光子晶体光纤及其功能型器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了光子晶体光纤的传导特性,从理论和实验上对基于光子晶体光纤的有源、无源器件进行了设计和分析。首先阐述了光子晶体光纤的发展历程和研究现状以及平面波展开法和有限单元法等数值计算方法;接着对光子晶体光纤的传导机制、基本传导特性以及光子带隙光纤的表面模和高双折射光子晶体光纤的温度和力学特性进行了研究;实验和理论研究了光子晶体光纤光栅;对双芯光子带隙光纤耦合器、高折射率材料填充型光子带隙光纤可调衰减器、光子晶体光纤掺铒放大器、双包层光子晶体光纤掺镱激光器、光子晶体光纤拉曼放大器等基于光子晶体光纤的功能器件进行了设计。主要研究内容包括:
     1、研究光子晶体光纤的传导特性。首先对三角形、蜂窝形栅格空气孔包层结构的光子能带进行了研究,在此基础上阐述了光子晶体光纤的传导机制,对折射率引导和光子带隙引导光子晶体光纤的波导色散、泄漏损耗和有效模场面积进行了研究。
     2、对光子带隙光纤的表面模进行了理论研究。研究了光子带隙光纤传导的纤芯模式和表面模式的特点,对纤芯截面位置对这些模式的影响特点进行了分析。
     3、对结构不对称导致高双折射光子晶体光纤和应力区导致高双折射光子晶体光纤的双折射特性进行了研究。比较了两种高双折射光子晶体光纤的相双折射和群双折射的特性,并首次在理论上分析了应力区导致高双折射光子晶体光纤的温度特性和侧向应力对结构不对称导致高双折射光子晶体光纤双折射效应的影响,获得的结果与已经报道的实验结果一致。
     4、对光子晶体光纤光栅进行了理论和实验研究。建立了光子晶体光纤和普通光纤的熔接方法,在柚子形光子晶体光纤上写制了布拉格光栅,观察到多波长谐振现象,理论分析表明这是由于纤芯基模和包层模之间的谐振造成的。
     5、设计了新型双芯空气传导光子带隙光纤耦合器,并首次在双芯光纤结构中发现无耦合现象。对具有两个相邻纤芯的空气传导光子带隙光纤的传导模式和耦合特性进行了理论分析,在所分析的结构中发现了无耦合点,在该点两个相邻纤芯之间不发生能量交换。对无耦合现象进行了解释,并根据这种光纤结构的耦合特性理论设计了波长解复用器和偏振分离器。
The propagation properties of photonic crystal fibers (PCFs) are numerical investigated, moveover, the active and passive devices based on PCFs are designed and analyzed in this dissertation. Firstly, we summarize the study progress on PCFs. The full-vectorial plane-wave expansion method and finite element method are demonstrated. The guided mechanisms, principle guided properties of PCFs are studied. The surface modes in photonic bandgap fibers (PBGFs) and the temperature and mechanical characteristics of high-birefringence PCFs (HiBi-PCFs) are also studied. Fiber grating written in PCFs are theoretically and experimentally investigated. The functional devices based on PCFs, including the dual-core PBGFs coupler, the tunable attenuator based on fill-induced PBGFs, Er3+-doped PCF amplifier, Yb3+-doped double-cladding PCF laser and PCF Raman amplifier, are designed and analyzed. The details are described as follows:
     1 . The guided properties of PCFs are investigated. Firstly, we study the photonic band structure of the PCF cladding with triangular and honeycomb air holes lattices. Then the guided mechanisms of PCFs are demonstrated. The waveguide dispersion, leaky loss and effective modal area for both index-induce PCF and PBGF are presented.
     2. The surface mode in PBGF are theoretically investigated. The characteristics of core modes and surface modes in PBGF are investigated and the effects of core boundary on these modes are presented.
     3. The birefringence properties of form-induced and stress-induced HiBi-PCFs are studied. The temperature dependence of stress-induced HiBi-PCFs and the effect of lateral forces on form-induced HiBi-PCFs are also investigated. The numerical results are in agreement with the reported experimental results.
     4. Fiber grating written in PCFs are theoretically and experimentally investigated. Splicing between single-mode fiber and PCF are theoretically and experimentally investigated. The fiber Bragg grating is written in grapefruit PCF. The multi-wavelength resonances are observed in the grating, and theoretical analysis shows that this phenomenon is caused by the resonances between core modes and cladding modes.
