基于光纤滤波器的新型光纤激光器和传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着光纤通信技术系统需求的日益提高,光纤激光器和光纤传感器性能的进一步提高,已成为近年来的一个持续研究热点。在国家自然科学基金项目和中央高校基本科研业务费项目的资助下,本学位论文针对基于瑞利背向散射、双芯光纤、拉锥光纤、偏心熔接以及倾斜长周期光纤的多种光纤滤波器开展了深入的理论和实验研究,并以此为基础,提出了新型可调谐单纵模激光器、多波长单纵模激光器、波长间隔连续可调谐双波长光纤激光器、可调谐多波长激光器和可调谐窄线宽光纤激光器,以及大测量范围、高灵敏度的折射率传感器和弯曲传感器。
     论文取得的主要创新性成果如下:
     1.提出基于单模光纤瑞利背向散射(Rayleigh backscattering, RBS)的单纵模光纤激光器。采用主腔和RBS反馈共享的单腔激光器结构,利用660m单模光纤和可调谐带宽为0.5nm的滤波器,首次实现了线宽2.5-3.0kHz、边模抑制比72dB、阈值泵浦功率30mW、7个可调谐波长的单纵模掺铒激光输出。此外,采用光纤布拉格光栅级联和半导体放大器改进的激光器结构,首次实现了基于RBS的多波长单纵模光纤激光器。
     2.提出基于双芯光纤耦合器型(TCF-Coupler)滤波器的波长间隔连续可调的双波长激光器。采用双芯光纤长度为1.1m的TCF-Coupler滤波器,实现了波长间隔连续可调谐范围0.1-1.2nm、边模抑制比40-52dB、功率波动低于0.25dB、波长漂移约为0.004nm、室温下稳定的双波长激光输出。同时,采用长度为86.85mm、自由谱宽为49nm的TCF-Coupler滤波器,实现了测量弯曲率范围0-9.3m-1、最大灵敏度-14.7nm/m"1的宽范围、高灵敏度的弯曲传感。
     3.提出基于双芯光纤马赫增德尔干涉仪型(TCF-MZI)滤波器的多波长光纤激光器。采用双芯光纤长度为1.5m的TCF-MZI滤波器,以6m和2m掺铒光纤,分别在1560nm和1530nm波段实现了基于非线性光学环镜(NOLM环)激光器结构的多波长激光输出,输出激光波长分别达到40个和30个,对应信噪比分别为28dB和20dB。在此工作的基础上,采用干涉臂长度差为4nm的标准马赫增德尔干涉仪(MZI)和双芯光纤长度为11.5cm的TCF-Coupler构成的复合滤波器,首次实现了基于NOLM环的可调谐多波长激光器,可调谐范围覆盖从1542nm到1566nm的24nm光谱宽度,激光波长数量为19个,波长间隔0.4nm,信噪比为39dB,波长漂移低于0.04nm,功率波动低于±0.3dB。
     4.提出基于双拉锥光纤马赫-增德尔干涉仪型(TT-MZI)滤波器的可调谐掺铒光纤激光器。采用拉锥光纤束腰直径为49μm、臂长为1m TT-MZI滤波器,在深入研究拉锥光纤束腰直径对激光器边模抑制比、线宽、可调谐范围和可调步长影响的基础上,实现了波长可调谐范围16.1nm、可调步长0.07-0.5nm、线宽10pm、边模抑制比40-50dB、61个激射波长的可调谐激光输出。与其它基于拉锥光纤的可调谐激光器相比较,在实现较大可调谐范围和较高边摸抑制比的同时,极大地缩小了可调步长,增大了激射波长数量。
     5.研制出基于拉锥光纤和偏心熔接的非对称马赫-增德尔干涉仪(TC-AMZI),削弱了损耗峰从“蓝移”到“红移”的跳变情况,为宽范围折射率连续测量提供了一种有效的解决方案。采用干涉仪长度L=30mm和50mm的TC-AMZI滤波器,实现了灵敏度分别为28.2nm/RIU和59.2nm/RIU的折射率传感。该灵敏度分别是干涉仪长度L=30mm和50mm的TT-MZI滤波器的2倍和3倍。
     6.采用全矢量复耦合模理论分析了倾斜长周期光纤光栅的模式耦合特性。系统研究了LP1m简并模式TE0m、TM0m和HE2m与纤芯基模的偏振耦合。数值计算结果表明,纤芯基模与LP11m包层模的最大耦合强度发生在倾斜角87。附近,与非倾斜长周期光纤光栅相比,倾斜长周期光纤光栅的透射谱出现了对应于LP1m包层模式的新谐振峰。新谐振峰的位置和强度受输入光偏振态的影响,较传统LP0m模式对应的谐振峰具有更高的折射率传感灵敏度。该特征使倾斜长周期光纤光栅在化学和生物传感领域具有非常重要的潜在应用价值。
With the advance of the optical fiber communication technology, fiber laser and fiber sensor with high performance have become the focus in the recent years. Fiber filters play an important role in the development of the novel fiber laser and fiber sensor with high performance. Supported by National Nature Science Fundation Program and Funamental Research Funds for the Central Universities, this dissertation mainly focus on the theoretical and experimental investigations on the fiber filters based on Rayleigh backscattering(RBS), twin core fiber(TCF), taper, core-offset splice, and tilted long period fiber grating(TLPG). Employing these novel filters, we proposed and experimentally demonstrated the tunable single longitudibal mode(SLM) fiber laser, multi-wavelength SLM fiber laser, dual-wavelength fiber laser, tunable multiwavelength fiber alser, tunabel narrow linewidth fiber laser, high sensitive refractive index sensor, and high sensitive bending sensor with wide measuring range.
     The main innovative achievements of the dissertation are listed below:
     1. A novel sinlge longitudinal mode fiber laser (SLM-FL) has been proposed and experimentally demonstrated based on RBS in single mode fiber (SMF-RBS). With the establishing of the therotical model of SLM operation based on SMF-RBS, a single laser cavity was formed by the structure of sharing light path of main cavity and the RBS feedback cavity. Utilizing the RBS in660m SMF and the tunable filter with tunable bandwidth of0.5nm, the SLM-FL can operate at7wavelengths with linewidth of2.5-3.0kHz, side mode suppression ratio (SMSR) of72dB, and threshold power of30mW. Futuremore, muli-wavelength SLM laser based on SMF-RBS have been proposed and experimentally demonstrated by using the structure with cascaded fiber Bragg gratings and semiconductor optical amplifier.
     2. A stable dual-wavelength Er-doped fiber laser (EDFL) with continuously tunable wavelength spacing was proposed and experimentally demonstrated by using a TCF coupler (TCF-Coupler) filter at room temperature. By using a1.1m TCF-Coupler filter, The wavelength spacing of the dual-wavelength laser was continuously tuned from0.1nm to1.2nm with a with a SMSR of40-50dB, power fluctuation of0.25dB, and wavelength drift of0.004nm. A further application of the TCF-Coupler filter in curvature sensor was investigated. By utilizing a TCF-Coupler filter with length of1.1m and free spectral range of49nm, a high sensitive fiber cuvature sensor with the wide measuring range can be achieved. Its sensitivity can reach to-14.7nm/m-1and the curvature range can be measured from0to9.30m-1.
     3. A multiwavelength fiber laser based on nonlinear optical loop mirror (NOLM) was proposed and experimental demonstrated by using a twin core fiber-based Mach-Zehnder interferometer (TCF-MZI).40lasing wavelengths with a signal noise ratio (SNR) of28dB can operate around the wavelength of1560nm when the length of EDF is6m. Further more,30lasing wavelengths with a SNR of20dB were achieved around the wavelength of1530nm for the first time when the length of EDF is2m. In order to exptend the range of operation wavelength, a tunable multiwavelength fiber laser based on NOLM was proposed and experimental demonstrated by using a compound filer which cascaded a standard MZI and a TCF-Coupler filer with TCF length of11.5cm,. By utilizing a standard MZI with optical path difference of4mm and a TCF-Coupler filter with length of11.5cm, the lasing waveband can been linearly tuned over a rang of-24nm form1542nm to1566nm with a channel spacing of0.4nm, a SNR of39dB, a wavelength drift of0.04nm and a power fluctuation of±0.3dB.
