真空压缩场输入的耦合光学腔诱导透明现象的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子光学是现代物理的一个重要分支,而其相关的实验研究在激光器发明以后的40多年中获得了飞速的发展,其中的压缩态光场更是量子光学研究中的热点,它在量子光学研究的各个方面都得到了应用,如:量子操控、引力波测量、纠缠态光场的产生、量子信息等等。
     本文主要介绍了我在博士期间的相关工作,主要包括:利用非线性PPKTP晶体构建的简并光学参量振荡腔输出得到了单模压缩光场;搭建耦合诱导透明系统,并使用真空压缩光作为探测光场研究了耦合光学腔系统的类EIT效应;利用两个简并光学参量放大腔输出的明亮压缩光场耦合产生EPR纠缠光束.
     本论文的具体内容可以分为四个部分:
     1.量子力学是量子光学的基础,第一章中首先介绍了量子力学的五大基本假设,然后对量子光学的发展历史进行了简单的回顾,介绍了压缩光的分类,并对实验上产生压缩光的各种方法进行了比较。
     2.在第二章中,首先引入了准相位匹配的定义,介绍了实验上使用的几种周期极化晶体,使用PPKTP晶体晶体搭建了简并光学参量振荡腔,并进行了产生压缩光场的实验,然后使用平衡零拍探测系统测量得到了2dB左右的真空压缩光场,为我们后续的类EIT实验和纠缠光产生实验奠定了基础。
     3.电磁诱导透明(EIT)是目前的一个研究热点,人们自从该理论提出以后,就在各种实验系统中实现了EIT或类EIT效应,但他们的研究都是使用相干态光场作为探测光,所以都属于经典范畴。我们的研究思路就是搭建一个全光学的耦合诱导透明系统,并使用真空压缩光场作为输入场,研究其在量子场中的类EIT特性,从而达到利用其进行量子操控的目的。为此,在第三章中,我们首先回顾了EIT以及类EIT的发展历史,并在理论上研究了该系统在相干光场输入时反射场的吸收色散特性和在真空压缩光场输入时反射场的噪声起伏特性。最后介绍了我们的实验工作:利用不同透射率的腔镜搭建了强、弱两个耦合强度的类EIT系统,再注入真空压缩光场,并利用平衡零拍探测系统测量其量子特性,发现该系统的色散特性是导致压缩光场噪声变化的主要原因,第一次在实验上观测到了量子场中的耦合腔诱导透明现象。
     4.纠缠光是量子信息、量子计算的重要资源,具有深远的研究意义和广阔的应用前景,在第四章中,我们首先介绍了纠缠的定义,对连续变量纠缠源的产生方法进行了分类和简介,比较了目前纠缠光束量子关联性的测量方法。然后提出了我们使用DOPA腔来产生纠缠光束的实验方案,并对实验元件进行了详细介绍,在实验中使用平衡零拍探测系统测量了正交振幅位相分量的关联,验证了其EPR量子纠缠特性。
     最后进行了简单的总结和展望。
Quantum optics, the related experiment research of which has obtained rapid development after the invention of lasers in1960s, is an important branch of modern physics, and has won great success in various aspects of modern civilization. Moreover, the squeezed state is a hot topic in quantum optics research and has been applied in many ways, such as:quantum manipulation, gravitational wave measurement, the generation of entangled optical field, quantum teleportation and so on.
     This paper mainly introduces the related work during the period of study for a doctorate, including:(1) the observations of squeezed light from optical parametric amplification by using non-linear PPKTP crystal;(2) simulating the EIT-like effects by utilizing the coupled optical cavities;(3) generating the entangled state by coupling two bright squeezed light.
     The specific content of this thesis can be divided into four parts:
     (1) In the first chapter, we firstly give the five basic assumptions of quantum mechanics which is the foundation of quantum optics, and briefly recall the development history of quantum optics, and then we introduce the classification of the squeezed state in detail and compare the different ways to produce the squeezed state in experiment.
     (2) In the second chapter, we firstly introduce the definition of quasi phase matched, and select the PPKTP crystal as our experimental crystal by comparing many periodically poled nonlinear crystals used to produce the squeezed state. Then we produce the squeezed state by optical parametric amplification and obtain2dB squeezing by utilizing the balanced homodyne detection system, which establish a foundation for our subsequent EIT-like experiment and entangled light experiment.
