可调腔体带通滤波器的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文所研究的可调谐振腔带通滤波器是光频率梳系统中一个重要部件,它
    具有带宽小、通带插损小,阻带抑制度高、频率调谐范围内带宽和滤波曲线保
    持不变、结构小型化、制作重复性高等特点。其在系统中的作用是将频率非常
    高的光学振动频率调制到较低的微波频率上,使该频率能够被电子系统记录,
    达到和已有的原子钟微波频率标准相连接,研制出比目前最好的原子喷泉钟精
    度更高的光钟系统的目的。在整个研究的过程中,概括起来主要做了以下几个
    方面的工作:
    从滤波器的网络设计理论入手,在耦合谐振腔带通滤波器的理论基础上,
    研究了从低通原型滤波器到耦合谐振腔可调带通滤波器的设计过程,包括
    电路变换采用的K、J变换器的实现方法、耦合谐振腔滤波器的网络电路实
    现方法、物理结构上滤波器输入、输出矩形耦合环的设计方法、腔间耦合
    圆孔的设计方法。
    针对可调滤波器的设计,研究分析了可调滤波器频率变化和滤波器性能参
    数之间的关系,得出实际设计时这些参数和滤波器结构的设计公式。
    滤波器的设计是工作的重点,包括基本结构的计算设计、利用HFSS仿真
    软件进行的优化设计和滤波器的调试工作三部分。前两部分工作主要是在
    理论设计的基础上,实际计算并利用软件得出实际加工滤波器的各个部件
    更精确的尺寸大小。针对所设计可调谐振腔带通滤波器的特点,在仿真过
    程中采用了一些特殊的处理方法,例如可调电容片的设计。第三部分的工
    作主要是对加工好的滤波器进行调试,包括输入、输出耦合环结构的调整,
    以及对补偿电容片的调整,使滤波器的各个谐振腔能够谐振在相同的频率
    上,且保证在不同的中心频率上滤波器的特性曲线和绝对带宽不变。
    测量制成的成品滤波器的性能,并分析了滤波器某些性能不能完全满足要
    求存在的原因,为进一步的改进提供了指导的方向。
The tunable bandpass cavity filter presented here is an essential part of the optical-frequency-comb system. The filter enjoys such merits: narrow bandwidth, low insert-loss in the passband, and high attenuation in the stopband, wide stopband and changeless bandwidth and filter characteristics. And besides, its structure is compact and easily to be manufactured. The introduced filter is used to modulate the optical vibration-frequency to microwave-frequency. To do so is because the value of the former is much higher than that of the later. Then the electrical devices can record the modulated frequency. Equipped with this tunable bandpass cavity filter, the optical-frequency-comb system, which has the optical-frequency standard, is offered a way to connect with the atom-clock microwave-frequency one. So it will contribute to design an optical-clock with higher precision than the atom-clock. During the course of the research, the focuses are put on the followings: On the base of the theories of the network design and coupling-cavity filters design, we study the processes from the lowpass filter prototypes to the tunable bandpass coupling-cavity filters, including the design method of the K/J inventor, network prototype circuits of the coupling-cavity bandpass filters, design formulas of the input/output rectangular coupling loop and the coupling hole between the cavities. About the tunable filters, we analyze the relation between the variable center frequency and the filter's parameters, and design formulas are presented. The emphases of the work are to design the filter, including simulation process with the help of the HFSS software, and the adjustment process. The first part is to obtain the exacter dimensions of the filter on the base of the former analysis. For unique characters of our filter, we adapt some special methods to simulate, such as the way to design the tunable capacitance patch. The second part is to adjust the filter. That means to adjust the position and area of the input/output coupling loop, as well as the compensation capacitance patch, in order to make the five cavities resonate on the same frequency, and remain the constant absolute bandwidth and filter characteristics. To measure the performances of the finished filter, and to analyze the reasons of dissatisfactory indexes.
