导模共振亚波长器件的机理及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导模共振亚波长滤光器件因为具有极窄的带宽、极高的衍射效率和结构简单等优点,近年来受到了人们广泛的关注。利用导模共振效应,可以设计出性能卓越的光学滤波器,偏振分离器等光学器件,促进光通信以及相关光学领域的发展。本论文利用亚波长光栅导模共振效应,对具备滤光和高反特性的导模共振亚波长滤光器件从理论设计、实验制备以及应用三个方面进行了研究,基于全息工艺制备了共振波长在693nm的可见光波段的导模共振滤光器件,设计了几种可调谐导模共振滤光器件,并分析讨论了导模共振器件的应用前景。
     本文首先介绍了严格的矢量衍射理论,并阐述了利用耦合波方法分析处理不同偏振入射时的矩形槽光栅的衍射问题的一般过程。基于亚波长光栅结构的导模共振异常现象,分析了不同的结构参数对导模共振滤光器件光学特性的影响,通过调节这些结构参数可以设计出具有理想滤光特性曲线的导模共振滤光器件的结构。研究了光栅结构之下的薄膜层对亚波长光栅导模共振滤光器件的光谱特性的调控现象,并利用这种调控作用进行了两种创新方法和技术的研究:(1)在设计亚波长导模共振滤光器件的结构方面,通过调整光栅层结构之下的薄膜层厚度来达到不改变导模共振滤光片的光学特性的前提下减小光栅层槽深的设计要求,可以解决所设计光栅槽深过深带来制备工艺的困难,从而达到降低导模共振滤光片的制备难度的目的;(2)在制备亚波长导模共振滤光器件方面,分析了亚波长光栅结构的双层导模共振滤光片制备过程中由于对光栅层的过刻蚀现象造成的制备误差从而导致导模共振滤光片光谱漂移的现象。提出了通过对制备后期的滤光片镀上一定厚度和折射率的薄膜层可以修正由于周期和光栅槽深的制备误差而引起的光谱漂移现象,从而降低了亚波长导模共振滤光片对光栅周期和槽深制备精度的要求,降低了导模共振滤光片结构的制备难度,提高了样品制备的成品率。
     针对导模共振光学元件在光通信、防伪以及可调谐激光器等领域的应用,基于严格的耦合波理论,研究了几种具有窄带高反射功能的可调谐导模共振滤光器件。介绍了利用方位角对导模共振滤光片的控制作用,提出了利用方位角的变化实现可调谐导模共振滤光片结构的设计方法。结合聚合物分散液晶的电光特性设计了电控聚合物分散液晶折射率的可调谐导模共振滤光器件,实现了共振波长从672.4nm变化到698.4nm,可调谐共振波长最大调谐范围可达到26nm。此外,首次提出了光谱能量调谐导模共振滤光器件的概念及其设计方法,通过特定结构及利用方位角的改变可以实现导模共振的光谱能量在两个特定波长通道的调谐,这在光生物学精确定量的研究方面有着潜在的应用价值。提出利用导模共振光栅阵列再现彩色图像,通过结构相同仅周期不同微结构将光分解成所需要的红、绿、蓝三色光充当三基色,以此表现图像,改变了传统的用彩色油墨实现图像的色彩的概念。由于导模共振光栅微结构的结构简单,高衍射效率和窄带的性质,易得到高纯度的单色光,对微结构进行排列分布处理即可得到彩色图像。初步仿真结果表明在TE偏振光入射下已能够较真实的还原原图像。这种彩色图像再现的方法节省资源、环保,还可以实现普通油墨无法印刷的光变效果,在印刷、真迹保存,光显示等行业具有巨大的潜在应用价值。
     根据严格的耦合波理论和导模共振滤光片的设计方法设计了2-18GHz微波波段的导模共振超材料结构,该材料在9.7GHz波段截止透射,在除此截止带之外的整个2-18GHz波段透射率超过90%。此外,利用氧化铪和氧化钽两种不同折射率材料设计了具有相同共振波长的双层亚波长导模共振滤光片的结构,基于亚波长全息光栅掩模制备理论及工艺基础研究了亚波长导模共振滤光片的制备流程和工艺,制备了共振波长为693nm的亚波长导模共振滤光片,对所制备的导模共振滤光片的滤光特性进行了测试并进行了误差分析。
Guided-mode resonance (GMR) filter is of great interest recently for itsoutstanding advantages such as narrowband of few nanometers, high efficiency, lowsidebands extended over a large spectral range, simple structures and so on. Opticaldevices such as of optical filters, polarization separators with superior performancescan be designed utilizing the guided-mode resonance effect, which can advance thedevelopment of optical communications and related optical areas. The design andexperimental result of GMR filters with the characteristics of filter and highreflectance are presented in this dissertation.Visible band guided-mode resonancefilter with the resonance wavelength at693nm is fabriciated which is based onholographic technique. Moreover, kinds of tunable guided-mode resonace filter arepresented. And the application prospect of guided-mode resonace filter is alsodiscussed.