     4. A tunable fiber laser based on an two-taper Mach-Zehnder interferometer (TT-MZI) filter was realized, and the effect of beam waists of the tapers on performance of the laser was investigated including the SMSR, bandwidth, tunable range, and tunable step. Experimental results show that the tunable laser can cover the wavelength range of16.1nm with tuning steps of0.07-0.5nm, a bandwidth of10pm, and a SMSR of40-50dB by using TT-MZI with arm length of1m and taper beam waist of49nm. Compared with other tunable lasers based on taper, this tunable laser not only obtains a larger tunning range and a higher SMSR, but also decreases the tunning step to increase the wavelength number.
     5. A novel high sensitive refractive index (RI) sensor was proposed and experimentally demonstrated by using an asymmetrical fiber Mach-Zehnder interferometer based on taper and core-offset splice (TC-AMZI). Experimental results show that the RI sensitivity of the proposed sensor is28.2nm/RIU (refractive index unit) and59.2nm/RIU for arm length of30mm and50mm, respectively, which are2times and3times as large as those of TT-MZI with the same arm length. Meantime, the phenomenon that the attenuation peaks jumped from "blue shift" to "red shift" can be weakened in TC-AMZI. This makes TC-AMZI suitable for the large range RI measurement.
     6. The mode coupling in TLPG was analyzed by using the full vector complex coupled mode theory. The polarization sensitive coupling betwteen the LP01and LP1m modes was investigated in detail, including degenerate vector modes TEo0m, TM0m and HE2m.Numerical results show that the maximum coupling between LP01and LP1m modes occurs at tilt angle of~87°. Compared with the non-titled LPQ new resonance bands corresponding to the LP1m cladding modes were observed in the transmission spectrum of the TLPG. The wavelength and transmission of the new resonance bands are effected by the the state of polarization (SOP) of the input light. Also, the RI sensitivity of the new resonance wavelength is much higher than that of the normal resonance wavelength corresponding to the LPom cladding modes. Such TLPG would have a number of potential applications in chemical and biological sensing field.
引文
[1]C. J. Koester and E. Snitzer, "Amplification in a Fiber Laser," Appl. Opt.,1964,3(10):1182-1186.
    [2]F. P. Kapron, D. B. Keck, and R. D. Maurer, "Radiation lossed in glass optical waveguides," Appl. Phys. Lett.,1970,17(10):423-425.
    [3]S. B. Poole, D. N. Payne, and M. E. Fermann, "Fabrication of low-loss optical fibres containing rare-earth ions," Electronics Letters,1985,21(17):737-738.
    [4]R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, "Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 urn," Electronics Letters,1986,22(3):159-160.
    [5]I. M. Jauncey, L. Reekie, R. J. Mears, and C. J. Rowe, "Narrow-linewidth fiber laser operating at 1.55 μm," Opt. Lett.,1987,12(3):164-165.
    [6]G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett.,1989,14(15):823-825.
    [7]G A. Ball, W. W. Morey, and W. H. Glenn, "Standing-wave monomode erbium fiber laser," IEEE Photon. Technol. Lett.,1991,3(7):613-615.
    [8]K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett., 1993,62(10):1035-1037.
    [9]J.-H. Luo, B. Liu, H. Zhang, S.-L. Yan, X.-R. Ma, and C.-L. Jia, "Microwave signal generation based on two single-longitudinal-mode erbium-doped fiber lasers," Microw. Opt. Technol. Lett., 2010,52(1):177-179.
    [10]T. Feng, F.-P. Yan, Q. Li, W.-J. Peng, S.-C. Feng, X.-D. Wen, P. Liu, and S.-Y. Tan, "Stable and High OSNR Compound Linear-Cavity Single-Longitudinal-Mode Erbium-Doped Silica Fiber Laser Based on an Asymmetric Four-Cavity Structure," Chin. Phys. Lett.,2012,29(10):104205.
    [11]Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, "DFB laser based on single mode large effective area heavy concentration EDF," Opt. Express,2012,20(21):23684-23689.
    [12]C. Xiangfei, Y. Jianping, Z. Fei, and D. Zhichao, "Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett.,2005, 17(7):1390-1392.
    [13]X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-Longitudinal-Mode Erbium-Doped Fiber Ring Laser Based on High Finesse Fiber Bragg Grating Fabry-Perot Etalon," IEEE Photon. Technol. Lett.,2008,20(12):976-978.
    [14]Y. Du, X. Dong, M. Chen, and J. Zhou, "Novel tunable single-longitunal mode fiber ring laser with two FBG-FP filters," Microw. Opt. Technol. Lett.,2012,54(5):1230-1234.
    [15]N. Park, J. W. Dawson, K. J. Vahala, and a. C. Miller, "All fiber, low threshold, widely tunable single-frequency fiber ring laser with a tandem fiber Fabry-Perot filter," Appl. Phys. Lett,1991, 59(19):2369-2371.
    [16]C.-C. Lee and S. Chi, "Single-longitudinal-mode operation of a grating-based fiber-ring laser using self-injection feedback," Opt. Lett.,2000,25(24):1774-1776.
    [17]M. A. Quintela, R A. Perez-Herrera, I. Canales, M. Fernandez-Vallejo, M. Lopez-Amo, and J. M. Lopez-Higuera, "Stabilization of Dual-Wavelength Erbium-Doped Fiber Ring Lasers by Single-Mode Operation," IEEE Photon. Technol. Lett.,2010,22(6):368-370.
    [18]R. A. Perez-Herrera, A. Ullan, D. Leandro, M. Fernandez-Vallejo, M. A. Quintela, A. Loayssa, J. M. Lopez-Higuera, and M. Lopez-Amo, "L-Band Multiwavelength Single-Longitudinal Mode Fiber Laser for Sensing Applications," J. Lightwave Technol.,2012,30(8):1173-1177.
    [19]P. Shilong and Y. Jianping, "A Wavelength-Tunable Single-Longitudinal-Mode Fiber Ring Laser With a Large Sidemode Suppression and Improved Stability," IEEE Photon. Technol. Lett.,2010, 22(6):413-415.
    [20]K. K. Y. Cheung, Y. Sigang, Z. Yue, and K. K. Y. Wong, "Frequency Swept Fiber Ring Laser Based on Optical Parametric Process With Single-Longitudinal-Mode Operation," IEEE Photon. Technol. Lett.,2011,23(4):203-205.
    [21]M. Ma, Z. Hu, P. Xu, W. Wang, and Y. Hu, "Detecting mode hopping in single-longitudinal-mode fiber ring lasers based on an unbalanced fiber Michelson interferometer," Appl. Opt.,2012,51(30): 7420-7425.
    [22]F. D. Muhammad, M. Z. Zulkifli, A. A. Latif, S. W. Harun, and H. Ahmad, "Graphene-Based Saturable Absorber for Single-Longitudinal-Mode Operation of Highly Doped Erbium-Doped Fiber Laser," IEEE Photonics Journal,2012,4(2):467-475.
    [23]Q. Sun, J. Wang, W. Tong, J. Luo, and D. Liu, "Channel-switchable single-/dual-wavelength single-longitudinal-mode laser and THz beat frequency generation up to 3.6 THz," Applied Physics B,2012,106(2):373-377.
    [24]M. Horowitz, R. Daisy, B. Fischer, and J. L. Zyskind, "Linewidth-narrowing mechanism in lasers by nonlinear wave mixing," Opt. Lett.,1994,19(18):1406-1408.
    [25]K. Myeong Soo, L. Myoung Soo, Y. Jae Chul, and K. Byoung Yoon, "Characterization of wavelength-tunable single-frequency fiber laser employing acoustooptic tunable filter," J. Lightwave Technol.,2006,24(4):1812-1823.
    [26]S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castafi6n, and S. K. Turitsyn, "Experimental demonstration of mode structure in ultralong Raman fiber lasers," Opt. Lett.,2007,32(9):1135-1137.
    [27]S. K. Turitsyn, C. Ania, ntilde, oacute, J. D. n, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, "270-km Ultralong Raman Fiber Laser," Physical Review Letters,2009,103(13):133901.
    [28]D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castaflon, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, "Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser," Opt. Express,2012,20(10):11178-11188.
    [29]W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Y. Z. N. Wang, and X. H. Jia, "Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity," Opt. Express,2012,20(13):14400-14405.
    [30]A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, "Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation," Opt. Lett.,2011,36(2):130-132.
    [31]S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, "Random distributed feedback fibre laser," Nat Photon,2010,4(4):231-235.
