基于1.7微米波长区域的单片集成扫频光学相干层析成像系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Towards a Monolithically Integrated Swept-source Optical Coherence Tomography System in1.7μm Wayelength Region
  • 作者:焦雨清
  • 论文级别:博士
  • 学科专业名称:光学工程
  • 学位年度:2013
  • 导师:何赛灵 ; 戴道锌
  • 学科代码:0803
  • 学位授予单位:浙江大学
  • 论文提交日期:2013-07-02
  • 答辩委员会主席:何建军
摘要
在各种光学相干层析成像系统的研究方向中,基于1.6至1.8微米波长范围的扫频光学相干层析成像系统在集成性、高性能以及低成本等方面都具有很大的优势。本文研究的集成光电子器件就是着眼于这种长波长扫频光学相干层析成像系统的应用。本工作首先采用1.7微米附近的波长范围,与之前常用的较短波长相比,此长波段能减少光在生物组织中的瑞利散射,从而可以改进成像深度。本研究工作也采用了成熟的基于磷化铟半导体材料的光电子集成技术,从而使得1.6至1.8微米波长范围的扫频光学相干层析成像系统的单片集成化成为可能。
     首先,要实现产生和探测这种新颖的长波长波段的光,需要新型有源材料的研究与应用作为支持。新型的有源材料必须能在1.7微米附近的波长范围内提供足够的光增益或光吸收。尤其是扫频光学相干层析成像系统,为了达到成像深度方向上足够的成像分辨率,需要可调谐激光器的调谐范围与光探测器的光谱响应都至少达到100纳米以上。与此同时,实时成像的应用需求则对可调谐激光器扫描整个调谐光谱范围的重复速率、以及与可调谐激光器配套工作的光探测器的响应带宽都提出了一定的要求。
     一种基于五层堆叠量子点有源材料的可调谐激光器已经在之前得到了一定的研究。本文首先将此激光器用于自由空间光学层析成像平台,并在玻璃板和Scotch(?)半透明胶带上进行一些验证性的成像实验,成像实验结果较为成功。在成像实验过程中,也发现一些针对量子点可调谐激光器和商用光探测器性能方面的问题。对于激光器而言,问题主要在光功率、调谐范围与调谐速度上。而对于商用光探测器,性能局限性主要是噪声水平、响应度和响应带宽。这些问题的发现给本文之后的研究工作提供了直接的参考和推动。
     在光学相干层析成像实验中,还对激光器谐振腔中采用的可调谐滤波器的校准流程进行了一些优化,并通过实验验证其对激光器性能的改进。
     本文接着研究了具有更高光增益的不同有源材料对激光器性能的影响。制作并测试了基于四层堆叠应变量子阱有源材料的可调谐激光器,并与五层堆叠的量子点激光器作比较。此量子阱激光器的波导设计与量子点激光器完全相同,所用的半导体层堆栈结构也互相兼容。量子阱激光器的测试结果显示,在注入电流密度为1875A/cm2时,基于量子阱的光放大器能提供约19cm-1的模式增益,这个数值远远高于量子点光放大器在3000A/cm2电流密度下所得到的6cm。由于量子阱的高增益,测得量子阱激光器的阈值电流为500毫安,远低于量子点激光器的1500毫安。量子阱激光器在两个激光波长间切换所需的时间为140纳秒,而量子点激光器的波长切换时间为500纳秒。测得的140纳秒切换时间已经接近控制电路的实际极限。另一方面,量子阱激光器的波长调谐范围仅有10纳米,与量子点激光器之前实现的60纳米相比,主要原因是由于量子阱增益材料相对较窄的增益带宽。这一系列工作直观地反映了有源材料的特性对于可调谐激光器性能的影响。
     本文接着提出了一种量子点可调谐激光器的改进方案,并加以制作和测试。方案的改进主要集中在激光器的设计布局上以增加输出光功率、改进光反馈机制以增强环形激光器的单向性、设计一个新的16臂的多模干涉树状滤波器以增加调谐范围等,并用一个分段式环形激光器模型来仿真和分析此激光器的改进方案所能增加的调谐范围。同时,也通过实验验证了新的多模干涉树状滤波器的通带半高全宽为11至12.5纳米,波长调谐范围至少为60纳米。制作的激光器无法成功地产生激光,主要原因是由于晶片生长的质量原因导致量子点光放大器的低模式增益和无源波导中的高传输损耗。
     本文接下来的部分是关于量子点波导型光探测器、以及将其用于光学相干层析成像系统可行性的研究。此光探测器采用与第2章中研究的量子点可调谐激光器一样的五层堆叠量子点有源材料。这种量子点能吸收1.7微米附近波长范围的光。此光探测器的半导体层堆栈结构和波导结构都与量子点激光器采用的有源-无源混合集成技术完全兼容。因此它能与量子点激光器一起集成在同一个芯片上。对量子点光探测器的测试结果显示,对于280微米长的器件,施加3伏的反向偏置电压时,它具有低暗电流(约15纳安)、平坦光谱响应(整个300纳米的光谱范围内响应度都高于0.5A/W)以及足够的响应带宽(75兆赫)等特性。用修改过的速率方程模型来仿真量子点波导型光探测器的性能,并通过模型理解量子点吸收光的机理。还用等效电路模型来分析响应带宽的限制因子(主要是金属电极的电容)。
     本文的最后研究了一种在1.6至1.8微米波长范围具有高增益的单层砷化铟量子阱上砷化铟量子点结构的有源材料。与之前的3000A/cm2下仅有6cm-1模式增益的量子点放大器相比,采用这种有源材料的光放大器具有显著改进的模式增益(3000A/cm2下11cm-l)。对于长波长应用领域的量子点激光器或光探测器来说,这种量子点材料将是一种很好的选择。在测试过程中发现的当电流密度或温度变化时,增益谱峰值对应的波长漂移的现象,用一个改进的速率方程模型来解释。
     本文包含的整个研究工作展示了将用于扫频光学相干层析成像系统的可调谐激光器、光探测器和其他无源光器件集成在单个芯片上的可行性。基于1.7微米波长范围的单片集成扫频光学相干层析成像系统的发展在本文的研究工作中得到了充实与显著的进展。
The presented research work in this thesis focuses on the development of integrated photonic devices which are used in integrated swept-source optical coherence tomography (SS-OCT) system operating at the1.6to1.8μ m wavelength region. Since the Rayleigh scattering in biological tissue can be reduced by using longer wavelength compared to more commonly used regions at shorter wavelengths, the wavelength region around1.7μ m is chosen as the operating wavelength band. Thus an improvement in the imaging depth is expected by using this long wavelength. The use of indium phosphide (InP)-based photonic integration technology makes the monolithically integrated SS-OCT system in the1.6to1.8μ m wavelength region very possible and promising.