     In this dissertation, the rigorous diffractive theory is presented firstly. A generaldiffraction analysis of rectangular grating with different polarizations is introducedby the method of the rigorous coupled-wave ananlysis (RCWA). Based on theresonance anomalous phenomenon occurred in the subwavelength waveguide grating,the effects on the filter characteristics with different structure parameters wasanalyzed which shows that the GMR filter with ideal filter characteristics can bedesigned by adjusting those parameters. It could be found that the thin-film layerunder the grating layer can be used to control the spectrum response curve of thedouble layer GMR filter with RCWA.The contoral could be used to reduce thefabraction difficulties at least in two aspects. First, we can adjust the thickness of thethin-film layer under the grating layer to decrease the depth of the grating groovewithout changing the filter characteristics during the design process. In this way, thefabraction difficulty which is arised by the deep groove grating can be solved.Furthermore, the deviation caused by overetching during the fabrication process willlead to the deviation of the resonant wavelength. To compensate this deviating, theway of covering one compensatory layer film with certain thickness and refractiveindex on the surface of the GMR filter is investigated. Simulation results show thatthe deviation is compensated perfectly by this way, which means that it can be usedto reduce requirements of precision to the grating period and the groove depth bycontrolling the thin-film layer under the grating laye during the fabrication process.
     As the applications of GMR devices in optical communications, security, tunablelaser and so on are widely concerned, several kinds of the tunable GMR filters withnarrow-bands and high-reflectances were presented based on the rigorouscoupled-wave theory. With the analysis of the variation azimuthal angles influence tothe GMR flter, a kind of tunable narrow band GMR filter designed by tuning theazimuthal angles is illustrated. Combined the electro-optical property of polymerdispersed liquid crystal (PDLC) with the GMR property, a kind of tunable GMRfilter based on PDLC is designed by electronically controlling the refractive index ofPDLC. The resonance wavelength can be tuned from672.4nm to698.4nm, whichachieved a tunable wavelength range of up to26nm. In addition, the concept anddesign of the spectrum energy tunable GMR filter is put forward for the first time.With a specific structure of GMR filter, the energy of the reflectance spectrum can betuned in the dual channels by tuning the azimuthal angles.The spectrum energytunable GMR filter can accurate control the energy of the reflectance spectrum whichmay have potential application in the biologica area. The paper utilizes the array toproduce colored images that changes the traditional color ink colored image concept.Those guided mode resonant gratings are fabricated with the same structure butdifferent period to filter light into the needed for red, green and blue that served asthe three primary colors to display images. Because of the excellent characteristics ofguided mode resonant grating such as simple structure, high diffraction efficiencyand narrowband, monochromatic light of the three primary colors with high puritycan be easily achieved. Colored image can be obtained by arranged and distributedthose microstructure gratings. Preliminary simulation results show that the originalimage can be reproduced realistic with the TE polarized incident light. Owing withthe advantages of resources saving, environmental protection,the method of coloredimage reproduction has the potential for industrial production and application inmany fields,such as the printing industry、authentic preservation and light display.
     GMR metamaterial structure with the resonance occuring during2and18GHzin the microwave band was given according to the RCWA and design method ofGMR filter. The transmission cut off in the9.7GHz, while the transmission farawayfrom the cut-off zone exceeding90%over the2and18GHz. In addition, thestructures of the double layer subwavelength GMR filter with the resonancesoccurring in the same resonance wavelength were designed by using different refractive index material of HfO2and Ta2O5. The fabrication processe andtechnology of the subwavelength visible band GMR filter with the resonancewavelngthe at693nm were investigated based on the fabrication process of thesubwavelength grating. The filter characteristics of the GMR filter was tested anderror analysis.
引文
1.于美文.光全息学及其应用,北京:北京理工大学出版社,1996.
    2. W. B. Veldkamp and T. J. McHugh. Binary optics. Scientific American,1992,266(5):92-97.
    3. J.Leger,M.Holz,G.Swanson,et al..Coherent laser beam addition: An applicationof binary optics technology. Lincoln Lab. J,1(2),1988:225-246
    4.金国藩,严瑛白,邬敏贤.二元光学,北京:国防工业出版社,1998.
    5. K.Knop. Diffraction gratings for color filtering in the zero diffraction order.Appl.Opt.,1978,17(22):3598-3603.
    6. M.Tang,Y Lin,and D.Zhao. Reflection filter with high reflectivity and narrowbandwidth. Appl. Opt.,1997,36(4),827-830.
    7. K.Yokomori. Dielectric surface-relief gratings with high diffraction efficiency.Appl.Opt.,1984,23(14),2303-2310.
    8. W.B.Veldkamp. laser beam profile shaping with interlaces binary diffraction grating.Appl.Opt.,1982,21(17),3209-3212.
    9.金国藩,谭峭峰,严瑛白,邬敏贤.二元光学在强激光波面整形中的应用.中国工程科学,2000,2(6),27-32.
    10.严瑛白,冯文毅,崔晓明,戴伦.微光学视网膜器件与光学子波图像纹理分割.仪器仪表学报,1996,17(1),114-117.
    11.祝绍箕,邹海兴,包学诚,郭厚林.衍射光栅,北京:机械工业出版社,1986.
    12. Hutley M C. Dirffaction Gratings. London:Academic Press,1982.
    13. T.K.Gaylord and M.G.Moharam. Analysis and applications of optical diffraction bygratings, Proc. IEEE,1985,73(5):894–937.
    14. J.W.Goodman, Introduction to Fourier optics,3ndEd., NewYork:Roberts andCompany Publishers,2005.
    15. D.Shin and R.Magnusson. Diffraction by surface-relief gratings with coniccross-sectional grating shapes, J. Opt.Soc.Am.A,1989,6(9),1249-1253.
    16. S.S.Wang and Magnusson. Guided-mode resonance in planar dielectric-layerdiffraction gratings, J. Opt.Soc.Am.A,1990,7(8):1470–1475.
    17. L H Cescato, E Gluch, Holographic quarter wave plates, Appl Opt,1990,29(22):3286–3290.
    18.伊德尔,严瑛白,谭峭峰等.亚波长光栅用于实现宽光谱消色散1/4波片的研究.中国激光,2003,30(5):405–408.
