近红外大口径波长移相干涉仪关键技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大口径平面光学元件在天文、航天、强激光等领域有着重要且广泛的应用,例如在我国神光Ⅲ高功率固体激光装置的重大项目中使用了大量高精度的大口径平面光学元件,这些光学元件在加工与使用过程中需要能够对其面形和光学均匀性进行高精度检测的近红外大口径干涉仪。针对神光Ⅲ的研制需求,本论文开展了基于波长移相方式的近红外大口径干涉仪的研制工作。尽管波长移相方式比硬件移相方式更适合应用于大口径光学元件的干涉测量中,但波长移相干涉时移相量大小不仅与波长变化量有关,还与干涉腔长有关,且随着腔长增大,对波长分辨率的要求越高。而根据应用需求,某些大口径光学元件需在布儒斯特角或小角度下进行测量,此时,干涉腔长过长,无法实现移相量的准确标定。因此需解决短腔长测量时不同腔长下的移相量标定问题和长腔长测量时的相位计算问题。此外,工作波长近红外、测量孔径Φ600mm,需具备足够的中频段传递能力、能够在测量区域非连通和长腔长下进行测量等条件对干涉仪的相位计算、光学系统设计和光路调校等方面提出了更高的要求。本文围绕以上几个关键技术及其应用展开了研究。
     移相量的精度直接关系到相位计算精度,为了解决在不同干涉腔长下测量时的移相量实时标定问题,本文提出了基于李萨如图技术和基于一维时域傅立叶变换的移相量标定方法,前者通过李萨如图拟合技术实现移相量的计算,精度较高。该方法不要求移相量相等,且在超短腔长(腔长为0.01m左右)时仍能使用,但其对于干涉图的对比度要求较高,同时参与计算的两个点的相位差不能是π的倍数。后者通过对空间某点不同时刻的光强值进行一维傅立叶变换等处理得到移相量,该方法没有前一种方法的缺点,但要求移相量相等。将该方法应用于波长移相干涉仪中,其测量结果与Zygo GPI移相干涉仪的测量结果偏差在λ/50(PV值)范围内。结果表明,两种方法均能够实现波长移相干涉测量时的移相量标定,且后者计算性能更稳定。
     在长干涉腔长下测量时,由于移相步进量分辨率受限导致偏离π/2,给波面计算带来了误差。针对此情况,首先,研究了波长调谐随机移相算法,该算法不标定移相量,采用最小二乘原理和迭代计算,在适合的收敛条件下实现相位的计算。在长腔长下测量时,该方法的测量结果与短腔长下的测量结果偏差约λ/70(PV值)。然后,提出了自适应相位筛选法,该算法对多幅移相干涉图进行筛选得到移相步进量为π/2的干涉图。在长腔长下测量时,该方法的测量结果与短腔长下的测量结果偏差约λ/300(PV值)。结果表明,这两种方法都可以很好地解决长腔长测量时移相量标定的技术问题,且后者比前者计算精度高。
     针对非连通区域的相位解包问题,提出了基于离散余弦变换算法的种子点相位解包方法。该方法利用种子点法对各分离区域进行解包,再利用离散余弦变换算法求得的干涉级次,将各分离区域的解包相位进行统一。实验验证了该方法的正确性和精度。该方法能够快速准确地实现非连通区域的相位解包。
     针对干涉仪的研制需求,光路设计时采用单片双凸非球面作为准直物镜、成像系统采用双远心光路、去除旋转毛玻璃等措施来满足要求。针对波长调谐激光器的输出波长分辨率与激光器控制器的分辨率相关的特性,研制了高精度的电压驱动源,从硬件上保证了激光器能够实现高精度地波长调谐。针对干涉光路不可见的特点,采用可见光辅助调校技术实现了系统的调校。并对系统的光学质量、重复性和测量不确定度进行测量和分析,干涉仪系统的测量不确定度优于λ/15。
     最后研究了近红外大口径波长移相干涉仪的应用。首先研究了波长移相干涉仪测量平行平板的光学参数。测量时,只需要平行平板放入测量和空腔测量两个步骤,采用傅立叶变换算法实现多表面干涉条纹的分离。通过模拟仿真和实验验证了该算法的正确性和精度。该方法可用于测量平行平板的前后表面面形及光学均匀性,且测量步骤简单、精度较高,尤其适用于大口径平行平板的测量。然后研究了近红外大口径干涉仪在大口径光学元件以及长腔长下的测量。实验结果表明,该干涉仪可以高精度地实现大口径光学元件和长腔长下光学元件的面形测量。
The planar optical elements with large aperture have found wide applications in the fields of astronomy, aerospace, high power laser and others. One example is the Shenguang III high power solid-state laser facility in which a large number of optical elements with large aperture and high quality are employed. An interferometer that has capability of measuring the surface shapes and optical homogeneity of the elements with large aperture during the process of manufacturing and applications is then required. To this end, a wavelength tuning-based phase-shifting interferometer with a diameter of600mm has been developed, which is illuminated by a source in the near-infrared wavelength range. Although wavelength tuning-based method has the advantage of measuring elements with large aperture over hardware shifting methods, the required value of wavelength tuning is a function of both the changes of the wavelength and the length of the cavity between the transmission flat and the reflective flat. And the wavelength resolution increases with the increasing of the length of the cavity. Second, the measurements of large optical elements have to be performed at the Brewster angle or a small angle in some applications in which the cavity length is very large, which makes it difficult to accurately calibrate the phase shifts. It is therefore necessary to find methods of calibrating the phase shifts at small cavity lengths and calculating the phase at large cavity lengths. In addition, the interferometer developed is illuminated by the near-infrared wavelength range with clear aperture size of600mm, enough transmission in mid-spatial frequency and capability of calculating the phases of discontinuous regions and performing measurements at a large cavity length, which lead to more strict requirements to phase calculation, optical design, and system alignment. In this thesis, these key techniques and their applications are investigated.