     5. The dual-core air-guided PBGFs couplers are designed and decoupling phenomenon has been found. Coupling properties of the PBGFs with adjacent two air cores are evaluated. The decoupling point, where no power transfers between two cores,
引文
[1] E. Yablonovitch, Physical Review Letters, vol. 58, pp. 2059, 1987.
    [2] S. John, Physical Review Letters, vol. 58, pp. 2486, 1987.
    [3] C. T. C. K.M.Ho, C.M.Soukoulis, Physical Review Letters, vol. 65, pp. 3152, 1990.
    [4] Y. F. L. K.M.Leung, Physical Review Letters, vol. 65, pp., 1990.
    [5] J. C. Knight, T. A. Birks, et al., "All-silica single-mode optical fiber with photonic crystal cladding," Optics Letters, vol. 21, pp. 1547-1549, 1996.
    [6] T. A. Birks, J. C. Knight, et al., "Endlessly single-mode photonic crystal fiber," Optics Letters, vol. 22, pp. 961-963, 1997.
    [7] A. Ortigosa-Blanch, J. C. Knight, et al., "Highly birefringent photonic crystal fibers," Optics Letters, vol. 25, pp. 1325-1327, 2000.
    [8] T. P. Hansen, J. Broeng, et al., "Highly birefringent index-guiding photonic crystal fibers," IEEE Photonics Technology Letters, vol. 13, pp. 588-590, 2001.
    [9] A. Ferrando and J. J. Miret, "Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers," Applied Physics Letters, vol. 78, pp. 3184, 2001.
    [10] K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photonics Technology Letters, vol. 15, pp. 1384-1386, 2003.
    [11] N. G. R. Broderick, T. M. Monro, et al., "Nonlinearity in holey optical fibers: measurement and future opportunities," Optics Letters, vol. 24, pp. 1395-1397, 1999.
    [12] J. C. Knight, T. A. Birks, et al., "Large mode area photonic crystal fibre," Electronics Letters, vol. 34, pp. 1347-1348, 1998.
    [13] N. A. Mortensen, M. D. Nielsen, et al., "Improved large-mode-area endlessly single-mode photonic crystal fibers," Optics Letters, vol. 28, pp. 393-395, 2003.
    [14] J. Limpert, T. Schreiber, et al., "High-power air-clad large-mode-area photonic crystal fiber laser," Optics Express, vol. 11, pp. 818-823, 2003.
    [15] W. N. MacPherson, M. J. Gander, et al., "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Optics Communications, vol. 193, pp. 97-104, 2001.
    [16] B. J. Mangan, J. C. Knight, et al., "Experimental study of dual-core photonic crystal fibre," Electronics Letters, vol. 36, pp. 1358-1359, 2000.
    [17] B. J. Eggleton, P. S. Westbrook, et al., "Cladding-mode-resonances in air-silica microstructure optical fibers," Journal of Lightwave Technology, vol. 18, pp. 1084-1100, 2000.
    [18] P. S. Westbrook, B. J. Eggleton, et al., "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," IEEE Photonics Technology Letters, vol. 12, pp. 495-497, 2000.
    [19] J. C. Knight, J. Broeng, et al., "Photonic band gap guidance in optical fibers," Science, vol. 282, pp. 1476-1478, 1998.
    [20] R. F. Cregan, B. J. Mangan, et al., "Single-mode photonic band gap guidance of light in air," Science, vol. 285, pp. 1537-1539, 1999.
    [21] T. T. Larsen, A. Bjarklev, et al., "Optical devices based on liquid crystal photonic bandgap fibres," Optics Express, vol. 11, pp. 2589-2596, 2003.
    [22] A. Argyros, T. A. Birks, et al., "Photonic bandgap with an index step of one percent," Optics Express, vol. 13, pp. 309-314, 2005.
    [23] M. Yan and P. Shum, "Air guiding with honeycomb photonic bandgap fiber," IEEE Photonics Technology Letters, vol. 17, pp. 64-66, 2005.
    [24] S. G. Johnson, M. Ibanescu, et al., "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Optics Express, vol. 9, pp. 748-779, 2001.
    [25] S. C. Wen, W. H. Su, et al., "Influence of higher-order dispersions and Raman delayed response on modulation instability in microstructured fibres," Chinese Physics Letters, vol. 20, pp. 852-854, 2003.