    [32]Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, "Long-distance fiber-optic point-sensing systems based on random fiber lasers," Opt. Express,2012,20(16): 17695-17700.
    [33]I. D. Vatnik, D. V. Churkin, and S. A. Babin, "Power optimization of random distributed feedback fiber lasers," Opt. Express,2012,20(27):28033-28038.
    [34]Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, "Hybrid lasing in an ultra-long ring fiber laser," Opt. Express,2012,20(20):22563-22568.
    [35]I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, "Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm," Opt. Express,2011,19(19):18486-18494.
    [36]Z. Tao, B. Xiaoyi, and C. Liang, "A Single Longitudinal-Mode Tunable Fiber Ring Laser Based on Stimulated Rayleigh Scattering in a Nonuniform Optical Fiber," J. Lightwave Technol,2011,29(12): 1802-1807.
    [37]N. Park and P. F. Wysocki, "24-line multiwavelength operation of erbium-doped fiber-ring laser," IEEE Photonics Technology Letters,1996,8(11):1459-1461.
    [38]K. Zhou, D. Zhou, F. Dong, and N. Q. Ngo, "Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback," Opt. Lett.,2003,28(11): 893-895.
    [39]O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, "Triple-frequency operation of an Er-doped twincore fiber loop laser," IEEE Photonics Technology Letters,1996,8(1):63-65.
    [40]W. J. Peng, F. P. Yan, Q. Li, G. L. Yin, S. C. Feng, T. Feng, and S. Y. Tan, "Tunable self-seeded multiwavelength Brillouin-erbium fiber laser using an in-line two-taper Mach-Zehnder interferometer," Opt. Laser Technol.,2013,45(0):348-351.
    [41]S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, "Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings," Opt. Express,2008,16(16):11830-11835.
    [42]D. Yang, P. Jiang, Y. Wang, B. Wu, and Y. Shen, "Dual-wavelength high-power Yb-doped double-clad fiber laser based on a few-mode fiber Bragg grating," Opt. Laser TechnoL,2010,42(4): 575-579.
    [43]X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, "L-Band switchable dual-wavelength erbium-doped fiber laser based on a multimode fiber Bragg grating," Opt. Express,2004,12(16): 3834-3839.
    [44]L. Yong Wook and L. Byoungho, "Wavelength-switchable erbium-doped fiber ring laser using spectral polarization-dependent loss element," IEEE Photonics Technology Letters,2003,15(6): 795-797.
    [45]G. Anzueto-Sanchez, A. Martinez-Rios, and J. Castrellon-Uribe, "Tuning and wavelength switching erbium-doped fiber ring lasers by controlled bending in arc-induced long-period fiber gratings," Opt. Fiber Technol.,2012,18(6):513-517.
    [46]C. Mou, P. Saffari, H. Fu, K. Zhou, L. Zhang, and I. Bennion, "Single-and dual-wavelength switchable erbium-doped fiber ring laser based on intracavity polarization selective tilted fiber gratings," Appl. Opt.,2009,48(18):3455-3459.
    [47]A. J. Poustie, N. Finlayson, and P. Harper, "Multiwavelength fiber laser using a spatial mode beating filter," Opt. Lett.,1994,19(10):716-718.
    [48]R. Wang, Z. Cao, X. Ji, G. Qiao, X. Zhang, and B. Yu, "A switchable dual-wavelength erbium-doped fiber laser based on a two-taper Mach-Zehnder interferometer filter," in 2011 International Conference on Optical Instruments and Technology:Optoelectronic Devices and Integration, Beijing, Proc. SPIE,2011,81980E.
    [49]W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, "Switchable multi-wavelength fiber ring laser using a side-leakage photonic crystal fiber based filter," Opt. Laser Technol.,2012,44(3): 611-616.
    [50]B. K. Kim and Y. Chung, "Multiwavelength erbium-doped fiber laser using twin-core photonic crystal fiber," Laser Phys.,2012,22(5):967-971.
    [51]W. Wei, M. Hongyun, W. Xiaowei, X. Hongchao, T. Chunhua, and H. Xuguang, "Three Channel-Spacing Switchable Multiwavelength Fiber Laser With Two Segments of Polarization-Maintaining Fiber," IEEE Photon. Technol. Lett.,2012,24(6):470-472.
    [52]T. Wang, X. Miao, X. Zhou, and S. Qian, "Tunable multiwavelength fiber laser based on a double Sagnac HiBi fiber loop," Appl. Opt,2012,51(10):C111-C116.
    [53]J. Wang, K. Zheng, J. Peng, L. Liu, J. Li, and S. Jian, "Theory and experiment of a fiber loop mirrorfilter of two-stage polarization-maintainingfibers and polarization controllers formultiwavelength fiber ring laser," Opt. Express,2009,17(13):10573-10583.
    [54]F. Su-Chun, X. Ou, L. Shao-Hua, and J. Shui-Sheng, "Switchable Multi-Wavelength Erbium-Doped Fiber Lasers based on a Mach-Zehnder Interferometer Using a Twin-Core Fiber," Chin. Phys. Lett., 2009,26(6):64208-064208.
    [55]G Lin and X. Dong, "All-fiber tunable bandpass filter based on cascaded twin-core fiber," Appl. Opt,2011,50(36):6667-6670.
    [56]H. Li, D. Huang, and D. N. Wang, "Influence of birefringence on soliton switching in a twin-core fiber coupler," Microw. Opt. Technol. Lett.,2002,35(6):502-506.
    [57]H. Li and D. N. Wang, "Investigation of birefringence properties in twin-core fibers," Microw. Opt. Technol. Lett.,2001,31(4):314-319.
    [58]S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, "Compact In-Fiber Mach-Zehnder Interferometer Using a Twin-Core Fiber," Optical Society of America,2009, FA6.
    [59]A.-P. Luo, Z.-C. Luo, and W.-C. Xu, "Tunable and switchable multiwavelength erbium-doped fiber ring laser based on a modified dual-pass Mach-Zehnder interferometer," Opt. Lett.,2009,34(14): 2135-2137.
    [60]X. Feng, H. Y. Tarn, H. L. Liu, and P. K. A. Wai, "Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror," Op. Commun.,2006,268(2):278-281.
    [61]J. Tian, Y. Yao, J. Xiao, X. Xu, and D. Chen, "A pump power controlled multiwavelength fiber laser with adjustable output channels at fixed wavelength," Appl. Phys. B,2011,102(3):545-549.
    [62]D. Chen, "Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter," Laser Phys. Lett.,2007,4(6):437-439.
    [63]Z. Y. Liu, Y. G. Liu, J. B. Du, S. Z. Yuan, and X. Y. Dong, "Channel-spacing and wavelength switchable multiwavelength erbium-doped fiber laser using sampled Hi-Bi fiber grating and photonic crystal fiberloop mirror," Laser Phys. Lett.,2008,5(2):122-125.
    [64]T. V. A. Tran, K. Lee, S. B. Lee, and Y.-G. Han, "Switchable multiwavelength erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings," Opt. Express,2008,16(3):1460-1465.
    [65]A. Iocco, H. G Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, "Bragg grating fast tunable filter for wavelength division multiplexing," J. Lightwave Technol.,1999,17(7):1217-1221.
    [66]J. Stone and L. W. Stulz, "Pigtailed high-finesse tunable fibre Fabry-Perot interferometers with large, medium and small free spectral ranges," Electronics Letters,1987,23(15):781-783.
    [67]G. Sun, Y. Zhou, Y. Hu, and Y. Chung, "Broadly Tunable Fiber Laser Based on Merged Sagnac and Intermodal Interferences in Few-Mode High-Birefringence Fiber Loop Mirror," IEEE Photon. Technol. Lett.,2010,22(11):766-768.
    [68]G. Sun, Y. Hu, Y. Zhou, and Y. Chung, "Broad tunability of erbium-doped fiber ring laser based on few-mode polarization maintaining fiber Sagnac interferometer," Appl. Phys. B,2011,102(3): 589-594.
    [69]K. Kieu and M. Mansuripur, "Tuning of fiber lasers by use of a single-mode biconic fiber taper," Opt. Lett.,2006,31(16):2435-2437.
    [70]X. Wang, Y. Li, and X. Bao, "Tunable ring laser using a tapered single mode fiber tip," Appl. Opt., 2009,48(35):6827-6831.
    [71]A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. LiKamWa, "Widely tunable erbium-doped fiber laser based on multimode interference effect," Opt. Express,2010,18(2):591-597.