     The precision of calculated phase is directly determined by the precision of phase shifts. In this thesis, two methods are proposed to calibrate the phase shifts for measurements at different cavity lengths. The first method is based on the Lissajous figures in which phase shifts are obtained by fitting of Lissajous figure with high precision. In this method, no equal phase shifts are required and it can work at a small cavity length (about0.01m). However, it has the limitations of requiring interferograms with high contrast and the phase difference between two points should not be multiples of π. These limitations are overcomed by the second method in which phase shifts are found by Fourier transform of the intensities captured at one point at different time. This method requires equal phase shifts and can be used in the wavelength tuning-based phase-shifting interferometer. Two groups of measurement experiments were carried out with both the wavelength tuning interferometer and the Zygo GPI interferometer. The results show the difference of the PV values is less than λ/50, which demonstrated that the phase shifts can be calibrated by both methods at high precision with the latter method of higher stability.
     Compared with measurements at small cavity lengths, the phase shifts will deviate from π/2due to the limitation of the phase shift step resolution when measuring at large cavity lengths, which results in error in final phase calculation. In order to solve the problem, the random phase-shifting algorithm with wavelength tuning is analyzed, in which the phase shifts are assumed to be unknowns and the phases are calculated through iterative spatial and serial least-squares fitting. The difference between the PV values of the wavefronts obtained at a large cavity length and a small cavity length is less than λ/70. An adaptive phase selecting method is then proposed, in which several interferograms with a phase shift π/2are chosen from a large number of interferograms. It is found that the difference between the PV values of the wavefronts obtained at a large cavity length and a small cavity length is less than λ/300. The results show both methods can be employed in measurements at large cavity lengths with the latter method of higher precision.
     A seed point unwrapping algorithm based on Discrete Cosine Transform (DCT) algorithm is proposed to unwrap the wrapped phases in discontinuous regions, in which the phases in discontinuous regions are unwrapped with the seed point algorithm respectively and they are then unified with the interferometric orders obtained by DCT algorithm. The phases of discontinuous regions can rapidly and correctly unwrapped by the method which demonstrated the validity and the precision of the method.