    [26] S. G. Li, L. T. Hou, et al., "Supercontinuum generation in holey microstructure fibres with random cladding distribution by femtosecond laser pulses," Chinese Physics Letters, vol. 20, pp. 1300-1302, 2003.
    [27] S. G. Li, Y. L. Ji, et al., "Supercontinuum generation in holey microstructure fibers by femtosecond laser pulses," Acta Physica Sinica, vol. 53, pp. 478-483, 2004.
    [28] Y. Zheng, Y. P. Zhang, et al., "Supercontinuum generation with 15-fs pump pulses in a microstructured fibre with random cladding and core distributions," Chinese Physics Letters, vol. 21, pp. 750-753, 2004.
    [29] Y. F. Li, Q. Y. Wang, et al., "Dispersion calculation of photonic crystal fibers by the normalization technique," Acta Physica Sinica, vol. 53, pp. 1396-1400, 2004.
    [30] S. G. Li, X. D. Liu, et al., "Numerical study on dispersion compensating property in photonic crystal fibers," Acta Physica Sinica, vol. 53, pp. 1880-1886, 2004.
    [31] S. G. Li, X. D. Liu, et al., "Vector analysis of dispersion for the-fundamental cladding mode in photonic crystal fibers," Acta Physica Sinica, vol. 53, pp. 1873-1879, 2004.
    [32] M. L. Hu, Q. Y. Wang, et al., "Birefringence phenomena in a random distributed microstructure fiber," Acta Physica Sinica, vol. 53, pp. 4248-4252, 2004.
    [33] P. Russell, "Photonic crystal fibers," Science, vol. 299, pp. 358-362, 2003.
    [34] A. D. Fitt, K. Furusawa, et al., "Modeling the fabrication of hollow fibers: Capillary drawing," Journal of Lightwave Technology, vol. 19, pp. 1924-1931, 2001.
    [35] S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Optics Express, vol. 8, pp. 173-190, 2001.
    [36] T. M. Monro, D. J. Richardson, et al., "Holey optical fibers: An efficient modal model," Journal of Lightwave Technology, vol. 17, pp. 1093-1102, 1999.
    [37] E. Knudsen and A. Bjarklev, "Modelling photonic crystal fibres with Hermite-Gaussian functions," Optics Communications, vol. 222, pp. 155-160, 2003.
    [38] T. P. White, B. T. Kuhlmey, et al., "Multipole method for microstructured optical fibers. I. Formulation," Journal of the Optical Society of America B-Optical Physics, vol. 19, pp. 2322-2330, 2002.
    [39] B. T. Kuhlmey, T. P. White, et al., "Multipole method for microstructured optical fibers. II. Implementation and results," Journal of the Optical Society of America B-Optical Physics, vol. 19, pp. 2331-2340, 2002.
    [40] Z. M. Zhu and T. G. Brown, "Multipole analysis of hole-assisted optical fibers," Optics Communications, vol. 206, pp. 333-339, 2002.
    [41] T. P. White, B. T. Kuhlmey, et al., "Multipole method for microstructured optical fibers. Iota. Formulation (vol 19, pg 2322, 2002)," Journal of the Optical Society of America B-Optical Physics,vol. 20, pp. 1581-1581, 2003.
    [42] Z. Wang, G. B. Ren, et al., "Supercell lattice method for photonic crystal fibers," Optics Express, vol. 11, pp. 980-991, 2003.
    [43] Z. M. Zhu and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Optics Express, vol. 10, pp. 853-864, 2002.
    [44] C. P. Yu and H. C. Chang, "Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers," Optics Express, vol. 12, pp. 6165-6177, 2004.
    [45] M. Koshiba, "Full-vector analysis of photonic crystal fibers using the finite element method," Ieice Transactions on Electronics, vol. E85C, pp. 881-888, 2002.
    [46] T. Fujisawa and M. Koshiba, "Finite element characterization of chromatic dispersion in nonlinear holey fibers," Optics Express, vol. 11, pp. 1481-1489, 2003.
    [47] A. Cucinotta, S. Selleri, et al., "Holey fiber analysis through the finite-element method," IEEE Photonics Technology Letters, vol. 14, pp. 1530-1532, 2002.
    [48] Y. Z. He and F. G. Shi, "Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers," Optics Communications, vol. 225, pp. 151-156, 2003.
