制微型光纤光谱仪的基础上,论文分析了此类系统增益受限的原因,提出使用具有正交独立列编码形式的扩展孔径代替传统狭缝,使得从叠加的成像光谱中还原单通道光谱成为可能,打破了狭缝对系统性能的限制,实现静态系统的双增益。进而设计了模拟系统对该模型可行性进行全面分析。大量分析结果证明,所提出的静态双增益编码孔径色散光谱模型完全可行,优化了传统色散成像系统的性能,对基于面阵探测器的微型光谱仪系统性能的提升具有革命性的意义。
Spectrometers are the basic analysis instruments of optical spectroscope and spectral analysis. The applications of traditional spectrometers are constrained due to their big volume and high costs, miniaturization becomes to be their important developing direction. This dissertation carries the research on the micro spectroscopic system and realized a micro fiber spectrometer with a possible working wavelength range covers ultra-violet and visible or visible and near infrared region, within which three different models of CCDs and several types of optical components could be configured practically. Further research was carried to study the advantage characteristic of this kind of dispersive spectroscopic system and a novel static dual-advantage system model based on coded aperture was raised firstly.
     In the design of circuit and detecting system of micro fiber spectrometer, the drive of three different models of CCDs with the same circuit hardware was achieved which highly simplified the circuit design. This design method's first applied among all existing similar instruments. An integrated time range of 10us~4.9sec for TCD1304AP linear CCD's realized which could meet the needs for lots of applications. This characteristic reaches and exceeds the highest level of foreign instruments. Then firstly carried the research on UV surface fluorescence enhancing technique for common CCDs in China, represented the requirements of phosphor powder used for CCD UV enhancing and the realization method for this technique, which guaranteed that the micro spectrometer could normally and effectively work in UV range.
     In the research of optical and mechanical system, two kinds of optical structures for micro fiber spectrometers were studied. Firstly, the optimum design of flat-field holographic concave grating was studied theoretically, globe searching algorithm's firstly introduced to solve the nonlinear equations set to increase the precision of the convergence and shorten the design cycle. The thought of anti-optimization and multi-working positions was raised to increase the design efficiency and the flexibility of this kind of existing gratings. Then, the design method for micro spectrometer optical system based on cross-asymmetrical Czerny-Turner structure's studied. After comparison, the latter's chosen as the basic optical structure for the micro fiber spectrometer. At last, the design of optical and mechanical system and thorough tolerance analysis of the integral hardware system were achieved utilizing optical and mechanical design and simulation softwares as CodeV, Tracepro and Solidworks. Furthermore, two types of spectral measurement accessories were designed based on practical applications.
     In the design of software system, the software system not only achieved the complete control of the spectrometer, basic spectral measurements and analysis function, but also realized a SDK based on two kinds of calling interfaces, which could highly extend system's function and increase system's practicability and flexibility. The results of a mass of various experiments show that the real system's performance's pretty high, the whole system is of high degree serialization and has strong hardware and software expansibility, thus, is competitive to its latest counterparts among foreign instruments. The whole system has already been put into mass production and marketing.
     Base on the realizing of micro fiber spectrometer, the traditional slit based dispersive spectrographic system model's studied to find the reason for system performance's restriction. A novel static high gain system model's raised, in which traditional slit's replaced by an orthogonal individual column coded aperture, which made it possible to extract the single channel's spectrum from the superposed spectrum and achieved system's dual advantages. Based on the derivation of the theoretical system model, a simulation system was setup to test its correctness and feasibility. The simulation and tolerance analysis results show that this system model is of very high performance and totally achievable. This novel high gain model highly optimizes the performance of traditional dispersive spectroscopic system and is of revolutionary sense for micro spectrometers based on 2D detectors.
引文
[1]吴国安.光谱仪器设计[M].北京:科学出版社,1978:9-17.
    [2]Henne van Heeren,Lia Paschalidou.MOEMS industrial infrastructure[J].Proceedings of SPIE,2004, 5455:303-318.
    [3]Letartre X,Mouette J,Leclercq J.L.Switching Devices With Spatial and Spectral Resolution Combining Photonic Crystal and MOEMS Structures[J].J.Lightwave Technol,2003,21(7):1691-1700.