     To meet the requirements of the interferometer developed, a single aspherical lens was used for collimation, and double telecentric configuration for imaging and a rotating diffuser is removed in the image system. Based on the resolution of the output wavelength and the controller of the laser, a voltage driver with high precision is developed, in which the wavelength can be tuned by the driver with high precision. Due to the invisibility of the near-infrared light, the adjusting method with visible light is proposed. The optical quality and the measurement repeatability of the interferometer were evaluated and it was found that measurement uncertainty of the interferometer was better than λ/15.
     Finally, the potential applications of the interferometer are discussed. The parallel plates were first measured in only two steps:first with and second without the parallel plate in the cavity between transmission flat and reflective flat. The Fourier transform algorithm was used to separate several groups of the fringes. Both the numerical simulation and the measurement experiments demonstrate the validity of the presented method. The method is characterized by its high precision and simplicity and can be used for measuring the parallel plates with large aperture. The interferometer was then employed to measure the optical elements with large aperture and at a large cavity length with data of high precision.
引文
[1]Daniel Malacara. Optical Shop Testing. New York:John Wiley&Sons,2007
    [2]J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio. Digital wavefront measuring interferometer for testing optical surfaces and lenses. Appl. Opt.,1974,13,2693-2703
    [3]彭翰生,张小民,范滇元等.高功率固体激光装置的发展与工程科学问题.中国工程科学,2001,3(3):1-8
    [4]张蓉竹.ICF系统光学元件高精度波前检测技术研究.四川大学博士学位论文,2003
    [5]C.R.Wolfe, J.K.Lawson.The measurement and analysis of wavefront structure from large aperture ICF optics. SPIE.1997,2633:361-385
    [6]J. Burge, L. B. Kot, H. M. Martin, R. Zehnder, and C. Zhao. Optical Metrology for the 8.4m Diameter Mirror Segments for the 25m Giant Magellan Telescope, in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America,2006), paper OFWB4
    [7]Michael Bray. Using First Principle in the Specifying of Optics for Large High-Power Lasers (I):Application to the MegaJoule Laser (LMJ). Proc. of SPIE,1996,2775:328-344
    [8]许乔.高功率固体激光系统光学元件质量评价.博士后研究工作报告,绵阳:中国工程物理研究院,1999
    [9]Glen C. Cole, Robert Garfield, Tracy Peters,etc. Optical Fabrication of the James Webb Space Telescope Primary Mirror. OSA Technical Digest (CD) (Optical Society of America,2006), paper OFMA2
    [10]余建斌.我国最大光学天文望远镜落成.人民日报,2007.5.13
    [11]J. A. Paisner, J. R. Murray. The National Ignition Facility for the Inertial Confinement Fusion. UCRL-JC-1ZS6S9,1997
    [12]孙权.神光Ⅲ惯性约束聚变激光装置可靠性研究.长沙:国防科技大学博士学位论文,2005
    [13]P. Murphy, G. Forbes, J. Fleig, P. Dumas and M. Tricard. Stitching Interferometry:A Flexible Solution for Surface Metrology. Opt. Photon. News,2003,14(5):38-43