    19.杨李茗.小周期二元光学元件的矢量分析.光学学报,1999,19(1):106–112.
    20. Noponen E, Turunen J, Eigenmode method for electromagnetic synthesis ofdiffractive elements with three-dimensional profiles. J.O.S.A.(A),1994,11(9):2494–2502.
    21. D.Raguin, G.M.Morris, Antireflection structured surfaces for the infrared spectralregion, Appl Opt.,1993,32(7):1154–1167.
    22. P.S.Priambodo. Theoretical analysis, design, fabrication and characterization ofdielectric and nonlinear guided-mode resonance optical filters. Doctoraldissertation of the University of Texas at Arlington,2003.
    23.聂娅,亚波长光学元件的特性及应用研究,四川大学博士学位论文,2004.
    24. S.Tibuleac. Guided-mode resonance reflection and transmission filters in the opticaland microwave spectral ranges. Doctoral dissertation of the University of Texas atArlington,2001.
    25. D.Shin. Resonance properties of periodic waveguides and their applications.Doctoral dissertation of the University of Texas at Arlington,2001.
    26. S.M.Norton. Resonant grating structures: Theory, design and applications. Doctoraldissertation of the University of Rochester at NewYork,1997.
    27.桑田,导模共振光学元件研究,同济大学博士学位论文,2009.
    28. R.W.Wood. Remarkable spectrum from a diffraction grating.Philos.Mag.,1902,4,396-402.
    29. Lord Rayleigh. Note on the remarkable case of diffraction spectrum described byProf.Wood. Philos.Mag.,1907,14,60-65.
    30. W.L.Barnes, T.W.Preist, S.C.Kiton, et al.,Physical origin of photonic energy gaps inthe propagation of surface plasmons on grating. Phys.Rev.B.1996,54,6227-6244.
    31. A.Sharon, D.Rosenblatt,A.A.Friesem,et al., Light modulation with resonantgrating-waveguide structures.,Optical Letter,1996,21(19),1564-1566.
    32. S.Peng and G.M.Morris. Resonant scattering from two-dimensional gratings,J.Opt.Soc.Am.A,1996,13,993-1005.
    33. A.L.Fehrembach and A.S.entenac. Study of waveguide grating eigenmodes forunpolarized filtering applications. J.Opt.Soc.Am.A,2003,20(3),481-488.
    34. R.Magnusson and S.S.Wang, Transmission bandpass guided-modere sonancefilters, Appl.Op t.,1995,34,8106-8109
    35. D.K.Jacob, S.C.Dunn, and M.G.Moharam. Design considerations for narrow-banddielectric resonant grating reflection filters of finite length.J.Opt.Soc.Am.A,2000,17,1241-1249.
    36. S.Tibuleac,and R.Magnusson. Narrow-linewidth bandpass filters with diffractivethin-film layers. Optical Letters,2001,26(9):584-586.
    37. D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Thin-film optical filterswith diffrative elements and waveguides,Opt.Eng.,1998,37,2634-2646
    38. S.S.Wang and R.Magnusson. Theory and applications of guided-mode resonancefilters. Appl.Opt.,1999,32,2603-2613.
    39. P.S.Priambodo, T.A.Maldonado and R.Magnusson. Fabrication and characterizationof high-quality waveguide-mode resonant optical filters. Appl.Phys.Lett.,2003,83,3248-3250.
    40. R.Magnusson and Y.Ding. MEMS tunable resonant leaky mode filters. IEEEPhoton.Technol.Lett.2006,18,1479-1481.
    41. R.C.Tyan,A.A.Salverkar,H.P.Chou,et al., Design, fabrication, and characterizationof form-birefringent multilayer polarizing beam splitter.J.Opt.Soc.Am.A,1997,14,1627-1636.
    42. A.L.Fehrembach and A.S.entenac. Unpolarized narrow-band filtering withresonant gratings. Appl.Phys.Lett.,2005,86,121105.
    43. A.Mizuani,H.Kikuta, and K.Iwata. Numerical study on an asymmetric guided-moderesonant grating with a Kerr medium for optical switching. J.Opt.Soc.Am.A,2005,22,355-360.
    44. T.Katchalski, G.L.Yurista,A.Fresem,et al.,Light modulation with electro-opticpolymer-based resonant grating waveguide structures. Opt.Express,2005,13,4645-4650.
    45. M. L. Wu, C.L.Hsu, H. C. Lan, et al.. Authentication labels based on guided-moderesonant filters. Opt. Lett.2007,32,1614-1616.
    46. Bo Lin, Peter Li, Brian T. Cunningham, A label-free biosensor-based cellattachment assay for characterization of cell surface molecules, Sensors andActuators B114,559–564(2006)
    47. A.Hessel, A. Oliner. A New Theory of Wood's Anomalies on Optical Gratings. Appl.Opt.,1965,4(10):1275-1299.
    48. A.Golubenko, A.S.Svakhin,V.A.Sychugov, et al.. Total reflection of light from acorrugated surface of a dielectric waveguide. SOV.J.Quantum Electron,1985,15,886-887.
    49. E.Popov, L.Mashev, and D.Maystre. Theoretical study of the anomalies of coateddielectric gratings. Opt.Acta.,1986,33,607-619.
    50. R.Magnusson and S.S.Wang. New principle for optical filters. Appl.Phys.Lett.,1992,61(9),1022-1024.
    51. S.S.Wang and R.Magnusson. Multilayer waveguide-grating filters. Appl.Opt.,1995,34(14):2414-2420.
    52.周传宏,王磊,聂娅等.介质光栅导模共振耦合波分析.物理学报,2002,51(1):68-73.