    [4]A.Gatto,M.Yang,N.Kaiser,et al.High-performance coatings for micromechanical mirrors[J].Appl.Opt.,2006,45:1602-1607.
    [5]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,1999:217-243.
    [6]马科斯.波恩,埃米尔.沃尔夫,杨葭荪译.光学原理[M].北京:电子工业出版社,2006:459-525.
    [7]T.Okamoto,S.Kawata,S.Minami.Fourier transform spectrometer with a self-scanning photodiode array[J].Appl.Opt.,1984,23(2):269-273.
    [8]翁诗甫.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005:1-33.
    [9]N.I.Agladze,A.J.Sievers.Holographic Fourier Transform Spectrometer for THz Region[C].Optical Terahertz Science and Technology,OSA Technical Digest Series(CD),2007,paper MC3.
    [10]G.Taurand,J.Genest,et al.Parasitic diffuse reflection in a Fourier transform spectrometer yielding subharmonic ghosts and line-shape distortion[J].Appl.Opt.,2007,46(4):533-537.
    [11]P.Hansen,J.Strong.High resolution Hadamard transform spectrometer[J].Appl.Opt.,1972,11(3):502-506.
    [12]R.D.Swift,R.B.Wattson,J.A.Decker,Jr.,R.Paganetti,and M.Harwit.Hadamard transform imager and imaging spectrometer[J].Appl.Opt.,1976,15(6):1595-1609.
    [13]D.C.Tilotta,R.D.Freeman,W.G.Fateley.Hadamard Transform Visible Raman Spectrometry[J].Appl.Spectrosc,1987,41(8):1280-1287.
    [14]Boutami S.,Ben Bakir B.,Leclercq J.L,et al.Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter[J].Optics Express,2006,14(8):3129-3137.
    [15]李昌厚.原子吸收分光光度计仪器及应用[M].北京:科学出版社,2006:14-29.
    [16]R.F.Barrow,D.A.Long,D.J.Millen.Molecular Spectroscopy[M].1975,v.3,1-102.
    [17]吴瑾光.近代傅里叶变换技术及应用[M].北京:科学技术文献出版社,1994:1-40.
    [18]李昌厚.紫外可见分光光度计[M].北京:化学工业出版社,2005:1-29.
    [19]D.Debarre,A.C.Boccara,D.Fournier,High-luminosity visible and near-IR Fourier-transform photoacoustic spectrometer[J].Appl.Opt.,1981,20(24):4281-4286.
    [20]J.E.Crooks.The Spectrum in Chemistry[M].London:Academic Press,1978:139-154.
    [21]I.Rubeska,V.Svoboda,V.Sychra,translated by M.Cresser.Atomic Fluorescence Spectroscopy[M].London:Van Nostrand Reinhold Company,1975:15-62.
    [22]J.E.Crooks.The Spectrum in Chemistry[M].London:Academic Press,1978:124-139.
    [23]P.Minguzzi,S.Profeti,M.Tonelli,A.Di Lieto.Line shapes in high-resolution optoacoustic spectroscopy[J].J.Opt.Soc.Am.B,1986,3(8):1075-1081.
    [24]洪吟霞,范世福,祝绍萁.分光光度计[M].北京:机械工业出版社,1982:15-17.
    [25]吴国安.光谱仪器设计[M].北京:科学出版社,1978:178-181.
    [26]汤自义,须耀辉,王志坚.反射棱镜[M].北京:国防工业出版社,1981:92-231.
    [27]Y.V.Bazhanov.Correcting the aberrations of holographic diffraction gratings recorded in astigmatic beams[J].J.Opt.Technol,2004,71(1):10-14.
    [28]L.V.Tsonev,E.K.Popov,J.F.Hoose,M.L.Sabeva.Concave holographic grating:optimization of diffraction efficiency[J].Appl.Opt.,1992,31(25):5317-5319.
    [29]E.Sokolova.Simulation of Mechanically Ruled Concave Diffraction Gratings by Use of an Original Geometric Theory[J].Appl.Opt.,2004,43(1):20-28.
    [30]祝绍萁等.衍射光栅[M].北京:机械工业出版社,1986:47-52.