    [72]X. Wang, Y. Li, and X. Bao, "C- and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter," Opt. Lett.,2010,35(20):3354-3356.
    [73]J. Mu and W.-P. Huang, "Complex coupled-mode theory for tapered optical waveguides," Opt. Lett., 2011,36(6):1026-1028.
    [74]J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices. I. Adiabaticity criteria," Optoelectronics, IEE Proceedings J,1991, 138(5):343-354.
    [75]B. S. Kawasaki, K. O. Hill, and R. G Lamont, "Biconical-taper single-mode fiber coupler," Opt Lett.,1981,6(7):327-328.
    [76]W. K. Burns and M. Abebe, "Coupling model for fused fiber couplers with parabolic taper shape," Appl. Opt,1987,26(19):4190-4192.
    [77]M. I. Cheema, S. Mehrabani, A. A. Hayat, Y.-A. Peter, A. M. Armani, and A. G. Kirk, "Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy," Opt. Express,2012,20(8):9090-9098.
    [78]Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, "Packaged silica microsphere-taper coupling system for robust thermal sensing application," Opt. Express,2011,19(7):5753-5759.
    [79]J. B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noe, T. Ricart, D. Bucci, and A. Morand, "High-Q silica microcavities on a chip:From microtoroid to microsphere," Appl. Phys. Lett.,2011, 99(18):181123-3.
    [80]Z. Tian, M. Nix, and S. S. H. Yam, "Laser beam shaping using a single-mode fiber abrupt taper," Opt. Lett.,2009,34(3):229-231.
    [81]W. Guo, Y. Chen, F. Xu, and Y.-q. Lu, "Modeling of the influence of coupling in optical microfiber resonators," Opt. Express,2012,20(13):14392-14399.
    [82]R. J. Black and R. Bourbonnais, "Core-mode cutoff for finite-cladding lightguides," Optoelectronics, IEE Proceedings J,1986,133(6):377-384.
    [83]Y. Jung, G. Brambilla, and D. J. Richardson, "Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter," Opt. Express,2008,16(19):14661-14667.
    [84]C. Baker and M. Rochette, "High Nonlinearity and Single-Mode Transmission in Tapered Multimode As2 Se3-PMMA Fibers," IEEE Photonics Journal,2012,4(3):960-969.
    [85]H. Kim, J. Kim, Y. Jung, L. A. Vazquez-Zuniga, S. J. Lee, G Choi, K. Oh, P. Wang, W. A. Clarkson, and Y. Jeong, "Simple and reliable light launch from a conventional single-mode fiber into a helical-core fiber through an adiabatically tapered splice," Opt. Express,2012,20(23): 25562-25571.
    [86]Y. Tian, J. Q. Zhao, W. Gao, W. Wang, and Y. Z. Wang, "Narrow line-width Tm3+doped double-clad silica fiber laser based on in-line cascade biconical tapers filter," Laser Phys. Lett.,2010, 7(4):298-302.
    [87]Y. J. Zhang, F. F. Zhong, and Y. Z. Wang, "Top-hat beam Tm3+-doped fiber laser using an intracavity abrupt taper," Laser Phys.,2011,21(1):215-218.
    [88]J. A. Alvarez-Chavez, D. E. Ceballos-Herrera, F. Martinez-Pinon, and M. G Pulido-Navarro, "Modeling of temperature sensitivity on tapered Yb-doped fiber lasers," Opt. Eng.,2012,51(7): 074203-1.
    [89]C. Guo, M. Nix, S. S. H. Yam, and S. He, "Picosecond and Sub-Picosecond Flat-Top Pulse Shaping Using Abrupt Taper Interferometers," J. Lightwave Technol.,2010,28(6):876-881.
    [90]L. Yuan, Z. Liu, and J. Yang, "Coupling characteristics between single-core fiber and multicore fiber," Opt. Lett.,2006,31(22):3237-3239.
    [91]L. Yuan, Z. Liu, J. Yang, and C. Guan, "Bitapered fiber coupling characteristics between single-mode single-core fiber and single-mode multicore fiber," Appl. Opt.,2008,47(18): 3307-3312.
    [92]X. Zhu, L. Yuan, Z. Liu, J. Yang, and C. Guan, "Coupling Theoretical Model Between Single-Core Fiber and Twin-Core Fiber," J. Lightwave Technol.,2009,27(23):5235-5239.
    [93]W. Peng, F. Yan, Q. Li, G Yin, S. Feng, T. Feng, and S. Tan, "Tunable self-seeded multiwavelength Brillouin-erbium fiber laser using an in-line two-taper Mach-Zehnder interferometer," Opt. Laser Technol.,2013,45(2):348-351.
    [94]T. Zhaobing and S. S. H. Yam, "In-Line Abrupt Taper Optical Fiber Mach-Zehnder Interferometric Strain Sensor," IEEE Photon. Technol. Lett.,2009,21(3):161-163.
    [95]D. Wu, T. Zhu, K. S. Chiang, and M. Deng, "All Single-Mode Fiber Mach-Zehnder Interferometer Based on Two Peanut-Shape Structures," J. Lightwave Technol.,2012,30(5):805-810.
    [96]P. Lu, J. Harris, Y. Xu, Y. Lu, L. Chen, and X. Bao, "Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer," Opt. Lett.,2012,37(22): 4567-4569.
    [97]D. Monzon-Hernandez, A. Martinez-Rios, I. Torres-Gomez, and G Salceda-Delgado, "Compact optical fiber curvature sensor based on concatenating two tapers," Opt. Lett.,2011,36(22): 4380-4382.
    [98]Y. Liu, B. Liu, Y. Miao, H. Zhang, and J. Liu, "Effect of bending and orientation on the fiber modal mach-zehnder interferometer," Microw. Opt. Technol. Lett.,2012,54(1):136-139.
    [99]P. Lu, L. Men, K. Sooley, and Q. Chen, "Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature," Appl. Phys. Lett,2009,94(13):3.
    [100]Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, "Refractive Index Sensing With Mach-Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers," IEEE Photon. Technol. Lett.,2008,20(8):626-628.
    [101]Z. Tian, S. S. H. Yam, and H.-P. Loock, "Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber," Opt. Lett.,2008,33(10):1105-1107.
    [102]Z. Tian and S. H. Yam, "In-Line Single-Mode Optical Fiber Interferometric Refractive Index Sensors," J. Lightwave Technol.,2009,27(13):2296-2306.
    [103]D. Wu, T. Zhu, M. Deng, D.-W. Duan, L.-L. Shi, J. Yao, and Y.-J. Rao, "Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers," Appl. Opt.,2011,50(11):1548-1553.
    [104]J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, "High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing," Appl. Opt.,2011,50(28):5503-5507.
    [105]B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, "High sensitivity Mach-Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers," Opt. Laser Technol.,2012,44(3):640-645.
    [106]Y. Zou, X. Dong, G. Lin, and R. Adhami, "Wide Range FBG Displacement Sensor Based on Twin-Core Fiber Filter," J. Lightwave Technol.,2012,30(3):337-343.
    [107]A. L. Jones, "Coupling of Optical Fibers and Scattering in Fibers," J. Opt. Soc. Am.,1965,55(3): 261-269.
    [108]M. C. Hutley, "Advances in Quantum Electronics," Optica Acta:International Journal of Optics, 1975,22(2):159-159.
    [109]A. W. Snyder, "Coupled-Mode Theory for Optical Fibers," J. Opt. Soc. Am.,1972,62(11): 1267-1277.
    [110]A. W. Snyder and J. D. Love. Optical Waveguide Theory, London:Chapman and Hall,1983.
    [111]G D. Peng, T. Tjugiarto, and P. L. Chu, "Polarisation beam splitting using twin-elliptic-core optical fibres," Electronics Letters,1990,26(10):682-683.
    [112]G Schiffner, H. Schneider, and G Schoner, "Double-core single-mode optical fiber as directional coupler," Applied Physics A:Materials Science & Processing,1980,23(1):41-45.
    [113]Y. Murakami and S. Sudo, "Coupling characteristics measurements between curved waveguides using a two-core fiber coupler," Appl. Opt.,1981,20(3):417-422.
    [114]D. Drolet and R. Vallee, "Dual-core fiber as a tunable directional coupler," Opt. Lett.,1993,18(6): 408-410.
    [115]G D. Peng and A. Ankiewicz, "Parametric design features of twin-elliptical-core optical fibres," Electronics Letters,1990,26(18):1496-1498.