引文
[1] Evenson K.M., Wells J.S., Peterson F.R. et al. Accurate frequencies of molecular transitions used in laser stabilization: the 3. 39-μm transition in CH4 and the 9. 33-and 10. 18-μm transitions in CO2 [J]. Appl. Phys. Lett., 1973, 22(4) : 192-195;
    [2] Schnatz H., Lipphardt B., Helmcke J. et al. First phase-coherent frequency measurement of visible radiation [J]. Phys. Rev. Lett., 1996, 76(1) : 18-21;
    [3] Terrien J. News from the International Bureau of Weights and Measures [J]. Metrologia, 1968, 4(1) : 41-45;
    [4] Udem Th., Reichert J., Holzwarth R. et al. Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser [J]. Phys. Rev. Lett., 1999, 82(18) : 3568-3571;
    [5] Shelton Robert K., Ma Long-Sheng, Kapteyn Henry C. et al. Phase-coherent optical pulse synthesis from separate femtosecond lasers [J]. Science, 2001, 293(5533) : 1286-1289;
    [6] 姚毅,贾金岭,四腔同轴调谐滤波器的研制,四川轻化工学院学报,1997 年第十卷第一期,p1-7;
    [7] G. B Eastham, and K. Chang, Analysis of circular and rectangular apertures in a circular waveguide, IEEE MIT-s Int. Symp. Digest, 1990, p263-266;
    [8] F. Arndt, U. Papziner, Modal-s-Matrix design of microwave filters composed of rectangular and circular waveguide elements, IEEE MIT-s Digest, 1991, p535-215;
    [9] 甘本祓,吴万春编,现代微波滤波器的结构与设计(上下册),科学出版 社,1973年;
    [10] G L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters, impedance matching networks and coupling structures, New York, Megraw-Hill,1964, p197-215;
    [11] Vizmuller Peter, Filters with Helical and Folded Helical Resonators, New York, Megraw-Hill, 1987,p98-107;
    [12] R. Levy, Theory of Direct-coupled-cavity filters, IEEE trans. Microwave Theory Tech. 1967, MTT-15, p340-348;
    [13] L. Young, Direct-coupled cavity filters for wide and narrow band-widths, IEEE Trans, Microwave Theory Tech, 1963, MTT-11, p162-178;
    [14] 姚毅,宽范围调谐微波滤波器耦合结构的研究,电子科技大学硕士论文, 1993年;
    [15] http://wvvw.klmicrowavechina.com/products/mfa/bt.html ;
    [16] 朱华彬,漆兰芬,多腔体射频可调谐滤波器的研究,华中科技大学学报(自 然科学版),2003年2月第31卷第2期,p87-89;
    [17] 徐鸿飞,朱成钰,刘坚,孙忠良,同轴腔带通滤波器的一种设计方法,微 波学报,2004年6月第20卷第2期,p55-58;
    [18] G. C. lemes and S. K.Mitra, Modern filters theory and design, New York Mcgraw-Hill, 1983,p34-134;
    [19] 黄席椿,高顺泉,滤波器网络综合设计原理,人民邮电出版社,1977, p107-167;
    [20] 刘宜伦,网络综合理论,人民邮电出版社,1962,p239-265;
    [21] Reinhold Ludwig, Pavel Bretchko, RF Circuit Design: Theory and Applications, 1999;
    [22] 林为干,微波网络,国防工业出版社,1978;
    [23] 姚毅,黄尚锐,微波滤波器中耦合环的研究,四川轻化工学院学报,1994 年3月第7卷第1期,p27-34;
    [24] R. E. Collin, Field Theory of Guided Waves, McGraw-Hill Book Co. ,1960, p262-274;
    [25] R. J. Cameron, General coupling matrix synthesis methods for Chebyshev filtering function, IEEE Trans. Microwave Theory Tech., vol. 47,pp. 433-442, Apr. 1999;
    [26] A. E. Ada, A. E. Williams, and R. W. Newcomb, Narrow-band multiple-coupled cavity synthesis, IEEE Trans. Circuits Syst, vol. CAS-21, pp. 649-655, Sept. 1974;
    [27] A. E.Williams, J. I. Upshur, and M. M. Rahman, Asymmetric response bandpass filter having resonators with minimum couplings, U.S. Patent 6 337 610, Jan. 8, 2002.