    [31]F.Shen,A.Wang.Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula[J].Appl.Opt.,2006,45(6):1102-1110.
    [32]R.L.Frost,C.K.Rushforth,B.S.Baxter.Fast FFT-based algorithm for phase estimation in speckle imaging[J].Appl.Opt.,1979,18(12):2056-2061.
    [33]求是科技.Visual C++数字图像处理典型算法及实现[M].北京:人民邮电出版社,2006:189-196.
    [34]B.Carli,A.Barbis,J.E.Harries,L.Palchetti.Design of an Efficient Broadband Far-Infrared Fourier-Transform Spectrometer[J].Appl.Opt.,1999,38(18):3945-3950.
    [35]安葆青.干涉成像光谱仪中光学系统的研究[D].西安:中国科学院西安光学精密机械研究所,1999:1-15.
    [36]MJ Padgett,AR Harvey.A static Fourier-transform spectrometer based on Wollaston prisms[J],Review of Scientific Instruments,2006.
    [37]J.Courtial,B.A.Patterson,A.R.Harvey,W.Sibbett,and M.J.Padgett.Design of a static Fourier-transform spectrometer with increased field of view[J].Appl.Opt.,1996,35(34):6698-6702.
    [38]B.A.Patterson,J.R Lenney,W.Sibbett,B.Hirst,N.K.Hedges,and M.J.Padgett.Detection of Benzene and Other Gases with an Open-Path,Static Fourier-Transform UV Spectrometer[J].Appl.Opt.,1998,37(15):3172-3175.
    [39]S.Santran,P.Nagtegaele,B.Bousquet,et al.A New Static Fourier-Transform Spectrometer:The First Spectra from Synthesis Temporal Aperture Reconstruction Spectrometer[C].Fourier Transform Spectroscopy/Hyperspectral Imaging and Sounding of the Environment,OSA Technical Digest Series(CD),2007,paper FThA5.
    [40]J.F.Turner and P.J.Treado.Near-Infrared Acousto-Optic Tunable Filter Hadamard Transform Spectroscopy[J].Appl.Spectrosc.50(2):277-284.
    [41]I.Chang.Noncollinear acousto-optical filter with large angular aperture.Applied Physics Letters,1974,25(7):370-372.
    [42]崔岩.声光可调滤波器用于光谱测量研究,光学机械,1992,1:122-125.
    [43]D.Goldman,P.White,N.Anheier.Miniaturised spectrometer employing planar waveguides and grating couplers for chemical analysis[J].Appl.Opt.,1990,29(3):4583-4589.
    [44]J.Mohr,B.Anderer,W.Ehrfeld.Fabrication of a planar grating spectrograph by deep-etch lithography with synchrotron radiation[J].Sens.Actuators A,1991,25:571-575.
    [45]M.J.Padgett,A.R.Harvey,A.J.Duncan,and W.Sibbett,Single-pulse Fourier-transform spectrometer having no moving parts,Applied Optics,1994,33(25):6035-6040.
    [46]雷达.微型傅立叶变换光谱仪[J].光机电信息,2005,1:14-15.
    [47]OceanOptics.USB4000 datasheet[OL].Http://oceanoptics.com/products/usb4000.asp.
    [48]Avantes.AvaSpec-3648 Fiber Optic Spectrometer[OL].http://www.avantes.com/component/.
    [49]胡松,温志渝,吴英等.一种新型微小型光谱仪的设计[J].压电与声光,2000,22(6):363-367.
    [50]温志渝,陈刚等.混合集成微型光纤光谱仪的设计模拟及实验[J].光学学报,2003,23(6):740-744.
    [51]陈刚.混合集成微型光纤光谱仪的研究[D].重庆:重庆大学,2004:43-68.
    [1]机械工业部仪器仪表工业局.光学零件特种加工工艺学:上册[M].北京:机械工业出版社,1982:332-341.
    [2]吴国安.光谱仪器设计[M].北京:科学出版社,1978:342-345.
    [3]李昌厚.原子吸收分光光度计仪器及应用[M].北京:科学出版社,2006:99-100.
    [4]W.S.Boyle,G.E.Smith.Bell System.Tech.J.1970,49:587-593.
    [5]MacKay,C.D.Charge-coupled devices in astronomy[J].ARA&A,1986,24:255-260.