    [14]S. Chen, S. Li and Y. Dai. Iterative algorithm for subaperture stitching interferometry for general surfaces. J. Opt. Soc. Am. A,2005,22(9):1929-1936
    [15]Xi Hou, Fan Wu, Li Yang, et.al. Full-aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces. Appl. Opt.,2006,45(15):3442-3455
    [16]Mingyi Chen, Hongwei Guo, Yingjie Yu, et.al. Recent developments of multi-aperture overlap-scanning technique. SPIE,2004,5180:393-401
    [17]J. E. Yellowhair. Advanced Technologies for fabrication and testing of large flat mirrors. The University of Arizona. Ph.D. Dissertation,2007
    [18]S. Han, E. Novak and M. Schurig. Application of Ritchey-Common test in large flat measurements. SPIE,2001,4399:131-136
    [19]K. L. Shu. Ray-trace analysis and data reduction methods for the Ritchey-Common test. Appl. Opt,1983,22(12):1879-1886
    [20]J.-C. Poncetta, V. Beau, J. Daurios, G. Gaborit and G. Chabassier. Metrology of large optical components for high power lasers. SPIE,2003,4829:734-735
    [21]Joe Lamb, James Semrad, James Wyant, et.al. Optical and mechanical design consideration in the construction of a 24inch phase shifting interferometers. SPIE,1997, 3047:415-426
    [22]C.Ai, R. Knowiden, R.Lamb.Design of 24" Phase-Shifting Fizeau interferometer. SPIE,1997,3134:447-455
    [23]Michael Bray, Audrey Liard, Genevieve Chabassier. Laser MegaJoule optics(I):New methods of optical specification.SPEE,1999,3739:449-460
    [24]Audrey Liard, Michael Bray, Genevieve Chabassier. Laser MegaJoule optics (Ⅱ):Wavefront analysis in the testing of large components.SPIE,1999,3739:461-472
    [25]L. L. Deck and J. A. Soobitsky. Phase-shifting via wavelength tuning in very large aperture interferometers. SPIE,1999,3782:432-442
    [26]Large Aperture Systems. http://www.zygo.com/?/met/interferometers/large_aperture/
    [27]C. Ai, R. E. Knowlden and J. A. Lamb. Design of a 24-in. phase-shifting Fizeau interferometer. SPIE,1997,3134:447-455
    [28]S. Han. Calculation of an iris size in 24-in. Fizeau interferometer. SPIE,1999,3782: 464-468
    [29]S. Han. Laser alignment for 610-mm large-aperture Fizeau interferometer. SPIE,1999, 3782:469-473
    [30]J. A. Lamb, J. Semrad, J. C. Wyant, C. Ai, R. E. Knowiden, E. Novak, J. Downie and R. Wolfe. Optical and mechanical design considerations in the construction of a 24-in. phase-shifting interferometer. SPIE,1997,3047:415-426
    [31]Zhu Rihong, Chen Lei, Gao Zhishan, He Yong, Wang Qing, Guo Renhui, Li Jianxin, Deng Shaogeng, Ma Jun. Near infrared large aperture (24 inches) interferometer system development.Fringe'09, Stuttgart, Germany,2009
    [32]朱日宏,陈磊,王青等.移相干涉测量术及其应用.应用光学,2006,27(2):85-88
    [33]刘贱平,梁丽萍,金世龙等.大曲率光学零件面形的空间载频外差干涉术检测.红外与激光工程,2009,38(1):110-113
    [34]Carre P. Installation et utilisations du comparateur photoeclectrique interferentiedl du Burear International Poids et Measures. Metrologia,1966 (2):13-23
    [35]Wyant J C, Creath K. Recent advances in interferometric optical testing. Laser Focus, 1985,21(11):118-132