    [49] K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE Journal of Quantum Electronics, vol. 38, pp. 927-933, 2002.
    [50] F. Fogli, L. Saccomandi, et al., "Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers," Optics Express, vol. 10, pp. 54-59, 2002.
    [51] Y. F. Li, C. Y. Wang, et al., "A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation," Optics Communications, vol. 238, pp. 29-33, 2004.
    [52] K. Saitoh, Y. Sato, et al., "Coupling characteristics of dual-core photonic crystal fiber couplers," Optics Express, vol. 11, pp. 3188-3195, 2003.
    [53] N. A. Mortensen, J. R. Folkenberg, et al., "Modal cutoff and the V parameter in photonic crystal fibers," Optics Letters, vol. 28, pp. 1879-1881, 2003.
    [54] M. D. Nielsen, N. A. Mortensen, et al., "Mode-field radius of photonic crystal fibers expressed by the V parameter," Optics Letters, vol. 28, pp. 2309-2311, 2003.
    [55] K. Tajima, J. Zhou, et al., "Ultralow loss and long length photonic crystal fiber," Journal of Lightwave Technology, vol. 22, pp. 7-10, 2004.
    [56] T. Sorensen, J. Broeng, et al., "Macro-bending loss properties of photonic crystal fibre," Electronics Letters, vol. 37, pp. 287-289, 2001.
    [57] J. C. Baggett, T. M. Monro, et al., "Understanding bending losses in holey optical fibers," Optics Communications, vol. 227, pp. 317-335, 2003.
    [58] M. D. Nielsen, N. A. Mortensen, et al., "Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications," Optics Letters, vol. 28, pp. 1645-1647, 2003.
    [59] D. Ferrarini, L. Vincetti, et al., "Leakage properties of photonic crystal fibers," Optics Express, vol. 10, pp. 1314-1319, 2002.
    [60] V. Finazzi, T. M. Monro, et al., "The role of confinement loss in highly nonlinear silica holey fibers," IEEE Photonics Technology Letters, vol. 15, pp. 1246-1248, 2003.
    [61] L.-P. Shen, W.-P. Huang, et al., "Design of photonic crystal fibers for dispersion-related applications," Journal of Lightwave Technology, vol. 21, pp. 1644-1651, 2003.
    [62] L. P. Shen, W. P. Huang, et al., "Design and optimization of photonic crystal fibers for broad-band dispersion compensation," IEEE Photonics Technology Letters, vol. 15, pp. 540-542, 2003.
    [63] J. C. Knight, J. Arriaga, et al., "Anomalous dispersion in photonic crystal fiber," IEEE Photonics Technology Letters, vol. 12, pp. 807-809, 2000.
    [64] A. Ferrando, E. Silvestre, et al., "Designing the properties of dispersion-flattened photonic crystal fibers," Optics Express, vol. 9, pp. 687-697, 2001.
    [65] K. P. Hansen, "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Optics Express, vol. 11, pp. 1503-1509, 2003.
    [66] G. Renversez, B. Kuhlmey, et al., "Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses," Optics Letters, vol. 28, pp. 989-991, 2003.
    [67] A. Ferrando, E. Silvestre, et al., "Nearly zero ultraflattened dispersion in photonic crystal fibers," Optics Letters, vol. 25, pp. 790-792, 2000.
    [68] W. H. Reeves, J. C. Knight, et al., "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Optics Express, vol. 10, pp. 609-613, 2002.
    [69] M. J. Steel and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonic crystal fibers," Journal of Lightwave Technology, vol. 19, pp. 495-503, 2001.
    [70] I. K. Hwang, Y. J. Lee, et al., "Birefringence induced by irregular structure in photonic crystal fiber," Optics Express, vol. 11, pp. 2799-2806, 2003.
    [71] A. Peyrilloux, T. Chartier, et al., "Theoretical and experimental study of the birefringence of a photonic crystal fiber," Journal of Lightwave Technology, vol. 21, pp. 536-539, 2003.
    [72] J. R. Folkenberg, M. D. Nielsen, et al., "Polarization maintaining large mode area photonic crystal fiber," Optics Express, vol. 12, pp. 956-960, 2004.
    [73] G. P. Agrawal, Nonlinear Fiber Optics. Third Edition, vol.,:,San Diego:Academic Press, 2001.