    53. Sharon A, Rosenblatt D, Friesem A. Resonant grating-waveguide structure forvisible and near infrared radiation. Opt. Soc. Am. A,14(11):2895-2993.1997.
    54.秦涛,石建平,陈旭南.亚波长波导光栅导模共振研究.光电工程.2004,31(2):25-27.
    55.傅克祥,王植恒,张大跃.大深度任意剖面形状光栅的模式理论和RTCM递推算法.中国科学A.1999,29(4):356—365.
    56. S.S.Wang and R.Magnusson, Design of waveguide-grating filters with symmetricalline shapes and low sidebands, Optics Letters,1994.19(12):919-921.
    57. S.T.Thurman, G. Michael Morris.Controlling the spectral response in guided-moderesonance filter design. Appl. Opt.,2003,42(16):3225-3233.
    58. Y. Ding and R. Magnusson, Doubly resonant single-layer bandpass optical filters,Optical Letters,2004,29(10):1135-1137.
    59. Z.S.Wang,T.Sang,J.T.Zhu,et al., Double-layer resonant Brewster filters consistingof a homogeneous layer and a grating with equal refractive index.Appl.Phys.Lett.,2006,89,241119.
    60. Z.S.Wang, T.Sang, L.Wang, J.T.Zhu, Y.G.Wu, and L.Y.Chen,“A guided-moderesonance Brewster filters with multiple channels,” Appl.Phys.Lett.,2006,88,251115.
    61. G. Niederer, H. P. Herzig, J. Shamir et al.., Tunable, oblique incidence resonantgrating filter for telecommunications. Appl. Opt.,2004,43(8):1683~1694.
    62. N. Dudovich, G. Levy-Yurista, A. Sharon, et al..Active semiconductor-based gratingwaveguide structures. IEEE J. Quantum Electron.,2001,37(8):1030-1039.
    63. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, High-efficiencyguided-mode resonance filter, Optics Letters,1998,23(19):1556-1558.
    64. L.Mashev and E.Poppov, Zero order anomaly of dielectric coated grating.Opt.Commun.,1985,55,377-380.
    65. A.Avrutsky and V.A.Sychugov, Reflection of a Beam of Finite Size from aCorrugated Waveguide. J.Mod.Opt.,1989,36,1527-1539.
    66. M.T.Gale,K.Knop,and R.H.Morf,Zero-order diffractive microstructures for securityapplications.1990,Proc.SPIE,1210,83-89.
    67. P. S. Priambodo and T. A. Maldonado, Fabrication and characterization ofhigh-quality waveguide-mode resonant optical filters, Appl.Phys.Lett.2003.83,3248-3250.
    68. Denis W.Dobbs, Irena Gershkovich and Brian T. Cuningham, Fabrication of agraded-wavelength guided-mode resonance filter photonic crystal, Appl.Phys.Lett.2006,89,123113.
    69. K. J. Lee and R. Magnusson, Guided-mode resonance filters fabricated in UVcurable polymers,FiO/LS, Conf.,2007,JWC38.
    70. V.V.Meriakri, I.P.Nikitin and M.P.Parkhomenko. Frequency characteristics ofmental-dielectric gratings. Radiotekhnika I Elektronika.1992,37,604-611.
    71. R.Magnusson, S.S.Wang, T.D.Black,et al.,Resonance properties of dielectricgratings:Theory and experiments at4~18GHz. IEEE Tran.Antennas Propagat.1994,42,567-569.
    72. A.Sharon, D.Rosenblatt, A.A.Friesem.Resonant grating-waveguide structure forvisible and near infrared radiation. J.Opt.Soc.Am.A,1997,14,2896-2993.
    73. Fuchyi Yang, Gary Yen, and Brian T. Cunningham, Voltage-tuned resonantreflectance optical filter for visible wavelengths fabricated by nanoreplicamolding.Applied physics letters,2007,90:261109.
    74. Fuchyi Yang, Gary Yen, Gilles Rasigade et al.., Optically tuned resonant opticalreflectance filter. Applied physics letters,2008,92:091115-1~091115-3.
    75. D.Wawro, S.Tibuleac, R.Magnusson,et al.,Optical fiber endface biosensor based onresonances in dielectric waveguide gratings. Proc.SPIE,2000,3911,86-94.
    76. M.波恩,E.沃尔夫著,杨霞荪.光学原理,北京:电子工业出版社,2006.
    77. J.M.顾德门,傅里叶光学导论,北京:科学出版社,1976.
    78.刘全,吴建宏,光栅的标量衍射理论与耦合波理论的分析比较,激光杂志,2004,25(2)31–34.
    79.江天府,文军,位相光栅的矢量和标量衍射理论的分析比较,广西师范大学学报,2001,19(3)15–18.
    80.陈德伟,李永平,衍射光学元件分析和设计中标量理论的局限性,光电工程,2004,31(6)9–13.
    81. M.Nevicre and E.Popov, electromagnetic theory of gratings: review and potentialapplications, SPIE,1998, Vol3450,2-10.
    82. L.Rayleigh.On the dynamieal theory of gratings. Proc.Roy.Soc.1907,A79:399–416
    83. Cescato L H, Gluch E, Streibl N. Holographic quart wave plates. Appl.Opt.,1990,29(22):3286–3290.
    84. Gramm E B, Moharam M G, Pommet D A. Artificial uniaxial and biaxial dielectricswith use of two-dimens subwavelength binary gratings. J.Opt.Soc.Am.(A),1994,11(10):2695–2703.