     (3) Since the theory of the Electromagnetic induced transparency (EIT) being proposed, many experimental physicists whose research fields are limited within the category of classic have observed EIT-like effect in different systems. Our destination is to realize EIT-like effect in the category of quantum by building a kind of all-optical EIT system, and to achieve quantum manipulation in the future. In the third chapter, we firstly review the development history of EIT, EIT-like effect and theoretically studies the classical and quantum properties under different coupling strength of the system. Finally we introduces our experimental work:we use different transmissivity of cavity mirror to build the weak and strong coupling strength of the EIT-like system respectively, then we inject the squeezed state into the system and observed the EIT-like effect in the category of quantum for the first time.
     (4) Entanglement state is the basic resource of quantum information and quantum computation. In the fourth chapter, we firstly introduce the definition of entanglement and the classification of different ways to generate the entanglement state for continuous variables. We propose our experimental scheme and introduce the experimental setup in detail, and then use the balanced homodyne detection system to confirm that we obtain the EPR states with amplitude-quadrature and phase-quadrature correlation.
     Finally we give the brief summary and outlook.
引文
[1.1]Knight P.L, Allen L. Concepts of Quantum Optics. Oxford, Pergamon Press,1983, 54.
    [1.2]Scully M.O, Zubairy M.S. Quantum Optics. Cambridge, Cambridge University Press, 1997,46.
    [1.3]曾谨言.量子力学.北京,科学出版社,2011,60-132.
    [1.4]曹天元.量子物理史话.辽宁,辽宁教育出版社,2006,1-32.
    [1.5]T.H.Maiman. Stimulated optical radiation in Ruby. Nature,1960,187,493-494.
    [1.6]郭光灿.量子光学.北京,高等教育出版社,1990,1-5.
    [1.7]R.J.Glauber. Coherent and incoherent states of the radiation field, Phys. Rev.,1963, 131,2766-2788.
    [1.8]E.Y.C.Lu, New coherent states of the electromagnetic field. Lett.Nuovo Cimento., 1971,2,1241.
    [1.9]R.J.Glauber. Photon correlations. Phys.Rev.Lett.,1963,10.84-86.
    [1.10]F.T.Areeehi. Measurement of the statistical distribution of gaussian and laser sources. Phys.Rev.Lett.,1965,15,912-916.
    [1.11]J.N.Hollenhorst. Quantum limits on resonant-mass gravitational-radiation Detectors. Phys. Rev. D,1979,19,1669.
    [1.12]D.F.Walls. Squeezed states of light. Nature,1983,306,141.
    [1.13]R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley. Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity. Phys. Rev. Lett,1985,55,2409.
    [1.14]Z. Y. Ou, S. F. Pereira, H. J. Kimble. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables in nondegenerate parametric amplification. Appl. Phys. B,1992,55,265-278.
    [1.15]A. Furusawa, J. L. Serensen, S. L. Braunstein et al. Unconditional quantum Teleportation. Science,1998,282,706-706.
    [1.16]M.A.Nielsen, I.L.Chuang. Quantum computation and quantum information. Cambridge, Cambridge University press,2000,35-53.
    [1.17]郭光灿,王善祥,范洪义.光场的非经典效应及其相互关系.量子电子学,1987,4,1925.
    [1.18]Ling-An Wu, H. J. Kimble, J. L. Hall, Huifa Wu. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett.,1986,57,2520.
    [1.19]P. Grangier, R. E. Slusher, B. Yurke, A. LaPorta. Squeezed-light-enhanced polarization interferometer. Phys. Rev. Lett.,1987,59,2153-2156.
    [1.20]G. Breitenbach, T. Muller, S. F. Pereira, J-Ph. Poizat, S. Schiller, J. Mlynek. Squeezed vacuum from a monolithic optical parametric oscillator. J. Opt. Soc. Am. B,1995,12,2304.