    [116]K. Kitayama and Y. Ishida, "Wavelength-selective coupling of two-core optical fiber:application and design," J. Opt. Soc. Am. A,1985,2(1):90-94.
    [117]T. Tjugiarto, G D. Peng, and P. L. Chu, "Bandpass filtering effect in tapered asymmetrical twin-core optical fibres," Electronics Letters,1993,29(12):1077-1078.
    [118]B. Ortega and L. Dong, "Accurate tuning of mismatched twin-core fiber filters," Opt. Lett.,1998, 23(16):1277-1279.
    [119]X. Sun, "Wavelength-selective coupling of dual-core photonic crystal fiber with a hybrid light-guiding mechanism," Opt. Lett.,2007,32(17):2484-2486.
    [120]M. Chen, Y. Zhang, and R. Yu, "Wavelength-selective coupling of dual-core photonic crystal fiber and its application," Chin. Opt. Lett.,2009,7(5):390-392.
    [121]R. Zhao, L. Pei, Z. Li, T. Ning, L. Fan, and W. Jiang, "Experimental research of temperature sensor based on twin-core fiber," Chin. Opt. Lett.,2011,9(6):062801.
    [122]Y. Zou and X. Dong, "Demodulation of the FBG temperature sensor with the tunable twin-core fiber," Microw. Opt. Technol. Lett.,2011,53(1):81-84.
    [123]L. Kyung Shik and T. Erdogan, "Transmissive tilted gratings for LP01-to-LP11 mode coupling," IEEE Photonics Technology Letters,1999,11(10):1286-1288.
    [124]K. S. Lee and T. Erdogan, "Fiber Mode Coupling in Transmissive and Reflective Tilted Fiber Gratings," Appl. Opt.,2000,39(9):1394-1404.
    [125]K. S. Lee and T. Erdogan, "Fiber mode conversion with tilted gratings in an optical fiber," J. Opt. Soc.Am.A,2001,18(5):1176-1185.
    [126]K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electronics Letters,1990, 26(16):1270-1272.
    [127]Wei Shilei, Zhang Weigang, Fan Hongjian, Geng Pengcheng, Shang Jiabin, Yin Limei, and X. Xiaolin, "Study on Spectral Properties of Tilted Long-Period Fiber Grating Written by High-Frequency CO2 Laser Pulses," Acta Optica Sinica,2011,31(8):0806006.
    [128]R. Wu, Y. Q. Liu, J. Zou, N. Chen, F. F. Pang, and T. Y. Wang, "Fabrication of tilted long-period fiber gratings by CO2 laser " in Passive Components and Fiber-Based Devices Ⅷ, Shanghai, China, Proc. SPIE,2011,83072D.
    [129]I. K. Hwang, S. H. Yun, and B. Y. Kim, "Long-period fiber gratings based on periodic microbends," Opt. Lett.,1999,24(18):1263-1265.
    [130]S. Golowich and S. Ramachandran, "Impact of fiber design on polarization dependence in microbend gratings," Opt. Express,2005,13(18):6870-6877.
    [131]S. Ramachandran, S. Golowich, M. F. Yan, E. Monberg, F. V. Dimarcello, J. Fleming, S. Ghalmi, and P. Wisk, "Lifting polarization degeneracy of modes by fiber design:a platform for polarization-insensitive microbend fiber gratings," Opt. Lett.,2005,30(21):2864-2866.
    [132]H. Sakata and T. Saito, "Adhesive-fixed microbend long-period fiber gratings with bandpass filter response," Microw. Opt. Technol. Lett.,2011,53(8):1740-1743.
    [133]K. S. Lee and T. Erdogan, "Mode coupling in spiral fibre gratings," Electronics Letters,2001,37(3): 156-157.
    [134]J. Demas, M. D. W. Grogan, T. Alkeskjold, and S. Ramachandran, "Sensing with optical vortices in photonic-crystal fibers," Opt. Lett.,2012,37(18):3768-3770.
    [135]G Rego, "Polarization dependent loss of mechanically induced long-period fibre gratings," Opt. Commun.,2008,281(2):255-259.
    [136]S. Ramachandran, C. Smith, P. Kristensen, and P. Balling, "Nonlinear generation of broadband polarisation vortices," Opt. Express,2010,18(22):23212-23217.
    [137]N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, "Control of orbital angular momentum of light with optical fibers," Opt. Lett.,2012,37(13):2451-2453.
    [138]S. Ramachandran, P. Kristensen, and M. F. Yan, "Generation and propagation of radially polarized beams in optical fibers," Opt. Lett.,2009,34(16):2525-2527.
    [139]D. Kalaidji, M. Spajer, and T. Grosjean, "All-fiber controller of radial polarization using a periodic stress," Opt. Lett.,2011,36(2):205-207.
    [140]M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, "High-power radially polarized Yb:YAG thin-disk laser with high efficiency," Opt. Express,2011,19(6):5093-5103.
    [141]M. Rumpel, M. Haeffner, T. Schoder, C. Pruss, A. Voss, W. Osten, M. A. Ahmed, and T. Graf, "Circular grating waveguide structures for intracavity generation of azimuthal polarization in a thin-disk laser," Opt. Lett.,2012,37(10):1763-1765.
    [142]T. Schuster, R. Herschel, N. Neumann, and C. G. Schaffer, "Miniaturized Long-Period Fiber Grating Assisted Surface Plasmon Resonance Sensor," J. Lightwave Technol.,2012,30(8):1003-1008.
    [143]Y.-C. Lu, W.-P. Huang, and S.-S. Jian, "Full vector complex coupled mode theory for tilted fiber gratings," Opt. Express,2010,18(2):713-725.
    [144]L. Yu-Chun, Y. Li, H. Wei-Ping, and J. Shui-Sheng, "Unified Approach for Coupling to Cladding and Radiation Modes in Fiber Bragg and Long-Period Gratings," Journal of Lightwave Technology, 2009,27(11):1461-1468.
    [145]L. Yang, L.-L. Xue, Y.-C. Lu, and W.-P. Huang, "New insight into quasi leaky mode approximations for unified coupled-mode analysis," Opt. Express,2010,18(20):20595-20609.
    [146]J. Mu and W.-P. Huang, "Analytical Expressions for Radiation Effects on Guided Mode Propagation in Long Period Gratings," Journal of Lightwave Technology,2011,29(7):997-1002.
    [147]Y.-C. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, "Polarization Effects in Tilted Fiber Bragg Grating Refractometers," Journal of Lightwave Technology,2010,28(11):1677-1684.
    [148]J. Mu and W.-P. Huang, "Complex coupled-mode theory for tapered optical waveguides," Opt. Lett., 2011,36(6):1026-1028.
    [149]A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, "Thinned fiber Bragg gratings as high sensitivity refractive index sensor," IEEE Photon. Technol. Lett.,2004,16(4):1149-1151.
    [150]V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett.,1996,21(9): 692-694.
    [151]C. Caucheteur and P. Megret, "Demodulation technique for weakly tilted fiber Bragg grating refractometer," IEEE Photon. Technol. Lett.,2005,17(12):2703-2705.
    [152]D. Jin-Fei, A. P. Zhang, S. Li-Yang, Y. Jin-Hua, and H. Sailing, "Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor," IEEE Photon. Technol. Lett.,2005,17(6): 1247-1249.
    [153]D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, "In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement," Appl. Opt.,2005,44(26): 5368-5373.
    [154]G. A. Cardenas-Sevilla, D. Monz6n-Hernandez, I. Torres-Gomez, and A. Martinez-Rios, "Tapered Mach-Zehnder interferometer based on two mechanically induced long-period fiber gratings as refractive index sensor," Opt. Laser Technol.,2012,44(5):1516-1520.
    [155]T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, "Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers," Opt. Commun.,2010,283(10): 2136-2139.
    [156]P. Fufei, L. Huanhuan, G. Hairun, L. Yunqi, Z. Xianglong, C. Na, C. Zhenyi, and W. Tingyun, "In-Fiber Mach-Zehnder Interferometer Based on Double Cladding Fibers for Refractive Index Sensor," IEEE Sensors Journal,2011,11(10):2395-2400.
    [157]W. Tao, L. Xinwei, and X. Hai, "Fiber Inline Core-Cladding-Mode Mach-Zehnder Interferometer Fabricated by Two-Point CO2 Laser Irradiations," IEEE Photon. Technol. Lett.,2009,21(10): 669-671.