    85. Haidner H, Kipfer P, Stork W et al., Zero-order gratings used as an distributed indexmedium. Optik,1992,89(3):107–112.
    86. D.Maystre, A new general integral theory for dielectric coated gratings, J.Opt.Soc.Am,1978,27(2),189–194.
    87. Cerutti-Maori, Petit.R and M.Cadilhac, Systematic study of resonances ofholographic thin film couples, Opt.Comm.,1973,9(1),48–53.
    88. Ricardo A.Depine, Improvement of a differential method for metallic diffractiongratings by means of an integral method, Journal of Modem Optics,1987,34(9),1135–1139.
    89. R.Petit, electromagnetic grating theories: limitations and successes. Nouv.Rev.Opt.,1975,3,129-135.
    90. K.A.Zaki, A.R.Neureuther. Scattering form a perfectly conducting surface with asinusoidal height profile: TE polarization. IEEE Trans. Antennas Propagat.1971,Ap-19,747-751.
    91. R.F.Millar, On the Rayleigh assumption in scattering by a periodic surface,Pro.Camb.Philos.Soc,1969, Vol69,773-791.
    92. Yoshitate Takakura, Rigorous integral approach to the problem of scatting for amodulated periodic medium obtained through conformal mapping, J.Opt.Soc.Am.A.1996,12(6),1283-1289.
    93. Bernd H. Kleemann, Andreas Mitreiter and Frank Wyrowski, Integral equationmethod with parametrization of grating profile theory and experiments, Journal ofModern Optics,1996,43(7),1323-1349
    94. M.H.Eghlidi, K.Mehrany, and Bizhan Rashidian. Modified differential transfermatrix method for solution of one-dimensional linear inhomogeneous opticalstructures. J.Opt.Soc.Am. B.2005,22,1521-1528.
    95. M.Chamanzar, K.Mehrany, B.Rashidian. Three-dimensional diffraction annlysis ofphase and amplitude grating based on legendre expansion of electromagnetic fields.Proc. Of SPIE,2005,5971,50712P1-5971P8.
    96.王鹏,蚀刻光栅的矢量耦合波分析与菲涅尔衍射理论,中国科学院上海光学精密机械研究所博士学位论文,1999.
    97. T.Tamir, H.C.Wang and A.A.Oliner. Wave propagation in sinusoidally stratifieddielectric media. IEEE Trans. Microwave theory Tech.1964, MTT-12,323-335.
    98. C.B.Burckhardt. Diffraction of a plane wave at a sinusoidally stratified dielectricgrating. J. Opt. Soc. Am.1966.56,1502–1509.
    99. S.T.Peng, T.Tamir and H.L.Bertoni. Theory of period dielectric waveguides. IEEETrans. Microwave theory Tech.1975, MTT-23,123-133.
    100.R.S.Chu and J.A.Kong.Modal theory of spatially periodic media. IEEE Trans.Microwave theory Tech.1977, MTT-25,18-24.
    101.K.Knop. Rigorous diffraction theory for transmission phase gratings with deeprectangular grooves. J. Opt. Soc. Am.1978,68,1206–1210.
    102.M. G. Moharam and T. K. Gaylord, Rigorous coupled–wave analysis ofplanar–grating diffraction, J. Opt. Soc. Am.1981.71,811–818.
    103.M. G. Moharam and T. K. Gaylord, Diffraction analysis of dielectric surface–reliefgratings, J. Opt. Soc. Am.1982,72,1385–1392.
    104.M. G. Moharam and T. K. Gaylord, Rigorous coupled–wave analysis of planargrating dffraction—E–mode polarization and losses, J. Opt. Soc. Am.1983,73,451–455.
    105.M. G. Moharam and T. K. Gaylord, Rigorous coupled–wave analysis of metallicsurface–relief gratings, J. Opt. Soc. Am. A,1986,3,1780–1796.
    106.W. E. Baird, M. G. Moharam, and T. K. Gaylord, Diffraction characteristics ofplanar absorption gratings, Appl. Phys. B,198332,15–20.
    107.M. G. Moharam, Coupled–wave analysis of two–dimensional gratings, inHolographic Optics: Design and Applications, I. Cindrich, ed., Proc. Soc.Photo–Opt. Instrum. Eng.1988,883,8–11.
    108.T.K.Gaylord and M.G.Moharam. Analysis and application of optical diffraction bygrating. Proc.IEEE,1985,73,894-937.
    109.E. N. Glytsis and T. K. Gaylord, Rigorous three–dimensional coupled–wavediffraction analysis of single and cascaded anisotropic gratings, J. Opt. Soc. Am.A.,1987,4,2061–2080.
    110.M.G.Moharam and T.K.Gaylord, Three–dimensional vector coupled–wave analysisof planar grating diffraction, J. Opt. Soc. Am.1983,73,1105–1112.
    111.M.G.Moharam, E.B.Grann, D.A.Pommet and T.K.Gaylord, Formulation for stableand efficient implementation of the rigorous coupled-wave analysis of binarygrating. J. Opt. Soc. Am.1995,12,1068–1076.
    112.A.D.Bucchianico, R.M.Mattheij and M.A.Peletier. A more efficient rigorouscoupled-wave analysis algorithm. Mathematics in Industry,2006,8,164-168.
    113.N.Cahteau and J-P.Hugonin, Algortbm for the rigorous coupled-wave analysis ofgrating diffraction, J.Opt.Soc.Am A,1994,11(4),1321-1331.