    [6]Kimble,A.Randy,L.Brown,et al.CCD detector for the space telescope imaging spectrograph[J].Proceedings of SPIE,1994,2282:169-181.
    [7]Geary,John C.,Luppino,et al.4096×4096 pixel CCD mosaic imager for astronomical applications[J].Proceedings of SPIE,1991,1447:264-273.
    [8]Vangeyte,B.,Manfroid,J.,Surdej,J.Study of CCD mosaic configurations for the ILMT:Astrometry and photometry of point sources in the absence of a TDI corrector[J].Astron.Astrophys.,2002,388(2):712-731.
    [9]Feautrier.Philippe,Stadler.Eric,Downing.Mark et al.Thermal modelling of cooled instrument:From the WIRCam IR camera to CCD Peltier cooled compact packages[J].Proceedings of SPIE,2006, 62710S.
    [10]Igor.Shcherback,Alex.Belenky,Orly.Yadid-Pecht.CMOS APS crosstalk:Modeling,technology and design trends[J].Proceedings of SPIE,2004,3:1261-1264.
    [11]王忠立,刘佳音,贾云得.基于CCD与CMOS的图像传感技术[J].光学技术,2003,29(3):361-364.
    [12]J.Janesick.Charge coupled CMOS and hybrid detector arrays[J].Proceedings of SPIE,2004,5167:1-18.
    [13]Kamata Yukiko,Miyazaki Satoshi,Muramatsu Masaharu.Development of thick back illuminated CCD to improve quantum efficiency in optical longer wavelength using high resistivity n-type silicon[J].Proceedings of SPIE,2004,5499:210-218.
    [14]C.M.Huang,B.E.Burke,B.B.Kosicki et al.New process for thinned,back-illuminated CCD imager devices[C].IEEE,International Symposium on VLSI Technology,Systems and Applications,1989:98-101.
    [15]Lees John E.,Bassford David,Fraser George W.Investigation of scintillator coated CCDs for medical imaging[J].IEEE Trans Nucl Sci,2006,53:9-13.
    [16]Stefan J.Alexander.Phosphor Coated UV Responsive CCD Image Sensors[D].Ontario:University of Waterloo,2002.
    [17]Wendy A.R.Franks,Martin J.Kiik,Arokia Nathan.Inorganic Phosphor Coatings for UV-Responsive CCD Image Sensors[J].Proceedings of SPIE,2000,3965:33-41.
    [18]Wendy A.Ro Franks,Martin J.Kiik,Arokia Nathan.UV-Responsive CCD Image Sensors With Enhanced Inorganic Phosphor Coatings[C].IEEE TRANSACTIONS ON ELECTRON DEVICES,2003,50(2):352-358.
    [19]Chang Mi-Youn,Lee You-Hui,Han Sang-Do,et al.Synthesis and characterization of orange-yellow phosphor for inorganic EL device[C].Proc.Int.Meet.Inf.Disp.,2006,2:1334-1337.
    [20]唐晋发等,现代光学薄膜技术[M],杭州:浙江大学出版社,2006:207-225.
    [21]OceanOptics.HR4000 and USB4000 Shutter Mode Performance in Hardware Trigger Mode[M].Dunedin:OceanOptics.
    [22]OceanOptics.USB4000 datasheet[OL].Http://oceanoptics.com/products/usb4000.asp.
    [1]李全臣,蒋月娟.光谱仪器原理[M].北京:北京理工大学出版社,1999,80-81.
    [2]Christopher Palmer.DIFFRACTION GRATING HANDBOOK[M].New York:RICHARDSON GRATING LABORATORY,4th ed,2000:66-67.
    [3]Li Chao-Ming,Wu Jian-Hong,et al.Development of flat field holographic concave gratings with high-resolution[J].2006,17(7):828-831.
    [4]B.Touzet,A.Thevenon,J.Flamand,J.M.Lerner.DESIGN OF NEW HOLOGRAPHIC GRATINGS FOR A HIGH S/N RATIO FLAT FIELD SPECTROGRAPH[C].Proceedings of SPIE,1986,655:409-415.