    [36]Halioua M, Liu H. Optical three-dimensional sensing by phase measuring profilometry. Optics and Lasers in Engineering,1989,11(2/3):185-215
    [37]Kothiyal M P, Delisle C. Polarization component phase shifters in phase shifting interferometry:error analysis. Opt. Acta,1986,33(6):787-793
    [38]de Groot P. Measurement of transparent plates with wavelength-tuned phase-shifting interferometry. Applied Optics,2000,39(16):2658-2663
    [39]Yuichi Kikuchi, Daisuke Barada, Tomohiro kiire, et al. Doppler phase-shifting digital holography and its application to surface shape measurement. Optics Letters,2010, 35(10):1548-1550
    [40]Kadono H, Toyooka S, Iwasaki Y. Speckle-shearing interferometry using a liquid-crystal cell as a phase modulator. Journal of the Optical Society of America,1991,8(12): 2001-2007
    [41]Stevenson W H. Optical frequency shifting by means of a rotating diffraction grating. Applied Optics,1970,9(3):649-652
    [42]Zvyagin. Achromatic optical phase shifter-modulator. Optics Letters.2001,26(4):187-189
    [43]朱煜,陈进榜,朱日宏等.由三个压电陶瓷堆组成的干涉仪移相器的校正与标定.光学学报,2001,21(4):468-471
    [44]李刚,张泰石,郑羽等.频域OCT的光学相移器的标定.光学精密工程,2008,16(1):114-121
    [45]Yeou-Yen Cheng, James C. Wyant. Phase shifter calibration in phase-shifting interferometry.Applied Optics.1985,24(18):3049-3052
    [46]郝晶晶.波长移相干涉测量技术研究.南京理工大学硕士学位论文,2007
    [47]刘青.数字相移干涉术中图像处理和波前再现误差的分析及校正算法的研究.山东大学博士学位论文,2005
    [48]左芬.同步移相干涉测量的抗振技术研究.南京理工大学博士学位论文,2008
    [49]朱日宏,陈进榜,王青,陈磊.移相干涉术的一种新算法:重叠四步平均法.光学学报.1994,14(12):1288-1293
    [50]K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin. Phase-shifting for nonsinusoidal waveforms with phase-shift error. J. Opt. Soc. Am.A,1997,12(4):761-768
    [51]N. A. Ochoa, J. M. Huntley. Convenient method for calibrating nonlinear phase modulators for use in phase-shifting interferometry.Opt.End.,1998,37(9):2501-2505
    [52]B.Gutman, H. Weber. Phase-shifter calibration and error detection in phase-shifting applications:a new method. Appl.Opt.,1998,37(32):7624-7631
    [53]J.Schwider, R.Burow, K.-E.Elssner, et al.Digital wave-front measuring interferometry: some systematic error sources. Appl. Opt.,1983 (22)3421-3432
    [54]GStoilov, T.Dragostinov. Phase-stepping Interferometry:Five-frame Algorithm with an Arbitrary step. Optics and Lasers in Engineering,1997 (28):61-69
    [55]侯立周,强锡富,孙晓明.几种任意步距步进相移算法的误差分析与对比.光学技术.1999(5):7-8
    [56]Qian Kemao. Comparison of some phase shifting algorithms with a phase of π/2. Proceeding of SPIE.2001,4596:310-313
    [57]J. E. Greivenkamp. Generalized Data Reduction for Heterodyne Interferometry. Opt. Eng.,1984,23(4):350-352
    [58]K.Okada, A.Sato, J.Ysujiuchi. Simulataneous calculation of phase distribution and scanning phase shift in phase shifting interferometry. Opt. Commun.,1991,84(3-4): 118-124
    [59]In-Bok Kong,Seung-Woo Kim.General algorithm of phase-shifting interferometry by iterative least-squares fitting. Opt. Eng.,1995,34(1):183-187