    114.S.Peng and G.Michael Morris, Efficient implementation of rigorous coupled-waveanalysis for surface-relief gratings, J.Opt.Soc-Am A,1995,12(5),1087-1096.
    115.G A Golubenko, A S Svakhin, V A Sychugov, et al.. Total reflection of light from acorrugated surface of a dielectric waveguide. Sov.J.Quantum Electron,1985,15(7):886-887.
    116.D.Rosenblatt, A Sharon, and A.A.Friesem. Resonant grating waveguide structures.IEEE Jouranl of Quantum Electronics.1997,33,2038-2059.
    117.P.Lalanne, J.P.Hugonin. High-order effective medium theory of subwavelengthgratings in classical mounting: application to volume holograms.J.Opt.Soc.Am.A,1998,15,1843-1851
    118.S.S.Wang and R.Magnusson. Multilayer waveguide-grating filters. Appl.Opt.,1995,34,2414-2420.
    119.曹庄琪,导波光学,北京:科学出版社,2007.
    120.Dennis W. Dobbs, Irena Gershkovich, and Brian T. Cunningham,Fabrication of agraded-wavelength guided-mode resonance filter photonic crystal,Applied PhysicsLetters,2006,89,123113.
    121.Ian D. Block, Leo L. Chan, Brian T. Cunningham, Photonic crystal opticalbiosensor incorporating structured low-index porous dielectric, Sensors andActuators B2006,120,187–193.
    122.Samuel T. Thurman, G. Michael Morris,“Controlling the spectral response inguided-mode resonance filter design,”Appl. Opt.,42(16):3225-3233(2003)
    123.Zhanshan Wang, Tian Sang, Jingtao Zhu, Li Wang, Yonggang Wu, and LingyanChen, A double-layer resonant Brewster filters consisting of a homogeneous layerand a grating with equal refractive index, Applied Physics Letters,89:241119(2006)
    124.Tianyu Sun, Jiangyong Ma, Jianpeng Wang, et al.. Electric field distribution inresonant reflection filters under normal incidence. J.Opt.A:Pure App.Opt.,2008,10,125003(5pp)
    125.Chaoyang Wei, Shijie Liu, Degang Deng,et al.. Electric field enhancement inguided-mode resonance fitlers. Optics Letters,2006,31(9),1223-1225.
    126.R. Gamble, P.H. Lissberger, Reflection filter multilayers of metallic and dielectricthin films. Appl. Opt.,1989,28(14):2838-2846.
    127.T. Augustsson, Proposal of a DMUX with a Fabry–Perot All-ReflectionFilter-Based MMIMI Configuration. IEEE Photonics Technol. Lett.,2001,13(3):215-217.
    128.M.Q. Tan, Y.C. Lin, D.Z. Zhao, Reflection filter with high reflectivity and narrowbandwidth.Appl. Opt.,1997,36(4):827-830.
    129.Z. LI, P. Desai, R. Akins, G. Ventouris et al.., Electrically Tunable Color forFull-Color Reflective Displays. Proc. SPIE,2002,4658.
    130.Dawei Zhang, Limeng Yuan, Jiabi Chen et al.., Design of guided mode resonant filters for authentication applications through azimuthal angles varying. ChineseOptics Letters,2008,6(10):776-778
    131.A.S.P.Chang, H.Tan, S.Bai, et al.. Tunable external cavity laser with a liquid-crystalsubwavelength resonant grating filter as wavelength-selective mirror. IEEEPhotonics technology letters,2007,19(14):1099-1101.
    132.R. Magnusson and Y. Ding, MEMS tunable resonant leaky mode filters. IEEEPhoton. Technol. Lett.,2006,18(14):1479-1481.
    133.G. Niederer, H. P. Herzig, J. Shamir et al.., Tunable, oblique incidence resonantgrating filter for telecommunications. Appl. Opt.,2004,43(8):1683-1694.
    134.N. Dudovich, G. Levy-Yurista, A. Sharon, et al.., Active semiconductor-basedgrating waveguide structures. IEEE J. Quantum Electron.,2001,37(8):1030-1039.
    135.A.S.P.Chang, K.J.Morton,H.Tan,et al.. Tunable liquid crystal resonant grating filterfabricated by nanoimprint lithography. IEEE Photonics technologyletters,2007,19(19):1457-1459.
    136.Fuchyi Yang, Gary Yen, and Brian T. Cunningham, Voltage-tuned resonantreflectance optical filter for visible wavelengths fabricated by nanoreplicamolding.Applied physics letters,2007,90:2611093.
    137.Fuchyi Yang, Gary Yen, Gilles Rasigade et al..,Optically tuned resonant opticalreflectance filter. Applied physics letters,2008,92:091115.
    138.Polina G. Lisinetskaya, Alexander A,et al.. Polarization properties ofpolymer-dispersed liquid-crystal film with small nematic droplets, Appl. Opt.,2009,48(17):3144-3153.
    139.H.W.Ren, J.R.Wu, Y.H.Fan,et al.. Hermaphroditic liquid-crystal microlens. OpticalLetters,2005,30(4):376-378.
    140.H.Kikuchi, M.Yokota, Y.Hisakado,et al..Polymer-stabilized liquid crystal bluephases.Nature materials,2002,1,64-68.
    141.E.Scherschener, C.D.Pweciante, E.A.Dalchiele,et al..Polymer-dispersedliquid-crystal voltage sensor, Appl. Opt.,2006,45(15):3482-3488.
    142.B.G.Wu, J.H.Erdman, and J.W.Doane. Response times and voltages for PDLCshutters. Liq. Cryst.1989,5,1453-1465.