    [74] N. A. Mortensen, "Effective area of photonic crystal fibers," Optics Express, vol. 10, pp. 341-348, 2002.
    [75] L. F. Zou, X. Y. Bao, et al., "Brillouin scattering spectrum partially germ in photonic crystal fiber with a partially germanium-doped core," Optics Letters, vol. 28, pp. 2022-2024, 2003.
    [76] N. Nishizawa, Y. Ito, et al., "0.78-0.90-mu m wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber," IEEE Photonics Technology Letters, vol. 14, pp. 986-988, 2002.
    [77] J. E. Sharping, M. Fiorentino, et al., "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Optics Letters, vol. 27, pp. 1675-1677, 2002.
    [78] F. G. Omenetto, A. J. Taylor, et al., "Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber," Optics Letters, vol. 26, pp. 1158-1160, 2001.
    [79] A. Efimov, A. J. Taylor, et al., "Phase-matched third harmonic generation in microstructured fibers," Optics Express, vol. 11, pp. 2567-2576, 2003.
    [80] X. Liu, C. Xu, et al., "Soliton self-frequency shift in a short tapered air-silica microstructure fiber," Optics Letters, vol. 26, pp. 358-360, 2001.
    [81] I. G. Cormack, D. T. Reid, et al., "Observation of soliton self-frequency shift in photonic crystal fibre," Electronics Letters, vol. 38, pp. 167-169, 2002.
    [82] K. S. Abedin and F. Kubota, "Widely tunable femtosecond soliton pulse generation at a 10-GHz repetition rate by use of the soliton self-frequency shift in photonic crystal fiber," Optics Letters, vol. 28, pp. 1760-1762, 2003.
    [83] D. V. Skryabin, F. Luan, et al., "Soliton self-frequency shift cancellation in photonic crystalfibers," Science, vol. 301, pp. 1705-1708, 2003.
    [84] M. L. Hu, C. Y. Wang, et al., "Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber," Optics Express, vol. 12, pp. 1932-1937, 2004.
    [85] J. K. Ranka, R. S. Windeler, et al., "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Optics Letters, vol. 25, pp. 25-27, 2000.
    [86] J. M. Dudley and S. Coen, "Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 651-659, 2002.
    [87] I. Cristiani, R. Tediosi, et al., "Dispersive wave generation by solitons in microstructured optical fibers," Optics Express, vol. 12, pp. 124-135, 2004.
    [88] Y. Xu and A. Yariv, "Loss analysis of air-core photonic crystal fibers," Optics Letters, vol. 28, pp. 1885-1887, 2003.
    [89] K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Optics Express, vol. 11, pp. 3100-3109, 2003.
    [90] K. Saitoh and M. Koshiba, "Confinement losses in air-guiding photonic bandgap fibers," IEEE Photonics Technology Letters, vol. 15, pp. 236-238, 2003.
    [91] K. Saitoh, N. A. Mortensen, et al., "Air-core photonic band-gap fibers: the impact of surface modes," Optics Express, vol. 12, pp. 394-400, 2004.
    [92] J. A. West, C. M. Smith, et al., "Surface modes in air-core photonic band-gap fibers," Optics Express, vol. 12, pp. 1485-1496, 2004.
    [93] H. K. Kim, J. Shin, et al., "Designing air-core photonic-bandgap fibers free of surface modes," IEEE Journal of Quantum Electronics, vol. 40, pp. 551-556, 2004.
    [94] M. J. F. Digonnet, H. K. Kim, et al., "Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers," Optics Express, vol. 12, pp. 1864-1872, 2004.
    [95] P. J. Roberts, F. Couny, et al., "Ultimate low loss of hollow-core photonic crystal fibres," Optics Express, vol. 13, pp. 236-244, 2005.
    [96] F. Luan, J. C. Knight, et al., "Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers," Optics Express, vol. 12, pp. 835-840, 2004.
    [97] D. G. Ouzounov, F. R. Ahmad, et al., "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science, vol. 301, pp. 1702-1704, 2003.
    [98] J. C. K. F.Luan, P.J.Russell,S.Campbell, "Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers," Optics Express, vol. 12, pp. 835-840, 2004.
    [99] J. Jasapara, T. H. Her, et al., "Group-velocity dispersion measurements in a photonic bandgap fiber," Journal of the Optical Society of America B-Optical Physics, vol. 20, pp. 1611-1615, 2003.