    [60]In-Bok Kong, Seung-Woo Kim. Portable inspection of precision surfaces by phase-shifting interferometry with automatic suppression of phase-shift errors. Opt. Eng., 1995,34(5):1400-1404
    [61]Zhaoyang Wang. Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms.Optics Letters,2004,29(14):1671-1673
    [62]Jiancheng Xu, Qiao Xu, Liqun Chai.Iterative algorithm for phase extraction from interferograms with random and spatially nonuniform phase shifts.Applied Optics. 2008,47(3):480-485
    [63]Hedser van Brug. Phase-step calibration for phase-stepped interferometry. Applied Optics,1999,38(16):3549-3555
    [64]Qifeng Yu, Sihua Fu, Xiaolin Liu, et.al.Single-phase-step method with contoured correlation fringe patterns for ESPI.Optics Express.2004,12(20):4980-4985
    [65]Xin Chen, Maureen Gramaglia, John A. Yeazell. Phase-shift calibration algorithm for phase-shifting interferometry. J. Opt. Soc. Am. A,2000,17(11):2061-2066
    [66]Xin Chen, Maureen Gramaglia, John A. Yeazell. Phase-shifting interferometry with uncalibrated phase shifts.Applied Optics,2000,39(4):585-591
    [67]朱煜,陈进榜,朱日宏等.干涉仪移相器相位移π/2标定方法的研究.光子学报.1999,28(10):951-954
    [68]Kenneth A, Goldberg, Jeffrey Boker.Fourier-transform method of phase-shift determination. Applied Optics.2001,40(17):2886-2894
    [69]Tuck Wah Ng, Kar Tien Aug. Fourier-transform method of data compression and temporal fringe pattern analysis.Applied Optics.2005,44(33):7043-7049
    [70]Fuzhong Bai, Changhui Rao.Phase-shifts nπ/2 calibration method for phase-stepping interferometry.Optics Express.2009,17(19):16861-16868
    [71]Bernd Gutmann, Herbert Weber.Phase-shifter calibration and error detection in phase-shifting application:a new method.Applied Optics.1998,37(32):7624-7631
    [72]Cezary Kosinski.The new robust algorithms for phase-stepping technique.SPIE.3478: 142-152
    [73]K. Hibino, B. F. Oreb, D. I. Farrant.Phase shifting for nonsinusoidal waveforms with phase-shift errors.J. Opt. Soc. Am. A.1995,12(4):761-768
    [74]Xianghong Zhong.Phase-step calibration technique based on a two-run-times-two-frame phase-shift method.Applied Optics.2006,45(35):8863-8869
    [75]吕晓旭,钟丽云,张以谟.通过相移条纹图差分测定相移量的方法.光学学报.2007,27(4):603-608
    [76]C. J. Morgan. Least Squares Estimation in Phase-Measurement Interferometry. Opt. Lett., 1982,7:368-370
    [77]张国威.可调谐激光技术.第1版.北京:国防工业出版社,2002.
    [78]李耐和.可调谐激光器种类及发展趋势.世界产品与技术,2002,(2):39-41.
    [79]徐庆扬,陈少武.可调谐半导体激光器研究及进展.物理,2004,33(7):508-514.
    [80]齐丽云,石家纬,高鼎三.波长(频率)可调谐半导体激光器.半导体光电,1999,20(5):320-325
    [81]朱震,陈良友,李华,邢晖.用温度控制可调谐激光器波长稳定的方法.激光技术.2005,29(1):18-20
    [82]Shi H. X., Cohen D. A., Barton J., et al. Dynamic range of widely tunable sample-grating DBR lasers. Electronics Letters,2002,38(4):180-181
    [83]Lee S., D. Tauber A., Jayaraman V, et al. Dynamic responses of widely tunable sampled grating DBR lasers. IEEE Photonics Technology Letters,1996,8(12):1597-1599
    [84]Gustafsson Y., Hammerfeldt S., Hammersberg J., et al. Record output power(25mW) acrodd C-band from widely tunable GCSR lasers without additional SOA.Electronics Letters,2003,39(3):292-293