    143.P.S.Drzaic and A.M.Gonzales, Refractive index gradients and light scattering inpolymer-dispersed liquid crystal films, Appl. Phys. Lett.,1993,62,1332-1334.
    144.L. McKenna, L.S.Miller, and I.R.Peterson, Polymer dispersed liquid crystal filmsfor modulating infra-red radiation, Polymer,2004,45,6977-6984.
    145.S. Zumer, A. Golemme, and J.W. Doane, Light extinction in a dispersion of smallnematic droplets, J. Opt. Soc. Am. A,1989,6,403–411.
    146.P. J.W. Hands, A. K. Kirby, and G. D. Love, Phase modulation withpolymer-dispersed liquid crystals, Proc. SPIE,2005,5894,193–200.
    147.S. Matsumoto, M. Houlbert, T. Hayashi, et al., Fine droplets of liquid crystals in atransparent polymer and their response to an electric field, Appl. Phys. Lett.,1996,69,1044-1046.
    148.V.A.Loiko, A.V.Konkolovich, and P.G..Maksimenko, Polarization and phase of lighttransmitted through polymerdispersed liquid crystal film,” J. Soc. Inf. Disp.,2006,14,595-601.
    149.H.W.Ren, Y.H.Fan, and S.T.Wu, Tunable Fresnel lens using nanoscalepolymer-dispersed liquid crystals, Appl. Phys.Lett.,2003,83,1515-1517.
    150.V. A. Loiko and A. V. Konkolovich,“Focusing of light by polymer-dispersedliquid-crystal films with nanosized droplets, JETP.,2006,103,935-943.
    151.H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, Tunable-focus microlens arrays usingnanosized polymer-dispersed liquid crystal droplets, Opt. Commun.,2005,247,101-106.
    152.S. Gottardo, S. Cavalieri, O. V. Yaroshchuk, et al.. Quasi-two-dimensional diffusiverandom laser action, Phys. Rev. Lett.,2004,93,263901.
    153.J.B.Pendry, D.Schurig, and D.R.Smith.Controlling electromagnetic fields.Science,2006(312):1780-1782.
    154. D.Schurig, J.J.Mock, B.J.Justice. et a1.Metamaterial electromagnetic cloak atmicrowave frequencies,Science,2006,314(5801):977-980.
    155.N.I.Landy, S.Sajuyigbe, J.J.Mock,el a1.Perfect metamaterial absorber.PhysicalReview Letters.2008(100)207402.
    156.Jason Valentine, Shuang Zhang, Thomas Zentgraf.et al. Three-dimensional opticalmetamaterial with a negative refractive index [J].Nature,2008(455):376-379.
    157.R.A.Shelby, D.R.Smith and S.Schultz. Experimental verifications of a negativeindex of refraction.Science2001(292):77-79.
    158.R.Ruppin. Surface polariton of a left-handed medium.Physics LettersA.2000,11(1):61-64.
    159.R.Ruppin. Electromagnetic energy density in a dispersive and absorptivematerial.Physics Letters A.2002,299(1-3):309-312.
    160.R.Ruppin. Intensity distribution inside scatters with negative-real permittivity andpermeability.Microwave and Optical Technology Letters.2003,36(3):150-154.
    161.A lexander A.Zharov, Ilya V.Shadrivov and YuriS. Kivshar. Nonlinear Properties ofLeft handed Metamaterials.Phys.Rev.Lett.2003,91,037401:1-4.
    162.D.R.Smith, S.Schultz, P.Markos and C.M.Soukoulis. Determination of effectivepermittivity and permeability of metamaterials from reflection and transmissioncoefficients.Phys.Rev.B,2002,65,195104:1-5.
    163.C.D.Moss, T.M.Grzegorczyk, Y.zhang,and J.A.Kong. Numerical Studies of LeftHanded Metamaterials.Progress in Electromagnetics Research.2002,35:315-334.
    164.H.Mosallaei and Y.Rahmat-Samii. Composite materials with negative permittivityand permeability properties:concept, analysis, and characterization.IEEE A PInt.Symposium.2001,4:378-381.
    165.T.Weiland, R.Schuhmann, R.B.Greegor,et al. Ab initio numerical simulation ofleft-handed metamaterials:Comparison of calculation and experiments.Journal ofApplied Physics.2001,90(10):5419-5424.
    166.Philippe Gay-Balmaz and Olivier J. F. Martin. Electromagnetic Resonances inindividual and coupled split-ring resonators.Journal of Applied Physics.2002,92(5):2929-2936.
    167.P.Markos and C.M.Soukoulis. Numerical studies of left-handed materials and splitring resonators.Phys.Rev.E.2002,65,036622:1-8.
    168.P.Markos and C.M.Soukoulis.Transmission studies of left-handed materials.Phys.Rev B,2002,65,033401:1-4.
    169.R.W.Ziolkowski. Design, fabrication and testing of double Negativemetamaterials.IEEE Transactions on Antennas and Propagation,2003,51(7):1516-1529.
    170.F.J. Rachford, D.L.Smith, P.F.Loschialpo, et al. Calculations and measurements ofwire and/or split-ring negative index media.Physical Review E.2002,66,036613:1-5.
    171.Juan D.Baena, Ricardo Marques, et al. Artificial magnetic metamaterial design byusing spiral resonators.Phys Rev B.2004,69,014402:1-5.
    172.C.R.Simovski, B.Sauviac. Toward creating isotropic microwave composites withnegative refraction.Radio Science,2004,39,2014.