    [100] F. Benabid, J. C. Knight, et al., "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science, vol. 298, pp. 399-402, 2002.
    [101] S. O. Konorov, A. B. Fedotov, et al., "Enhanced four-wave mixing in a hollow-core photonic-crystal fiber," Optics Letters, vol. 28, pp. 1448-1450, 2003.
    [102] B. J. Eggleton, P. S. Westbrook, et al., "Grating resonances in air-silica microstructured optical fibers," Optics Letters, vol. 24, pp. 1460-1462, 1999.
    [103] G. Kakarantzas, T. A. Birks, et al., "Structural long-period gratings in photonic crystal fibers," Optics Letters, vol. 27, pp. 1013-1015, 2002.
    [104] Y. N. Zhu, P. Shum, et al., "Strong resonance and a highly compact long-period grating in a large-mode-area photonic crystal fiber," Optics Express, vol. 11, pp. 1900-1905, 2003.
    [105] Y. N. Zhu, P. Shum, et al., "Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber," Optics Letters, vol. 28, pp. 2467-2469, 2003.
    [106] Y. N. Zhu, P. Shum, et al., "Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber," Optics Letters, vol. 30, pp. 367-369, 2005.
    [107] J. H. Lim, K. S. Lee, et al., "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Optics Letters, vol. 29, pp. 331-333, 2004.
    [108] J. H. Lim, H. S. Jang, et al., "Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings," Optics Letters, vol. 29, pp. 346-348, 2004.
    [109] W. J. Wadsworth, J. C. Knight, et al., "Yb3+-doped photonic crystal fibre laser," Electronics Letters, vol. 36, pp. 1452-1454, 2000.
    [110] P. Glas and D. Fischer, "Cladding pumped large-mode-area Nd-doped holey fiber laser," Optics Express, vol. 10, pp. 286-290, 2002.
    [111] K. Furusawa, A. Malinowski, et al., "Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding," Optics Express, vol. 9, pp. 714-720, 2001.
    [112] W. J. Wadsworth, R. M. Percival, et al., "High power air-clad photonic crystal fibre laser," Optics Express, vol. 11, pp. 48-53, 2003.
    [113] J. Limpert, T. Schreiber, et al., "Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation," Optics Express, vol. 11, pp. 2982-2990, 2003.
    [114] T. Sondergaard and B. Tromborg, "General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier," Physical Review A, vol. 6403, pp., 2001.
    [115] R. F. Cregan, J. C. Knight, et al., "Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber," Journal of Lightwave Technology, vol. 17, pp. 2138-2141, 1999.
    [116] P. Petropoulos, T. M. Monro, et al., "2R-regenerative all-optical switch based on a highly nonlinear holey fiber," Optics Letters, vol. 26, pp. 1233-1235, 2001.
    [117] J. E. Sharping, M. Fiorentino, et al., "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photonics Technology Letters, vol. 14, pp. 77-79, 2002.
    [118] S. M. Zheltikova D.A., Zheltikov A.M., Bloemer M.J., Shneider M.N., Aguanno G.D., Miles R.B., "Switching intense laser pulses guided by Kerr-effect-modified modes of a hollow-core photonic-crystal fiber," Physical Review E, vol. 71, pp. 026609, 2005.
    [119] T. T. Larsen, J. Broeng, et al., "Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres," Electronics Letters, vol. 39, pp. 1719-1720, 2003.
    [120] F. Du, Y. Q. Lu, et al., "Electrically tunable liquid-crystal photonic crystal fiber," Applied Physics Letters, vol. 85, pp. 2181-2183, 2004.
    [121] Z. Yusoff, J. H. Lee, et al., "Raman effects in a highly nonlinear holey fiber: amplification and modulation," Optics Letters, vol. 27, pp. 424-426, 2002.
    [122] K. S. Abedin, T. Miyazaki, et al., "Wavelength-conversion of pseudorandom pulses at 10 Gb/s by using soliton self-frequency shift in a photonic crystal fiber," IEEE Photonics Technology Letters, vol. 16, pp. 1119-1121, 2004.
    [123] J. Hansryd, P. A. Andrekson, et al., "Fiber-based optical parametric amplifiers and their applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 506-520, 2002.
    [124] R. Tang, J. Lasri, et al., "Microstructure-fibre-based optical parametric amplifier with gain slope of similar to 200 dB/W/km in the telecom range," Electronics Letters, vol. 39, pp. 195-196, 2003.