    [5]程梁,陈燕平,朱若波,叶子,余飞鸿.微型光谱仪平场全息凹面光栅的优化设计[J].浙江大学学报工学版,2008,42(2):312-316.
    [6]陈吉武,林中,孟庆华.平场全息凹面光栅的设计[J].光学精密工程,1997,5(1):96-102.
    [7]CHU J J,JIANG Y J,LI O,C.Computer-aided design and evaluation in holographic concave grating manufacturing[J].Proceedings of SPIE,1996,4231:477-483.
    [8]ZHOU Zhe-hai,DING Li,YAN Ying-bai,et al.Optimum design of concave gratings based on a Newton recursive algorithm[J].Journal of Optoelectronics&Laser,2001,12(12):1209-1213.
    [9]MASUDA F,NODA H,NAMIOKA T.Design and performance of toroidal holographic gratings[J].Spectroscopical Society of Japan,1978,27(3):211-223.
    [10]GOLDBERG D.Genetic Algorithms in Search,Optimization and Machine Learning[M].Boston:Addison-Wesley,1988.
    [11]张继彦,杨国洪,张保汉等.小型平焦场光栅光谱仪的研制[J].光学学报,2001,21(9):1099-1102.
    [12]陈刚.混合集成微型光纤光谱仪的研究[D].重庆:重庆大学,2002:43-46.
    [13]刘亚青,范品忠,徐至展.平焦场光栅光谱仪的新用法[J].光学学报,2000,20(7):879-882.
    [14]吴国安.光谱仪器设计[M].北京:科学出版社,1978:185-187.
    [15]林中,范世福.光谱仪器学[M].北京:机械工业出版社,1989:150-152.
    [16]毕诗章.现场光谱技术与仪器研究[D].天津:南开大学,2000:18-20.
    [17]中华人民共和国国家标准.GB/T 12507.2-1997,中国标准书号[S].北京:中国标准出版社,1997.
    [18]吴国安.光谱仪器设计[M].北京:科学出版社,1978:338-339.
    [1]Universal Serial Bus Revision 2.0 specification[OL].Http://www.usb.org/developers/docs/.
    [2]任光.基于USB接口的数据采集系统及其应用[D].大连:大连海事大学,2004:41-42.
    [3]周立功.PDIUSBD12 USB固件编程与驱动程序开发[M].北京:北京航空航天大学出版社,2003:13-14.
    [4]姚成虎,王磊.USB协议浅析和USB设备设计简介[J].微型计算机与应用,2003,23(9):4-6.
    [5]武安河.Window 2000/XP WDM设备驱动程序开发[M].北京:电子工业出版社,第二版,2006:9-24.
    [6]徐朝膛.基于WDM模型驱动的USB通信的研究[D].合肥:合肥工业大学,2001:45-49.
    [7]GUID-Globally Unique Identifier[OL].Http://www.auditmypc.com/acronym/GUID.asp.
    [8]Jeffery Richter,王建华,张焕生,侯丽坤译.Windows核心编程[M].北京:机械工业出版社,2000:463-549.
    [9]Robert Wiener,侯捷译.Win32多线程程序设计[M].武汉:华中科技大学出版社,2002:93-128.
    [10]潘爱民.COM原理与应用[M].北京:清华大学出版社,1999:376-414.
    [1]胡松,温志渝等.一种新型微小型光谱仪的设计[J].压电与声光,2000,22(6):363-366.
    [2]徐士良.C常用算法程序集[M].北京:清华大学出版社,1994:360-364.
    [3]HG-1 Mercury Argon Calibration Source datasheet[OL].Http://oceanoptics.com/products/hg1.asp
    [4]罗宗南,陈松生.光源光通量分光法测试[J].中国照明电器,1994,3:14-16.
    [5]W.D.Wright.Hue discrimination in normal color-vision[J].Proc.Phys.Soc.,1934,46:459-473.
    [6]Ilkka Vallinkoski.The Design and Implementation of a Color Management System[D].Laboratory of Media Technology,Helsinki University of Technology,Finland,1998.
    [7]CIE Publication No.10527,CIE standard colorimetric observers,2007.
    [8]David L.MacAdam.Photographic aspects of the theory of three-color reproduction[J].J.Opt.Soc.Am.,1938,28:399-418.