    [85]何晓颖.新型Bragg光栅及其在可调谐半导体激光器中的应用.华中科技大学博士学位论文,2009
    [86]管桦,黄贵龙,黄学人等.基于Littrow结构的可调谐半导体激光器.中国激光,2007,34(1):31-34
    [87]Parviz Tayebati, Peidong Wang, Daryoosh Vakhshoori, et al. Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode. IEEE Photonics Technology Letters,1998,10(12):1679-1681
    [88]郝秀晴,陈根祥.可调谐半导体激光器的发展及应用.光器件.2010,11:4-7
    [89]谢建平,王沛,许立新等.半导体激光器的波长调谐和波长稳定技术.量子电子学报,2002,19(2):97-103
    [90]周天宏,王正选,施伟等.新颖的波长可选择调谐外腔激光器研究.光电子技术与信息,2005,18(5):30-34
    [91]C. Joenathan. On Phase Measuring Interferometry Algorithms. SPIE.2622:514-521
    [92]Chunlong Wei, Mingyi Chen, Cao Yuan, etc. Compound Phase-stepping Algorithm by Lissajous Figures Technique and Iterative Least-squares Fitting. SPIE.1999,3782: 415-425
    [93]Radim Halir, Jan Flusser. Numerically stable direct least squares fitting of ellipses. The Sixth International Conference in Central Europe on Computer Graphics and Visualization.1998,1:125-132
    [94]J. van Wingerden, H. H. Frankena, and C. Smorenburg. Linear approximation for measurement errors in phase shifting interferometry. Appl. Opt.,1991,30,2718-2729
    [95]K. Kinnstatter, Q. W. Lohmann, J. Schwider, and N. Streibl. Accuracy of phase shifting interferometry. Appl. Opt.1988,27:5082-5089
    [96]李博.抗振光干涉测试中的相位测量原理与技术研究,南京理工大学博士学位论文,2012
    [97]P. de Groot. Vibration in phase-shifting interferometry. Jour, of Soc. Am. A,1995,12, 354-366
    [98]Mark D.Pritt. Comparison of Path-Following and Least-Squares Phase Unwrapping Algorithm.IEEE,1997:872-874
    [99]刘克,李艳秋.移相干涉术中有分割遮拦干涉图的相位展开.光学学报,2011,29(7):1812-1817
    [100]Miguel Arevallilo Herraez, David R. Burton, Michael J. Lalor, and Munther A. Gdeisat. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Applied Optics,2002,41(35):7437-7444
    [101]Justo Arines. Least-squares modal estimation of wrapped phases:application to phase unwrapping.Applied Optics,2003,42(17):3373-3378
    [102]Zhu Rihong, Wang Zhiqiang, Ding Xuxing, Gu Jianfeng. An improved wave unwrapping algorithm based on the region growing theory.Proc. of SPIE,2002, 4929:1-9
    [103]Dennis C.Ghiglia and Louis A.Romero. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J.Opt.Soc.Am.,1994,11(1):107-117
    [104]惠梅,王东生,李庆祥,邓年茂,徐毓娴.基于离散泊松方程接的相位展开方法.光学学报,2003,23(10):1245-1249
    [105]钱晓凡,张永安,李新宇,马惠.基于掩模和最小二乘迭代的相位解包裹方法.光学学报,2010,30(2):440-444
    [106]B.R.Hunt. Matrix formulation of the reconstruction of phase values from phase differences. J. Opt. Soc. Am.,1979,69(3):393-399
    [107]刘红婕,景峰,左言磊等.高功率激光束波前空间频率划分研究.光子学报,2006,35(10):1464-1467
    [108]迟泽英,陈文建.应用光学与光学设计基础.南京:东南大学出版社,2008
    [109]张以谟.应用光学.第3版.北京:电子工业出版社,2008
    [110]Deck L L.Apparatus and method for reducing the effects of coherent artifact in an interferometer:United Stated patents:6643024.2003-11-04
    [111]Kuechel M. Apparatus and method for reducing the effects of coherent artifact in an interferometer:United Stated patents:680401,2004
    [112]徐建程,许乔,柴立群.基于旋滤波法的干涉条纹预处理技术.强激光与粒子束,2006,18(1):69-72