    [1.21]Jiangrui Gao, Fuyun Cui, Chenyang Xue, Changde Xie, Peng Kunchi. Generation and application of twin beams from an opticalparametric oscillator including an α-cut KTP crystal. Opt. Lett.,1998,23,870.
    [1.22]Kunchi Peng, Qing Pan, Hai Wang, Yun Zhang, Hong Su, Changde Xie. Generation of two-mode quadrature-phase squeezing and intensity-difference squeezing from a cw-NOPO. Appl. Phys. B,1998,66,755.
    [2.1]Ling-An Wu, H. J. Kimble, J. L. Hall, Huifa Wu. Generation of Squeezed States by Parametric Down Conversion. Phys. Rev. Lett.,1986,57,2520.
    [2.2]Z. Y. OU, S.F.Pereira, H. J. Kimble, K. C. Peng. Realization of Einstein-Podolsky-Rosen paradox for continuous variables. Phys. Rev. Lett.,1992,68,3663.
    [2.3]G. S. Agarwal. Interferences in Parametric Interactions Driven by Quantized Fields. Phys. Rev. Lett.,2006,97,023601.
    [2.4]Jing Zhang, Chenguang Ye, Feng Gao, Min Xiao. Phase-sensitive manipulations of a squeezed vacuum field in an optical parametric amplifier inside an optical cavity. Phys. Rev. Lett.,2008,101,233602.
    [2.5]A. Furusawa, J. L. Sorensen, S. L. Braustein, C. A. Fuehs, H. J. Kimble, E. S. Polzik. Unconditional quantum teleportation. Science,1998,282,706.
    [2.6]D.Bouwmeester, J-W Pan, K. Mattle, M.Eibl, H. Weinfurter, A. Zeilinger. Experimental quantum teleportation. Nature,1997,390,575.
    [2.7]K. Mattle, H. Weinfurter, P. G. Kwiat, A. Zeilinger. Dense Coding in Experimental Quantum Communication, Phys. Rev. Lett.1996,76,4656.
    [2.8]X. Y. Li, Q. Pan, J. T. Jing, J. Zhang, C. D. Xie, K. C. Peng. Quantum Dense Coding Exploiting a Bright Einstein-Podolsky-Rosen Beam. Phys. Rev. Lett.,2002,88, 047904.
    [2.9]C. Monroe, D. M. Meekhof, B. E. King. Demonstration of a fundamental quantum logic gate, Phys. Rev. Lett.,1995,75,4714.
    [2.10]过巳吉.非线性光学.西安,西北电讯工业学院出版社,1986,23-30.
    [2.11]F. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan. Interactions between light waves in a nonlinear dielectric, Phys.Rev.,1962,127,1918.
    [2.12]P. A. Franken, H. F. Ward. Optical harmonics and nonlinear phenomena, Rev. Mod. Phys.,1963,35,23.
    [2.13]M. Okada, K. Takizawa, S. Ieiri. Second harmonic generation by periodic laminar structure of nonlinear optical crystal, Opt. Commun.,1976,18,331.
    [2.14]D. H. Jundt, G. A. Magel, M. M. Fejer, R. L. Byer. Periodically poled LiNbO3 for high-efficiency second-harmonic generation, Appl. Phys. Lett.,1991,59,2657.
    [2.15]Y. Ishigame, T. Suhara, H. Nishihara. LiNbO3 waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating, Opt. Lett.,1991,16,375.
    [2.16]M. Yamada, N. Nada, M. Saitoh, K. Watanabe. First-order-quasi-phase-matched LiNb03 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation, Appl. Phys. Lett.,1993,62, 435-436.
    [2.17]张靖,马红亮,王润林.全固化环形单频Nd:YV04可调谐激光器,中国激光,2002,29,577.
    [2.18]马红亮,PPKTP晶体光学参量过程产生压缩光的理论和实验研究,山西大学博士学位论文,2002.
    [2.19]Ye C, Zhang J, Absorptive and dispersive properties in the phase-sensitive optical parametric amplification inside a cavity, Phys. Rev. A,2006,73,023818.
    [2.20]R. W. P. Drever, J. L. Hall, F.V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward. Laser phase and frequency stabilization using an optical resonator, Appl. Phys. B,1983,31,97.