    173.Anthony Grbic, George V.Eleftheriades. Experimental verification ofbackward-wave radiation from a negative refractive index metamaterial.Journal ofApplied P hysics,2002,92(10):5930-5935.
    174.Anthony Grbic,George V. Eleftheriades. Growing evanescent waves innegative-refractive-index transmission-line media.Applied Physics Letters,2003,82(12):1815-1817.
    175.Qiang Cheng, Ruopeng Liu, Da Huang, Tie Jun Cui and David R. Smith. Circuitimplementation of electromagnetic tunneling effect by zero permittivitymaterials. Appl. Phys. Lett.,2007,(91)234105.
    176.Ruopeng Liu, Tie Jun Cui, Da Huang, et al. Description and explanation ofelectromagnetic metamaterials based on effective medium theory.PhysicalReiview E,2007,(76)026606.
    177.Xiaohe Zhang, Huanyang Chen, Xudong Luo, Hongru Ma. Transformation mediathat turn a narrow slit into a large window. Optical Express,2008,16(16):11764-11768.
    178.Huanyang Chen, Xudong Luo, Hongru Ma.The Anti-Cloak. Optical Express,2006(14):1557-1567.
    179.Hongsheng Chen, Jingjing Zhang, Yang Bai. Experimental retrieval of the effectiveparameters of metamaterials based on a waveguide method. Optical Express,2006,14(26):12944-12949.
    180.Yi Yang, Guo Ping Wang, et al. metal nanoparticales-embedded three-dimensionalmicrostructures created by single-beam holography.Applied physics letters.2005,(86),173108.
    181.Ji Zhou, C.Q.Sun, K.Pita. et al.. Thermally tuning of photonic band gap of SiO2colloid crystal infilled with ferroelectric BaTio3.Applied physics letters.2001,(78),661-663.
    182.黄俊,武哲,向锦武,朱荣昌.Assessment of aircraft combat subvivability enhancedby combined radar stealth and onboard electronic attack.南京航空航天大学学报(英文版),2000,(2):150-156.
    183.Liwei Zhang, Yewen Zhang, Hong Chen. et al.. Experimental study of photoniccrystals consisting of epsilon-negative and mu-negative materials. PhysicalReview E,2006(74),056615.
    184.Youzhen Wang, Yewen Zhang, Hong Chen et al. Direct observation of negativephase velocity and positive group velocity in time-domain for compositeright/left-handed transmission lines.Applied Physics,2006,(100)113503.
    185.Tao Geng Tingyu Liu, and Songlin Zhuang. All angle negative refraction with theeffective phase index of-1.Chinese optical letters,2007,5(6)361-363.
    186.唐晋发,顾培夫,刘旭,李海峰,现代光学薄膜技术,浙江:浙江大学出版社,2006.
    187.万华,多层介质膜光栅掩模槽形的控制与检测,苏州大学硕士论文,2005
    188.陈刚,吴建宏,刘全,全息光栅光刻胶掩模槽形演化及其规律研究,光学技术,2008(1)
    189.Zanke C, Gombert A,et al.. Fine-tuned profile simulation of hologaphically exposedphotoresist gratings. Optics Communications,1998,154:109-118.
    190.C. W. Mason. Structural colors in insects I [J]. J. Phys. Chem.,1926,30(3):383-395
    191.C. W. Mason. Structural colors in insects II [J]. J. Phys. Chem.,1927,31(3):321-354
    192.R. B. Morris. Iridescence from diffraction structures in the wing scales ofCallophrys rubi, the green hairstreak[J]. J. Entomol. Ser. A,1975,49(2):149-154
    193.J. Huxley. The coloration of Papilio zalmoxis and P. antimachus and the discoveryof Tyndall blue in butterflies[J]. Proc. R. Soc. London Ser. B,1976,193(1113):441-453
    194.H. Ghiradella. Light and color on the wing: structural colors in butterflies andmoths[J]. Appl. Opt.,1991,30(24):3492-3500
    195.P. Vukusic, J. R. Sambles, C. R. Lawrence and R. J. Wootton. Quantified inter-ference and diffraction in single Morpho butterfly scales[J]. Proceedings:Biological Sciences, The Royal Society of London,1999,266:1403-1411
    196.Haruna Tada, Seth E. Mann, Ioannis N. Miaoulis, and Peter Y. Wong. Effects of abutterfly scale microstructure on the iridescent color observed at different angles[J].Opt. Express,1999,5(4):87-92
    197.Boris Gralak, Gérard Tayeb and Stefan Enoch. Morpho butterflies wings colormodeled with lamellar grating theory[J]. Opt. Express,2001,9(11):567-578
    198.A. Y. Vorobyev, Chunlei Guo. Colorizing metals with femtosecond laser pulses[J].Appl. Phys. Lett.,2008,92(4):041914
    199.B Dusser, S Sagan, H Soder et al.. Controlled nanostructrures formation by ultrafast laser pulses for color marking[J]. Opt. Express,2010,18(3):2913-2924
    200.Hans Lochbihler. Colored images generated by metallic sub-wavelength gratings[J].Opt. Express,2009,17(14):12189-12196
    201.Hans Lochbihler. Color Filtering by Trilayer Subwavelength gratings[J]. LatinAmerica Optics and Photonics Conference,2010, WD4
    202.R. Magnusson, S. S. Wang. New principle for optical filters[J]. Appl. Phys. Lett.,1992,61(9):1022-1024
    203.Z S Liu, S. Tibuleac, D. Shin, PP Young, and R. Magnusson. High-efficiencyguided-mode resonance filter[J]. Opt. Lett.,1998,23(19):1556-1558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700