    [28] Richard J. Cameron, Advanced Coupling Matrix Synthesis Techniques for Microwave Filters, IEEE Trans. MTT-51, No. 1, January 2003;
    [29] Richard M. Kurzrok, Design of interstage Coupling Aperture for Narrow-band Tunable Coaxial Bandpass filters, I. R. E, Trans, on Microwave Theory and Technique, 1962. 3,pl43-144;
    [30] H. A. Bethe, Theory of Diffraction by Small Holes, The Physical Review, Vol66, Nos. 7 and 8, October 1 and 15, 1944, p163-182;
    [31] Seymour. B. Cohn, Determination of Aperture Parameters by Electrolytic-Tank Measurements, Proceeding of I. R. E, November 1951, p1416-1422;
    [32] 梁昌洪,不同区域小孔耦合的广义等效电路,电子学报,1983,1,p27-35;
    [33] J. Van Bladel, Small-hole Coupling of resonant Cavities and waveguide, Proc. IEE,Vol.117,No.6 June 1970, p1098-1104;
    [34] Noel A. McDonald, Electric and Magnetic Coupling through small Apertures in Shield Walls of any Thickness, IEEE Trans, on Microwave Theory and Techniques, Vol.20,No.10, 1972,10,p689-695;
    [35] Seymour. B. Cohn, Microwave Coupling by Large Aperture, Proc. I. R. E., 1952. 6, p696-699;
    [36] Y. Rahmat_Samii and R. Mittra, Electromagnetic Coupling through Small Aperture in a Conducting Screen, IEEE Trans. Antennas Propagation, Vol.AP-25, pp.180-187,Mar.1977;
    [37] 吴万春,梁昌洪编,微波网络及其应用,西北电讯工程学院,国防工业出 版社,1980年;
    [38] 姚毅,黄尚锐,调谐微波滤波器的腔间耦合结构研究,微波学报,1994 年第1期,No.36;
    [39] Seymour. B. Cohn, The Electric Polarizability of Apertures of Arbitrary Shape, Proceeding of I. R. E, 1952,9;
    [40] 姚毅,腔体滤波器中侧面耦合孔的等效模型,四川轻化工学院学报,1994 年12月。第7卷第4期,p9-16;
    [41] 谢处方,饶克谨编,电磁场与电磁波(第二版),高等教育出版社,1998 年;
    [42] 李润旗。李国定,陈兆清,微波电路CAD软件应用技术,国防工业出版社, 1996年;
    [43] 曹世昌,电磁场的数值计算和微波的计算机辅助设计,北京:电子工业出 版社;
    [44] http://www.ansoft.com.cn/Productsintroduce/HFSS.htm
    [45] R. L. Sleven, Design of a tunable multi-cavity waveguide bandpass filters, 1979 IRE national Concentration Record, Part 3, p91-96;
    [46] H. L. Schumacher, Direct Coupled ganged tuned bandpass filters, The Microwave Journal, 1984, Vol.7, p48-49;
    [47] R Wilds, G. Wheeler, E. Cota, Compact tunable filters, The Microwave Journal, 1984, Vol.7,p60-61;
    [48] L. Young, Microwave filters-1985, IEEE Trans. 1985, Vol. MTT-13, p488-508;
    [49] C. Mias and C. Tsakonas, Electrically and Mechanically Tunable Waveguide Filter, Microwave and Optical Technology Letters, Vol.42, No.1, July 5 2004;
    [50] T. P. Vuong, R. Crampagne, H. Baudrand, C. Zanchi, and G Fontgalland, New Rectangular Waveguide Filter Design with Adjustable Irises, Microwave and Optical Technology Letters, Vol. 27, No. 2, October 20 2000;
    [51] http://emwave.uwaterloo.ca/-dmv/cavity/index.shtml
    [52] R. L. Fjerstad, A Compact, Wide Tuning Range Filter, IEEE Trans. 1979, Vol. MTT-14,p424-427;
    [53] K. Whiting, The Effect of Increased Design Bandwidth upon Direct-coupled-resonator Filters, IEEE Trans. Vol. MTT-11, p557-560;
    [54] R. M. Kurzrok, General Three-resonator filters in Waveguide, IEEE Trans. 1966, Vol. MTT-14,p46-47;
    [55] Jones David J., Diddams Scott A., Ranka Jinendra K. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J]. Science, 2000, 288(5466) : 635-639;
    [56] Morgner U., Ell R., Metzler G et al. Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime [J]. Phy. Rev. Lett., 2001, 86(24): 5462-5465;
    [57] Diddams Scott A., Jones David J., Ye Jun et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb [J]. Phys. Rev. Lett., 2000, 84(22): 5102-5105;
    [58] Fortier T. M., Jones David J., Cundiff S. T. et al. Phase stabilization of an octave-spanning Ti:sapphire laser [J]. Opt. Lett., 2003, 28(22):2198-2200;
    [59] Zimmermann Marcus, Gohle Christoph, Holzwarth Ronald et al. Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference- frequency generation [J]. Opt. Lett., 2004, 29(3): 310-312;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700