    [9]David L.MacAdam.Visual sensitivities to color differences in daylight[J].J.Opt.Soc.Am.,1942,32:247-274.
    [10]David L.MacAdam.Uniform color scales[J].J.Opt.Soc.Am.,1974,64:1619-1702.
    [11]徐海松.颜色信息工程[M].杭州:浙江大学出版社,2005:57-58.
    [12]CIE Publication No.13.2.Method of measuring and specifying Color Rendering Properties of Light Sources[S].Vienna,Austria,1965.
    [13]Craig J.Sansonetti,Marc L.Salit,Joseph Reader.Wavelengths of spectral lines in mercury pencil lamps[J].Appl.Opt.,1996,35(1):74-77.
    [1]吴国安.光谱仪器设计[M].北京:科学出版社,1978:298-301.
    [2]P.Jacquinot.New developments in interference spectroscopy[J].Rep.Prog.Phys.1960,23(1):267-312.
    [3]P.B.Fellget.The Multiplex Advantage[D].Cambridge,UK,University of Cambridge,1951.
    [4]林中,范世福.光谱仪器学[M].北京:机械工业出版社,1989:197-220.
    [5]J.A.Decker and M.O.Harwitt.Sequential encoding with multislit spectrometers[J].Appl.Opt.,1968,7,2205.
    [6]M.J.E.Golay.Multislit spectrometry[J].J.Opt.Soc.Am,1949,39:437-444.
    [7]M.J.E.Golay.Static multislit spectrometry and its application to the panoramic display of infrared spectra[J].J.Opt.Soc.Am,1951,41:468-472.
    [8]L.Mertz.Transformations in Optics[M].New York:Wiley,1965.
    [9]M.Harwitand N.J.A.Solaneo Hadamard Transform Optics[M].New York:Academic Press,1979:44-80.
    [10]J.A.Decker.Experimental realization of the multiplex advantage with a Hadamard-transform spectrometer[J].Appl.Opt,1971,10:510-514.
    [11]R.Riesenberg,G.Nitzsche and W.Voigt.Hadamard encoding and other optical multiplexing[J].VDI Berichte(1694),2002:345-350.
    [12]Marian Hanf,Ramon Hahn,et al.A dynamically driven micro mirror array as the encoding mask in a Hadamard transform spectrometer[J].Sensors and Actuators A,123-124,2005:476-482.
    [13]P.Hansen and J.Strong.High resolution Hadamard transform spectrometer[J].Appl.Opt,1972,11(3):502-506.
    [14]R.D.Swift,R.B.Wattson,J.A.Decker,R.Paganetti,and M.O.Harwitt.Hadamard transform imager and imaging spectrometer[J].Appl.Opt,1976,15(6):1595-1609.
    [15]JL Porter,SL Wright,JD Tate.Implementation of a stationary Hadamard transform spectrometer with a DSP56001 digital signal processor[J].IEEE Transactions on Instrumentation and Measurement Technology Conference,1992:598-599.
    [16]J Xiong,R Dyer.A model for incorporating the effects of nonzero switching-timeconstants in electrooptic masks used in Hadamard-transform spectrometry[J].IEEE Transactions on Instrumentation and Measurement,1996,45(4):800-804.
    [17]G.B.Arfken and H.J.Weber.Mathematical Methods for Physicists[M].6th ed,New York:Academic Press,2005.
    [18]M.O.Harwitt and N.J.A.Sloane.Hadamard Transform Optics[M].New York:Academic Press,1979:201-203.
    [19]门少平,封建湖.应用泛函分析[M].北京:科学出版社,2005:332-365.
    [20]Alan V.Oppenheim,Alan S.Willsky and S.Hamid Nawab,刘树棠译,信号与系统[M].第二版,西安:西安交通大学出版社,1998:221-222.
    [21]陈献忠,姚汉民等.纳米印刷光刻技术[J].微纳电子技术,2002,39(12):36-39.
    [22]周连群,吴一辉,张平等.一种采用微硅片狭缝的新型微小型光纤光谱仪[J].光学精密工程,2005,13(6):637-642.
    [23]李祥友,黄维玲.激光精密加工技术的现状和展望[J].2000,21(5):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700