    [3.1]S. E. Harris. Lasers without inversion:Interference of lifetime-broadened Resonances, Phys. Rev. Lett.,1989,62,1033.
    [3.2]S. E. Harris. Pondermotive Forces with Slow Light, Phys. Rev. Lett.,2000,85, 4032.
    [3.3]M. O. Scully, S. Y. Zhu, and A. Gavrielides. Degenerate quantum-beat laser:Lasing without inversion and inversion without lasing, Phys. Rev. Lett.,1989,62,2813.
    [3.4]C. Liu, Z. Dutton, C. H. Bohroozi, L. V. Hau. Observation of coherent optical information storage in an atomic medium using halted light pulses, Nature,2001, 409,490.
    [3.5]D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, M. D. Lukin. Storage of light in atomic vapor, Phys. Rev. Lett.,2001,86,783.
    [3.6]J. Gea-Banacloche, Y. Q. Li, S-Z. Jin, and Min Xiao. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media:theory and experiment, Phys. Rev. A,1995,51,576.
    [3.7]K.-J. Boller, A. Imamolu, S. E. Harris. Observation of electromagnetically induced transparency, Phys. Rev. Lett.,1991,66,2593.
    [3.8]周炳琨,高以智,陈倜嵘,陈家骅.激光原理,北京,国防工业出版社,2010.5-25
    [3.9]郭裕.多模电磁诱导透明理论及其应用研究,湖南师范大学博士学位论文,2008.
    [3.10]A.V.Turukhin, V.S.Sudarshanam, M.S.Shahriar. Observation of ultraslow and stored light pulses in a solid, Phys. Rev. Lett.,2002,65,036601.
    [3.11]M. M. Kash, V. A. Sautenkov. Ultraslow group velocity and enhanced nonlinear optical Effects in a coherently driven hot atomic gas, Phys. Rev. Lett.,1999,82, 5229.
    [3.12]D.Yannick, Nguye. T, Laura Ghisa, Stephane Trebaol, Patrice Feron. Measurement of the dispersion induced by a slow-light system based on coupled active-resonator-induced transparency, Phys. Rev. A,2008,78,013818.
    [3.13]L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi. Light speed reduction to 17 meters per second in an ultrocold atomic gas, Nature,1999,397,594.
    [3.14]K.-J. Boller, A. Imamolu, S. E. Harris. Observation of electromagnetically induced transparency, Phys. Rev. Lett.,1991,66,2593.
    [3.15]Min Xiao, Yong-qing Li, Shao-zheng Jin, J. Gea-Banacloche. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms, Phys. Rev. Lett.,1995,74,666.
    [3.16]O. Schmidt, R. Wynands, Z. Hussein, D. Meschede. Steep dispersion and group velocity below c/3000 in coherent population trapping, Phys. Rev. A,1996,53, R27.
    [3.17]L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi. Light speed reduction to 17 metres per second in an ultracold atomic gas, Nature,1999,397,594.
    [3.18]C. Liu, Z. Dutton, C. H. Behroozi, L. V. Hau. Observation of coherent optical information storage in an atomic medium using halted light pulses, Nature,2001, 409,490.
    [3.19]A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, P. R. Hemmer. Observation of ultraslow and stored light pulses in a solid, Phys. Rev. Lett.,2001,88,023602.
    [3.20]D. D. Smith, N.N. Lepeshkin, A. Schweinsberg. Coupled-resonator-induced transparency in a fiber system, Opt. Commun.,2006,264,163.
    [3.21]Totsuka K, Kobayashi N. Slow light in coupled-resonator-induced transparency, Phys. Rev. Lett.,2007,98,213904.
    [3.22]Ma H, Ye C, Wei D, Zhang J. Coherence phenomena in the phase-sensitive optical parametric amplification inside a cavity, Phys. Rev. Lett.,2005,95,233601.
    [3.23]Ye C, Zhang J. Absorptive and dispersive properties in the phase-sensitive optical parametric amplification inside a cavity, Phys. Rev. A,2006,73,023818.
    [3.24]Ye C, Zhang J. Electromagnetically induced transparency-like effect in the degenerate triple-resonant optical parametric amplifier, Opt. Lett.,2008,33, 1911.