    [125] J. H. Lee, W. Belardi, et al., "Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold," IEEE Photonics Technology Letters, vol. 15, pp.440-442, 2003.
    [126] W. N. MacPherson, J. D. C. Jones, et al., "Two-core photonic crystal fibre for Doppler difference velocimetry," Optics Communications, vol. 223, pp. 375-380, 2003.
    [127] Y. L. Hoo, W. Jin, et al., "Design and modeling of a photonic crystal fiber gas sensor," Applied Optics, vol. 42, pp. 3509-3515, 2003.
    [128] Y. L. Hoo, W. Jin, et al., "Evanescent-wave gas sensing using microstructure fiber," Optical Engineering, vol. 41, pp. 8-9, 2002.
    [129] L. F. Zou, X. Y. Bao, et al., "Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber," Optics Letters, vol. 29, pp. 1485-1487, 2004.
    [130] K. Saitoh, Y. Sato, et al., "Polarization splitter in three-core photonic crystal fibers," Optics Express, vol. 12, pp. 3940-3946, 2004.
    [131] K. Sakoda, Optical Properties of Photonic Crystals, vol.,:,Springer, 2001.
    [132] Z. Wang, S. Fu, et al., "Analysis of the guided modes in triangular photonic crystal fibers using a full-vectorial numerical method," presented,at,APOC 2003: Asia-Pacific Optical and Wireless Communications: Optical Fibers and Passive Components, Nov 4-6 2003,,Wuhan, China,,2004.
    [133] J. Broeng, S. E. Barkou, et al., "Analysis of air-guiding photonic bandgap fibers," Optics Letters, vol. 25, pp. 96-98, 2000.
    [134] T. P. Hansen, J. Broeng, et al., "Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling," Journal of Lightwave Technology, vol. 22, pp. 11-15, 2004.
    [135] T. Schreiber, J. Limpert, et al., "High average power supercontinuum generation in photonic crystal fibers," Optics Communications, vol. 228, pp. 71-78, 2003.
    [136] C. M. Smith, N. Venkataraman, et al., "Low-loss hollow-core silica/air photonic bandgap fibre," Nature, vol. 424, pp. 657-659, 2003.
    [137] H. K. Kim, M. J. F. Digonnet, et al., "Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers," Optics Express, vol. 12, pp. 3436-3442, 2004.
    [138] F. Ramos-Mendieta and P. Halevi, "Electromagnetic surface modes of a dielectric superlattice: the supercell method," Journal of the Optical Society of America B: Optical Physics, vol. 14, pp. 370, 1997.
    [139] T. Ritari, T. Niemi, et al., "Polarization-mode dispersion of large mode-area photonic crystal fibers," Optics Communications, vol. 226, pp. 233-239, 2003.
    [140] T. Ritari, H. Ludvigsen, et al., "Experimental study of polarization properties of highly birefringent photonic crystal fibers," Optics Express, vol. 12, pp. 5931-5939, 2004.
    [141] C. L. Zhao, X. F. Yang, et al., "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photonics Technology Letters, vol. 16, pp. 2535-2537, 2004.
    [142] M. Szpulak, T. Martynkien, et al., "Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers," Applied Optics, vol. 43, pp. 4739-4744, 2004.
    [143] A. Ortigosa-Blanch, A. Diez, et al., "Temperature independence of birefringence and group velocity dispersion in photonic crystal fibres," Electronics Letters, vol. 40, pp. 1327-1329, 2004.
    [144] G. Statkiewicz, T. Martynkien, et al., "Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain," Optics Communications, vol. 241, pp. 339-348, 2004.
    [145] A. D. Yablon, "Optical and mechanical effects of frozen-in stresses and strains in optical fibers,"IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, pp. 300-311, 2004.
    [146] P. J. Bennett, T. M. Monro, et al., "Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization," Optics Letters, vol. 24, pp. 1203-1205, 1999.
    [147] J. H. Chong, M. K. Rao, et al., "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photonics Technology Letters, vol. 15, pp. 942-944, 2003.
    [148] J. T. Lizier and G. E. Town, "Splice losses in holey optical fibers," IEEE Photonics Technology Letters, vol. 13, pp. 794-796, 2001.