    [158]Z. Tian, S. S. H. Yam, and H. P. Loock, "Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators," IEEE Photon. Technol. Lett.,2008,20(16):1387-1389.
    [159]L. M. P. Lu, K. Sooley, and Q. Chen, "Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature," Appl. Phys. Lett.,2009,94(13)
    [160]Y. Li, E. Harris, L. Chen, and X. Bao, "Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor," Opt. Express,2010,18(8):8135-8143.
    [161]G Yin, S. Lou, and H. Zou, "Refractive index sensor with asymmetrical fiber Mach-Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section," Opt. Laser Technol.,2013,45(0):294-300.
    [162]T. Guo, A. Ivanov, C. Chen, and J. Albert, "Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling," Opt. Lett.,2008,33(9):1004-1006.
    [163]L.-Y. Shao and J. Albert, "Compact fiber-optic vector inclinometer," Opt. Lett.,2010,35(7): 1034-1036.
    [164]Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, "Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber," Opt. Commun.,2009,282(19): 3905-3907.
    [165]L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, "Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating," Opt. Commun.,2010,283(13): 2690-2694.
    [166]Y. Liu, J. A. R. Williams, and I. Bennion, "Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating," IEEE Photon. Technol. Lett.,2000,12(5):531-533.
    [167]Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, "Bend sensing by measuring the resonance splitting of long-period fiber gratings," Opt. Commun.,2001,193(1-6):69-72.
    [168]O. Frazao, J. M. Baptista, J. L. Santos, and P. Roy, "Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer," Appl. Opt., 2008,47(13):2520-2523.
    [169]G. Yuan, Z. Tian, R Yun-Jiang, and W. Yu, "All-Fiber Curvature Sensor Based on Multimode Interference," IEEE Photon. Technol. Lett.,2011,23(11):679-681.
    [170]W. Shin, Y. L. Lee, B.-A. Yu, Y.-C. Noh, and T. J. Ahn, "Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber," Opt. Commun.,2010,283(10):2097-2101.
    [171]M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, "Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber," Opt. Commun.,2011,284(12):2849-2853.
    [172]B. Dong, J. Hao, and Z. Xu, "Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer," Opt. Fiber Technol.,2011, 17(3):233-235.
    [173]A. Harhira, J. Lapointe, and K. Raman, "A Simple Bend Sensor Using a Twin Core Fiber Mach-Zehnder Interferometer," Optical Society of America,2010, TuF3.
    [174]Fraza, x, O. o, S. F. O. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, "All Fiber Mach-Zehnder Interferometer Based on Suspended Twin-Core Fiber," IEEE Photon. Technol. Lett.,2010,22(17):1300-1302.
    [175]R. Valle'e and D. Drolet, "Practical coupling device based on a two-core optical fiber," Appl. Opt, 1994,33(24):5602-5610.
    [176]G. H. D. Chen, X. A. Liu, B. Peng, and G. Wu,, "Bending analysis of a dual-core photonic crystal fiber," Progress In Electromagnetics Research,2011,120
    [1]G A. Ball, W. W. Morey, and W. H. Glenn, "Standing-wave monomode erbium fiber laser," IEEE Photon. Technol. Lett.,1991,3(7):613-615.
    [2]C. Xiangfei, Y. Jianping, Z. Fei, and D. Zhichao, "Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett.,2005, 17(7):1390-1392.
    [3]X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-Longitudinal-Mode Erbium-Doped Fiber Ring Laser Based on High Finesse Fiber Bragg Grating Fabry-Perot Etalon," IEEE Photon. Technol. Lett.,2008,20(12):976-978.
    [4]R. A. Perez-Herrera, A. Ullan, D. Leandro, M. Fernandez-Vallejo, M. A. Quintela, A. Loayssa, J. M. Lopez-Higuera, and M. Lopez-Amo, "L-Band Multiwavelength Single-Longitudinal Mode Fiber Laser for Sensing Applications," J. Lightwave Technol.,2012,30(8):1173-1177.
    [5]C.-C. Lee, Y.-K. Chen, and S.-K. Liaw, "Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission," Opt. Lett.,1998,23(5):358-360.
    [6]X. X. Yang, L. Zhan, Q. S. Shen, and Y. X. Xia, "High-Power Single-Longitudinal-Mode Fiber Laser With a Ring Fabry-Perot Resonator and a Saturable Absorber," IEEE Photon. Technol. Lett., 2008,20(11):879-881.
    [7]S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castanon, and S. K. Turitsyn, "Experimental demonstration of mode structure in ultralong Raman fiber lasers," Opt. Lett.,2007,32(9):1135-1137.
    [8]D. V. Churkin, A. E. E1-Taher, I. D. Vatnik, J. D. Ania-Castafi6n, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, "Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser," Opt. Express,2012,20(10):11178-11188.
    [9]W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Y. Z. N. Wang, and X. H. Jia, "Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity," Opt. Express,2012,20(13):14400-14405.
    [10]S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, "Random distributed feedback fibre laser," Nat Photon,2010,4(4):231-235.
    [11]I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, "Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm," Opt. Express,2011,19(19):18486-18494.
    [12]Z. Tao, B. Xiaoyi, and C. Liang, "A Single Longitudinal-Mode Tunable Fiber Ring Laser Based on Stimulated Rayleigh Scattering in a Nonuniform Optical Fiber," J. Lightwave Technol.,2011,29(12): 1802-1807.
    [13]J. Wang, S. Gray, D. Walton, M.-J. Li, X. Chen, A. B. Ruffin, J. Demeritt, and L. Zenteno, "High performance Yb-doped double-clad optical fibers for high-power, narrow-linewidth fiber laser applications," in Passive Components and Fiber-based Devices Ⅲ, Gwangju, South Korea, Proc. SPIE,2006,635109.
    [14]A. Kobyakov, M. Sauer, and D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photon.,2010,2(1):1-59.
    [15]D. Derickson. Fiber Optic Test an d Measurement, New Jesey:Prentice Hall PTR,1998.
    [1]G. Schiffner, H. Schneider, and G. Schoner, "Double-core single-mode optical fiber as directional coupler," Applied Physics A:Materials Science & Processing,1980,23(1):41-45.
    [2]G-D. Peng, T. Tjugiarto, and P. L. Chu, "Twin-core optical fiber with large core ellipticity," Appl. Opt.,1991,30(6):632-634.
    [3]S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, "Ultrafast all-optical switching in a dual-core fiber nonlinear coupler," Appl. Phys. Lett.,1987,51(15): 1135-1137.
    [4]B. Ortega and L. Dong, "Accurate tuning of mismatched twin-core fiber filters," Opt. Lett.,1998, 23(16):1277-1279.
    [5]B. Ortega and L. Dong, "Characteristics of mismatched twin-core fiber spectral filters," IEEE Photon. Technol. Lett.,1998,10(7):991-993.
    [6]A. W. Snyder and A. Ankiewicz, "Optical fiber couplers-optimum solution for unequal cores," J. Lightwave Technol.,1988,6(3):463-474.
    [7]Y. Zou, X. Dong, G. Lin, and R. Adhami, "Wide Range FBG Displacement Sensor Based on Twin-Core Fiber Filter," J. Lightwave Technol.,2012,30(3):337-343.
    [8]F. Su-Chun, X. Ou, L. Shao-Hua, and J. Shui-Sheng, "Switchable Multi-Wavelength Erbium-Doped Fiber Lasers based on a Mach-Zehnder Interferometer Using a Twin-Core Fiber," Chin. Phys. Lett., 2009,26(6):64208-064208.
    [9]H. Zou, S. Lou, and G. Yin, "A wavelength-tunable fiber laser based on a twin-core fiber comb filter," Opt. Laser Technol.,2013,45(2):629-633.
    [10]A. Harhira, J. Lapointe, and K. Raman, "A Simple Bend Sensor Using a Twin Core Fiber Mach-Zehnder Interferometer," Optical Society of America,2010, TuF3.
    [11]Fraza, x, O. o, S. F. O. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, "All Fiber Mach-Zehnder Interferometer Based on Suspended Twin-Core Fiber," IEEE Photon. Technol. Lett.,2010,22(17):1300-1302.
    [12]W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. S. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun.,2001,193(1-6): 97-104.
    [13]Y. Murakami and S. Sudo, "Coupling characteristics measurements between curved waveguides using a two-core fiber coupler," Appl. Opt.,1981,20(3):417-422.