    [3.25]高峰.实验研究光学耦合腔中的类EIT现象,山两大学硕士学位论文,2009.
    [4.1]A. Einstein, B. Podolsky, N. Rosen. Can quantum-mechanical description of physical reality be considered complete, Phys. Rev.,1935,47,777-780.
    [4.2]E. Schrodinger. Probability relations between separated systems, Proc. Cambridge Phil. Soc.,1935,31,555.
    [4.3]P. G. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger. Interaction-Free Measurement, Phys. Rev. Lett,1995,74,4763-4766.
    [4.4]李承祖,量子通讯与量子计算,长沙,国防科技大学出版社,2000.
    [4.5]Randall G. Hulet, Daniel Kleppner. Rydberg atoms in "Circular" States, Phys. Rev. Lett.,1983,51,1430.
    [4.6]C. Monroe, D. M. Meekhof, B. E. King, D. J. Wineland. A Schrodinger cat superposition state of an atom, Science,1996,272,1131.
    [4.7]X. Maitre, E. Hagley, G Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, S.Haroche. Quantum Memory with a Single Photon in a Cavity, Phys. Rev. Lett., 1997,79,769-772.
    [4.8]D.Bouwmeester, A.EkertandA.Zeilinger, The Physics of Quantum Information, Springer,2000.
    [4.9]J.W.Pan, D.Bouwmeester, H.Weinfurter, A.Zeilinger. Experimental entanglement swapping:entangling photons that never interacted, Phys. Rev. Lett.,1998,80, 3891.
    [4.10]K.Mattle, H.Weinfurter, P. G Kwiat, A. Zeilinge, Dense coding in experimental quantum communieation, Phys. Rev. Lett.,1996,76,4656.
    [4.11]D. Bouwmeester, J-W. Pan, K. Mattle, M. Eibl, H. weinfurter. A. Zeilinger. Experimental quantum teleportation, Nature,1997,390,575.
    [4.12]Z. Y. Ou, S. F. Pereira, H. J. Kimble. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables in nondegenerate parametric amplification, Appl. Phys. B,1992,55,265-278.
    [4.13]W. P. Bowen, N. Treps, B. C. Buchler, R. Schnable, T. C. Ralph, H. A. Bachor, T.Symul, P. K. Lam. Experimental investigation of continuous-variable quantum teleportation, Phys. Rev. A,2003,67,032302.
    [4.14]U. L. Andersen, Preben Buchhave. Squeezing and entanglement in doubly resonant, type II, second-harmonic generation, J. Opt. Soc. Am. B,2003,20,1947-1958
    [4.15]Yun Zhang, Hai Wang, Xiaoying Li. Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier, Phys. Rev.A,2000,62,023813.
    [4.16]李小英,荆杰泰,张靖,潘庆,谢常德,彭堃墀.由NOPA产生高质量明亮压缩光及明亮EPR光束,物理学报,2002,51,966-972.
    [4.17]J. Zhang, C. Xie, and K. Peng. Controlled dense coding for continuous variables using three-particle entangled states, Phys. Rev. A,2002,66,032318.
    [4.18]Yun Zhang, Hai Wang, Xiaoying Li, Jietai Jing, Changde Xie, Kunchi Peng. Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier, Phys. Rev. A,2000,62, 023813.
    [4.19]Xiaoying Li, Qing Pan, Jietai Jing, Jing Zhang, Changde Xie, Kunchi Peng. Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam, Phys. Rev. Letts.,2002,88,047904.
    [4.20]Ch. Silberhorn, P. K. Lam, O. Wei, F. Konig, N. Korolkova, G. Leuchs. Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber, Phys. Rev. Lett.,2001,86,4267.
    [4.21]A. Furusawa, J. L. Serensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, E. S. Polzik. Unconditional Quantum Teleportation, Science,1998,282,706.
    [4.22]苏晓龙,连续变量四组分纠缠光场产生和量子保密通讯研究,山西大学博士 学位论文,2007.
    [4.23]Jing Zhang, Changde Xie, Kunchi Peng. Continuous-variable quantum state transfer with partially disembodied transport, Phys. Rev. Letts.,2005,95,170501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700