    [149] L. Zhang and C. X. Yang, "Polarization splitter based on photonic crystal fibers," Optics Express, vol. 11, pp. 1015-1020, 2003.
    [150] L. Zhang and C. X. Yang, "Nonreciprocal coupling in asymmetric dual-core photonic crystal fibres," Chinese Physics Letters, vol. 21, pp. 1542-1544, 2004.
    [151] L. Zhang and C. X. Yang, "A novel polarization sputter based on the photonic crystal fiber with nonidentical dual cores," IEEE Photonics Technology Letters, vol. 16, pp. 1670-1672, 2004.
    [152] L. Zhang and C. X. Yang, "Polarization-dependent coupling in twin-core photonic crystal fibers," Journal of Lightwave Technology, vol. 22, pp. 1367-1373, 2004.
    [153] J. Laesgaard, O. Bang, et al., "Photonic crystal fiber design for broadband directional coupling," Optics Letters, vol. 29, pp. 2473-2475, 2004.
    [154] M. Skorobogatiy, K. Saitoh, et al., "Coupling between two collinear air-core Bragg fibers," Journal of the Optical Society of America B-Optical Physics, vol. 21, pp. 2095-2101, 2004.
    [155] M. Skorobogatiy, "Hollow Bragg fiber bundles: when coupling helps and when it hurts," Optics Letters, vol. 29, pp. 1479-1481, 2004.
    [156] M. Skorobogatiy, K. Saitoh, et al., "Resonant directional coupling of hollow Bragg fibers," Optics Letters, vol. 29, pp. 2112-2114, 2004.
    [157] R. S. W. R.T.Bise, K.S.Kranz, C.Kerbage, B.J.Eggleton, D.J.Trevor, "Tunable photonic band gap fiber," presented,at,Optical Fiber Communications Conference,,2002.
    [158] P. Steinvurzel, B. T. Kuhlmey, et al., "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Optics Express, vol. 12, pp. 5424-5433, 2004.
    [159] A. K. Abeeluck, C. Headley, et al., "Antiresonant reflecting photonic crystal optical waveguides," Optics Letters, vol. 27, pp. 1592-1594, 2002.
    [160] Z. Wang, Y.-G. Liu, et al., "A novel Er3+-doped honeycomb photonic bandgap fiber for highly efficient amplification," presented,at,APOC 2004: Asia-Pacific Optical and Wireless Communications: Optical Fibers and Passive Components, Nov 4-6 2003,,Wuhan, China,,2004.
    [161] K. G. Hougaard, J. Broeng, et al., "Low pump power photonic crystal fibre amplifiers," Electronics Letters, vol. 39, pp. 599-600, 2003.
    [162] S. Selleri, A. Cucinotta, et al., "Amplification properties of Erbium doped photonic crystal fibers," presented,at,ECOC2002,,2002.
    [163] S. Hilarie, P. Roy, et al., "Large mode Er3+-doped photonic crystal fiber amplifier for highly efficient amplification," presented,at,ECOC2003,,2003.
    [164] A. Cucinotta, F. Poli, et al., "Amplification properties of Er3+-doped photonic crystal fibers," Journal of Lightwave Technology, vol. 21, pp. 782-788, 2003.
    [165] T. Sondergaard, "Photonic crystal distributed feedback fiber lasers with Bragg gratings," Journal of Lightwave Technology, vol. 18, pp. 589-597, 2000.
    [166] T. P. Hansen, J. Broeng, et al., "Solid-core photonic bandgap fiber with large anormalous dispersion," presented,at,OFC2003,,2003.
    [167] E. D. C.R.Giles, "Modeling Erbium-doped fiber amplifiers," Journal of Lightwave Technology, vol. 9, pp. 271-283, 1991.
    [168] R. J. C. H.M. Pask, D. C. Hanna, Anne C.Tropper, Colin J. Mackechnie, P.R.Braber, J.M.Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2mum Region," IEEE Journal of Selected Topics in Quantum Electronics, vol. 1, pp. 2-13, 1995.
    [169] J. N. R. Raschotta, A.C.Tropper,D.C.Hanna, "Ytterbium-doped fiber amplifiers," IEEE Journal of Quantum Electronics, vol. 33, pp. 1049-1056, 1997.
    [170] A. A. H. I.Kelson, "Strongly pumped fiber lasers," IEEE Journal of Quantum Electronics, vol. 34, pp. 1570-1577, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700