    [14]D. Drolet and R. Vallee, "Dual-core fiber as a tunable directional coupler," Opt. Lett.,1993,18(6): 408-410.
    [15]R. Vallee and D. Drolet, "Practical coupling device based on a two-core optical fiber," Appl. Opt., 1994,33(24):5602-5610.
    [16]A.-P. Luo, Z.-C. Luo, and W.-C. Xu, "Tunable and switchable multiwavelength erbium-doped fiber ring laser based on a modified dual-pass Mach-Zehnder interferometer," Opt. Lett.,2009,34(14): 2135-2137.
    [17]T. Wang, X. Miao, X. Zhou, and S. Qian, "Tunable multiwavelength fiber laser based on a double Sagnac HiBi fiber loop," Appl. Opt.,2012,51(10):C111-C116.
    [18]J. Wang, K. Zheng, J. Peng, L. Liu, J. Li, and S. Jian, "Theory and experiment of a fiber loop mirrorfilter of two-stage polarization-maintainingfibers and polarization controllers formultiwavelength fiber ring laser," Opt. Express,2009,17(13):10573-10583.
    [19]W. Wei, M. Hongyun, W. Xiaowei, X. Hongchao, T. Chunhua, and H. Xuguang, "Three Channel-Spacing Switchable Multiwavelength Fiber Laser With Two Segments of Polarization-Maintaining Fiber," IEEE Photon. Technol. Lett.,2012,24(6):470-472.
    [20]Y. Liu, J. A. R. Williams, and I. Bennion, "Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating," IEEE Photon. Technol. Lett.,2000,12(5):531-533.
    [21]T. Allsop, A. Gillooly, V. Mezentsev, T. Earthgrowl-Gould, R. Neal, D. J. Webb, and I. Bennion, "Bending and orientational characteristics of long period gratings written in D-shaped optical fiber [directional bend sensors]," Instrumentation and Measurement, IEEE Transactions on,2004,53(1): 130-135.
    [22]G. Yuan, Z. Tian, R. Yun-Jiang, and W. Yu, "All-Fiber Curvature Sensor Based on Multimode Interference," IEEE Photon. Technol. Lett.,2011,23(11):679-681.
    [23]H. P. Gong, C. C. Chan, P. Zu, L. H. Chen, and X. Y. Dong, "Curvature measurement by using low-birefringence photonic crystal fiber based Sagnac loop," Opt. Commun.,2010,283(16): 3142-3144.
    [24]A. L. Jones, "Coupling of Optical Fibers and Scattering in Fibers," J. Opt. Soc. Am.,1965,55(3): 261-269.
    [25]M. C. Hutley, "Advances in Quantum Electronics," Optica Acta:International Journal of Optics, 1975,22(2):159-159.
    [26]A. W. Snyder, "Coupled-Mode Theory for Optical Fibers," J. Opt. Soc. Am.,1972,62(11): 1267-1277.
    [27]A. W. Snyder and J. D. Love. Optical Waveguide Theory, London:Chapman and Hall,1983.
    [28]A. Hardy and W. Streifer, "Coupled mode theory of parallel waveguides," J. Lightwave Technol., 1985,3(5):1135-1146.
    [29]A. Ankiewicz, A. Snyder, and Z. Xue-Heng, "Coupling between parallel optical fiber cores--Critical examination," J. Lightwave Technol.,1986,4(9):1317-1323.
    [30]王健.导波光学,北京:清华大学出版社,2010.
    [31]吴重庆.光波导理论,北京:清华大学出版社,2005.
    [32]A. W. Snyder, "Coupled-Mode Theory for Optical Fibers," J. Opt. Soc. Am.,1972,62(11): 1267-1277.
    [33]范林勇,”全光纤梳状滤波器和马赫·增德尔干涉仪的研制,”[学位论文],北京,北京交通大学,2011.
    [34]G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, "Dual-Wavelength DFB Erbium-Doped Fiber Laser With Tunable Wavelength Spacing," IEEE Photon. Technol. Lett.,2010,22(4):254-256.
    [35]D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, "A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity," Appl. Phys. B,2005, 81(6):807-811.
    [36]B. Lin, M. Jiang, S. C. Tjin, and P. Shum, "Tunable Microwave Generation Using a Phase-Shifted Chirped Fiber Bragg Grating," IEEE Photon. Technol. Lett.,2011,23(18):1292-1294.
    [37]S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, "Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings," Opt. Express,2008,16(16):11830-11835.
    [38]Z. Y. Liu, Y. G. Liu, J. B. Du, S. Z. Yuan, and X. Y. Dong, "Channel-spacing and wavelength switchable multiwavelength erbium-doped fiber laser using sampled Hi-Bi fiber grating and photonic crystal fiberloop mirror," Laser Phys. Lett.,2008,5(2):122-125.
    [39]T. V. A. Iran, K. Lee, S. B. Lee, and Y.-G Han, "Switchable multiwavelength erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings," Opt. Express,2008,16(3):1460-1465.
    [40]D. Chen, "Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter," Laser Phys. Lett.,2007,4(6):437-439.
    [41]X. Feng, H. Y. Tarn, H. L. Liu, and P. K. A. Wai, "Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror," Op. Commun.,2006,268(2):278-281.
    [42]Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, "Bend sensing by measuring the resonance splitting of long-period fiber gratings," Opt. Commun.,2001,193(1-6):69-72.
    [43]O. Frazao, J. M. Baptista, J. L. Santos, and P. Roy, "Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer," Appl. Opt., 2008,47(13):2520-2523.
    [44]W. Shin, Y. L. Lee, B.-A. Yu, Y.-C. Noh, and T. J. Ahn, "Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber," Opt. Commun.,2010,283(10):2097-2101.
    [45]M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, "Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber," Opt. Commun.,2011,284(12):2849-2853.
    [46]B. Dong, J. Hao, and Z. Xu, "Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer," Opt. Fiber Technol.,2011, 17(3):233-235.
    [47]K. Nagano, S. Kawakami, and S. Nishida, "Change of the refractive index in an optical fiber due to external forces," Appl. Opt.,1978,17(13):2080-2085.
    [48]H. Taylor, "Bending effects in optical fibers," J. Lightwave Technol.,1984,2(5):617-628.
    [49]L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, "Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating," Opt. Commun.,2010,283(13): 2690-2694.
    [50]R. M. Silva, M. S. Ferreira, J. Kobelke, K. Schuster, and O. Frazao, "Simultaneous measurement of curvature and strain using a suspended multicore fiber," Opt. Lett.,2011,36(19):3939-3941.
    [51]W. Yi-Ping and R. Yun-Jiang, "A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously," IEEE Sensors Journal,2005,5(5):839-843.
    [52]T. Guo, A. Ivanov, C. Chen, and J. Albert, "Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling," Opt. Lett.,2008,33(9):1004-1006.
    [1]W. K. Burns and M. Abebe, "Coupling model for fused fiber couplers with parabolic taper shape," Appl. Opt.,1987,26(19):4190-4192.
    [2]J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett.,1997,22(15):1129-1131.
    [3]M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, "Fiber-coupled microsphere laser," Opt. Lett., 2000,25(19):1430-1432.
    [4]D. Donlagic, "In-line higher order mode filters based on long highly uniform fiber tapers," J. Lightwave Technol.,2006,24(9):3532-3539.
    [5]Y. Jung, G Brambilla, and D. J. Richardson, "Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter," Opt. Express,2008,16(19):14661-14667.
    [6]L. Li, Q. Lou, J. Zhou, J. Dong, Y. Wei, S. Du, and B. He, "High power single transverse mode operation of a tapered large-mode-area fiber laser," Optics Communications,2008,281(4):655-657.
    [7]Z. Tian, M. Nix, and S. S. H. Yam, "Laser beam shaping using a single-mode fiber abrupt taper," Opt. Lett.,2009,34(3):229-231.
    [8]G Changjian, M. Nix, S. S. H. Yam, and H. Sailing, "Picosecond and Sub-Picosecond Flat-Top Pulse Shaping Using Abrupt Taper Interferometers," J. Lightwave Technol.,2010,28(6):876-881.
    [9]G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G S. Murugan, J. S. Wilkinson, and D. J. Richardson, "Optical fiber nanowires and microwires: fabrication and applications," Adv. Opt. Photon.,2009,1(1):107-161.