    [113]徐建程,许乔,邓燕等.环形光源在干涉仪系统中的应用.强激光与粒子束,2008,20(3):367-370
    [114]Liu Zhiqiang, Gemma T, Rosen J, et al. Improved illumination system for spatial coherence control. Appl. Opt.,2010,49(16):12-16
    [115]Morris M N, Naradikian M, Millerd J. Noise Reduction in dynamic interferometry measurements. Proc. Of SPIE,2010:779000
    [116]徐建程,刘志超,杜雅薇等.带旋转毛玻璃干涉成像系统的统计分析.强激光与粒子束,2011,23(3):702-706
    [117]S. R. Lange. Alignment system and method for infrared interferometer. United States Patent:5055695,1991
    [118]刘兆栋,于丽娜,韩志刚,陈磊.五棱镜扫描法检测大口径近红外干涉仪准直波前.中国激光,2010,37(4):1082-1087
    [119]Zhaodong Liu, Lei Chen, Zhigang Han, Wulan Tuya. Collimation testing of the wavefront of interferometer by scanning cube corner retro-reflector method. The 2011 SPIE International Conference on Optical Instrument and Technology,2011.11
    [120]费业泰.误差理论与数据处理.北京:机械工业出版社,第6版,2011
    [121]中华人民共和国国家计量检定规程:JJG28-2000平晶检定规程.2000.9
    [122]D. Malacara. Optical Shop Testing.3rd Edition. New Jersey:John Wiley & Sons, Inc., 2007
    [123]林娟.大口径光学玻璃光学均匀性干涉绝对测量方法.应用光学,2008,29(1):120-123
    [124]任寰,袁静,许华等.光学材料光学均匀性检测方法分析[J].光学与光电技术,2007,5(6):48-51
    [125]徐新华,王青,宋波,傅英.基于子孔径拼接技术的大尺寸光学材料均匀性检测系统.光学学报,2012,32(4):0412002-1-0412002-7
    [126]徐建程,石琦凯,柴立群等.三表面干涉条纹空域傅里叶分析.中国激光,2006,33(9):1260-1264
    [127]陈磊,王青,朱日宏.使用红外干涉仪测量锗材料折射率均匀性.中国激光,2005,32(3):404-406
    [128]张建锋,曹学东,吴时彬等.温度对高精度光学玻璃折射率均匀性检测的影响.激光与光电子学进展,2012,49:011203-1-011203-6
    [129]郭培基,余景池等.光学玻璃光学均匀性的绝对测量技术.激光杂志,2003,24(3):26-27
    [130]王军.短相干光干涉在晶体特性参数和微观表面形貌测量中的应用研究.南京理工大学博士学位论文,2010
    [131]Peter de Groot. Measurement of transparent plates with wavelength-tuned phase-shifting interferometry. Applied Optics,2000,39(16):2658-2663
    [132]Peter J.de Groot. Wavelength-tuned phase shifting interferometry applied to the measurement of transparent plates. In Optical Fabrication and Testing, OSA Technical Digest (Optical Society of America,2000), paper OTuB3
    [133]Kenichi Hibino,Bozenko F.Oreb, Philip S.Fairman, Jan Burke. Simultaneous measurement of surface shaope and variation in optical thickness of a transparent parallel plate in wavelength-scanning Fizeau interferometer. Applied Optics,2004,43(3): 1241-1249
    [134]Katsuyuki Okada, Jumpei Tsujiuchi.Wavelength scanning interferometry for the measurement of both surface shapes and refractive index inhomogeneity.Proc. SPIE,1989,1162,395-401
    [135]Katsuyuki Okada, Hironobu Sakuta, Teruji Ose, Jumpei Tsujiuchi. Separate measurements of surface shapes and refractive index inhomogeneity of an optical element using tunable-source phase shifting interferometry. Applied Optics,1990, 29(22):3280-3285
    [136]Leslie L.Deck.Multiple Surface Phase Shifting Interferometry. Proceeding of SPIE,2001,4451:424-431
    [137]Lislie L.Deck. Fourier-transform phase-shifting interferometry.Applied Optics,2003, 42(13):2354-2365
    [138]闫勇,金光,张雷等.新型SiC光学材料的制备及应用.光电工程,2011,38(8):145-150
    [139]薛栋林,张忠玉,郑立功.大口径碳化硅材料凸非球面反射镜的检验.光学精密工程,2008,16(12):2491-2496

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700