    [10]K. Kieu and M. Mansuripur, "Tuning of fiber lasers by use of a single-mode biconic fiber taper," Opt. Lett.,2006,31(16):2435-2437.
    [11]X. Wang, Y. Li, and X. Bao, "Tunable ring laser using a tapered single mode fiber tip," Appl. Opt., 2009,48(35):6827-6831.
    [12]X. Wang, Y. Li, and X. Bao, "C-and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter," Opt. Lett.,2010,35(20):3354-3356.
    [13]T. Zhaobing and S. S. H. Yam, "In-Line Abrupt Taper Optical Fiber Mach-Zehnder Interferometric Strain Sensor," IEEE Photon. Technol. Lett.,2009,21(3):161-163.
    [14]L. M. P. Lu, K. Sooley, and Q. Chen, "Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature," Appl. Phys. Lett.,2009,94(13)
    [15]O. Frazao, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araujo, "Optical inclinometer based on a single long-period fiber grating combined with a fused taper," Opt. Lett., 2006,31(20):2960-2962.
    [16]D. Monzon-Hernandez, A. Martinez-Rios, I. Torres-Gomez, and G Salceda-Delgado, "Compact optical fiber curvature sensor based on concatenating two tapers," Opt. Lett.,2011,36(22): 4380-4382.
    [17]Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, "Refractive Index Sensing With Mach-Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers," IEEE Photon. Technol. Lett.,2008,20(8):626-628.
    [18]Z. Tian, S. S. H. Yam, and H.-P. Loock, "Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber," Opt. Lett.,2008,33(10):1105-1107.
    [19]Z. Tian and S. H. Yam, "In-Line Single-Mode Optical Fiber Interferometric Refractive Index Sensors," J. Lightwave Technol.,2009,27(13):2296-2306.
    [20]D. Wu, T. Zhu, M. Deng, D.-W. Duan, L.-L. Shi, J. Yao, and Y.-J. Rao, "Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers," Appl. Opt.,2011,50(11):1548-1553.
    [21]J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, "High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing," Appl. Opt,2011,50(28):5503-5507.
    [22]Y. Li, E. Harris, L. Chen, and X. Bao, "Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor," Opt. Express,2010,18(8):8135-8143.
    [23]G Yin, S. Lou, and H. Zou, "Refractive index sensor with asymmetrical fiber Mach-Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section," Opt. Laser Technol,2013,45(0):294-300.
    [24]X. Daxhelet, L. Martineau, and J. Bures, "Influence of the Fiber Index Profile on Vectorial Fiber Modes and Application to Tapered Fiber Devices," J. Lightwave Technol.,2005,23(5):1874.
    [25]W. K. Burns, M. Abebe, and C. A. Villarruel, "Parabolic model for shape of fiber taper," Appl. Opt, 1985,24(17):2753-2755.
    [26]J. D. Love and W. M. Henry, "Quantifying loss minimisation in single-mode fibre tapers," Electronics Letters,1986,22(17):912-914.
    [27]T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol.,1992,10(4):432-438.
    [28]P. Suchoski and R. Ramaswamy, "Design of single-mode step-tapered waveguide sections," Quantum Electronics, IEEE Journal of,1987,23(2):205-211.
    [29]J. M. Ward, D. G. O'Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. N. Chormaic, "Heat-and-pull rig for fiber taper fabrication," Review of Scientific Instruments,2006,77(8): 083105-5.
    [30]H. S. Haddock, P. M. Shankar, and R. Mutharasan, "Fabrication of biconical tapered optical fibers using hydrofluoric acid," Materials Science and Engineering:B,2003,97(1):87-93.
    [31]D. Derickson. Fiber Optic Test an d Measurement, New Jesey:Prentice Hall PTR,1998.
    [32]R. J. Black and R. Bourbonnais, "Core-mode cutoff for finite-cladding lightguides," Optoelectronics, IEE Proceedings J,1986,133(6):377-384.
    [33]D. Jin-Fei, A. P. Zhang, S. Li-Yang, Y. Jin-Hua, and H. Sailing, "Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor," IEEE Photon. Technol. Lett.,2005,17(6): 1247-1249.
    [34]B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, "High sensitivity Mach-Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers," Opt. Laser Technol.,2012,44(3):640-645.
    [35]T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, "Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers," Opt. Commun.,2010,283(10): 2136-2139.
    [36]P. Fufei, L. Huanhuan, G. Hairun, L. Yunqi, Z. Xianglong, C. Na, C. Zhenyi, and W. Tingyun, "In-Fiber Mach-Zehnder Interferometer Based on Double Cladding Fibers for Refractive Index Sensor," IEEE Sensors Journal,2011,11(10):2395-2400.
    [37]Z. Tian, S. S. H. Yam, and H. P. Loock, "Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators," IEEE Photon. Technol. Lett.,2008,20(16):1387-1389.
    [1]K.O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electronics Letters,1990, 26(16):1270-1272.
    [2]Wei Shilei, Zhang Weigang, Fan Hongjian, Geng Pengcheng, Shang Jiabin, Yin Limei, and X. Xiaolin, "Study on Spectral Properties of Tilted Long-Period Fiber Grating Written by High-Frequency CO2 Laser Pulses," Acta Optica Sinica,2011,31(8):0806006.
    [3]R. Wu, Y. Q. Liu, J. Zou, N. Chen, F. F. Pang, and T. Y. Wang, "Fabrication of tilted long-period fiber gratings by CO2 laser " in Passive Components and Fiber-Based Devices VIII, Shanghai, China, Proc. SPDE,2011,83072D.
    [4]S. Ramachandran, C. Smith, P. Kristensen, and P. Balling, "Nonlinear generation of broadband polarisation vortices," Opt. Express,2010,18(22):23212-23217.
    [5]J. Demas, M. D. W. Grogan, T. Alkeskjold, and S. Ramachandran, "Sensing with optical vortices in photonic-crystal fibers," Opt. Lett.,2012,37(18):3768-3770.
    [6]S. Ramachandran, P. Kristensen, and M. F. Yan, "Generation and propagation of radially polarized beams in optical fibers," Opt. Lett.,2009,34(16):2525-2527.
    [7]D. Kalaidji, M. Spajer, and T. Grosjean, "All-fiber controller of radial polarization using a periodic stress," Opt. Lett.,2011,36(2):205-207.
    [8]M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, "High-power radially polarized Yb:YAG thin-disk laser with high efficiency," Opt. Express,2011,19(6):5093-5103.
    [9]M. Rumpel, M. Haefner, T. Schoder, C. Pruss, A. Voss, W. Osten, M. A. Ahmed, and T. Graf, "Circular grating waveguide structures for intracavity generation of azimuthal polarization in a thin-disk laser," Opt. Lett.,2012,37(10):1763-1765.
    [10]G. Rego, "Polarization dependent loss of mechanically induced long-period fibre gratings," Opt. Commun.,2008,281(2):255-259.
    [11]N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, "Control of orbital angular momentum of light with optical fibers," Opt. Lett.,2012,37(13):2451-2453.
    [12]Y.-C. Lu, W.-P. Huang, and S.-S. Jian, "Full vector complex coupled mode theory for tilted fiber gratings," Opt. Express,2010,18(2):713-725.
    [13]T. Erdogan and J. E. Sipe, "Tilted fiber phase gratings," J. Opt. Soc. Am. A,1996,13(2):296-313.
    [14]T. Erdogan, "Cladding-mode resonances in short-and long-period fiber grating filters," J. Opt. Soc. Am. A,1997,14(8):1760-1773.
    [15]L. Yu-Chun, Y. Li, H. Wei-Ping, and J. Shui-Sheng, "Improved Full-Vector Finite-Difference Complex Mode Solver for Optical Waveguides of Circular Symmetry," J. Lightwave Technol.,2008, 26(13):1868-1876.
    [16]K. S. Lee and T. Erdogan, "Fiber Mode Coupling in Transmissive and Reflective Tilted Fiber Gratings," Appl. Opt.,2000,39(9):1394-1404.
    [17]S. Golowich and S. Ramachandran, "Impact of fiber design on polarization dependence in microbend gratings," Opt. Express,2005,13(18):6870-6877.
    [18]Y. Y. Shevchenko and J. Albert, "Plasmon resonances in gold-coated tilted fiber Bragg gratings," Opt. Lett.,2007,32(3):211-213.
    [19]Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, "Polarization-selective grating excitation of plasmons in cylindrical optical fibers," Opt. Lett.,2010,35(5):637-639.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700