     In order to obtain light around1.7μ m, the research and analysis of novel active material which can offer light generation, amplification and absorption around this long wavelength is desired. The SS-OCT requires the tuning range for the tunable laser and spectral responsivity for the photodetector to be wide enough in order to achieve sufficient image resolution along the depth. The demand for real-time imaging also sets up the requirement on the repetition rate of the laser wavelength sweep over its entire tuning range as well as the electrical bandwidth of the photodetector to support the laser.
     In this thesis, a tunable laser based on five-layer quantum dot (QD) gain material was firstly used in a free-space OCT setup for demonstrative OCT imaging experiments on glass dish and Scotch" tape. Successful OCT images on glass dish and Scotch tape have been obtained. During the OCT imaging experiments, several issues have came up concerning the performance of the QD laser and the commercial photodetectors. The QD laser used in the experiments had problems with the optical power, tuning range and tuning speed. The commercial photodetectors also showed serious limitations in noise level, sensitivity and electrical bandwidth. These issues directly motivated the following work presented in this thesis. During these OCT imaging experiments several improvements on the calibration routine of the intra-cavity tunable filters in the laser have been proposed and experimentally demonstrated.
     Several approaches to the improvement of laser performance have been studied. First, the influence of a different gain material with higher modal gain value to the performance of the laser has been studied. A tunable laser with amplifiers based on four-layer strained quantum well (QW) active material has been characterized and compared to the five-layer QD laser. The layout of the QW laser was identical to that of the QD laser and was fabricated with a fully compatible layerstack. The measurement results have shown that the much higher modal gain in the QW amplifiers could significantly reduce the threshold current of the QW laser compared to the QD laser with much lower modal gain. The huge improvement on the wavelength switch time in the QW laser has also been demonstrated compared to the slow switch time in the five-layer QD laser. The measured tuning speed in the QW laser has already approached the limitation in the control electronics. On the other hand the tuning range of the QW laser was observed to be much narrower due to the relatively narrow gain bandwidth in the QW amplifiers compared to the five-layer QD laser. Overall this part of work has provided a clear idea of how the characteristics of the active material influence the performance of the tunable laser.
     Next, an improved design of the QD tunable laser has been proposed, fabricated and preliminarily characterized. The improvements include the redesign of the laser layout to increase the output power, the redesign of the optical feedback scheme to enhance unidirectional lasing and the improved new design of the MMI-tree filter to extend the tuning range. The improved tuning range of the improved laser design has been analyzed and demonstrated using a segmented ring laser model. The MMI-tree filter also has been experimentally demonstrated. However, the lasing of the improved laser chip was not successful. We attributed this to the low modal gain in the QD amplifiers and high passive loss in the passive waveguides which was caused by the bad quality of the wafer growth.
     Then the QD waveguide photodetectors for the long wavelength OCT application are studied in this thesis. The photodetectors use the identical five-layer QD active material as has been used in the QD laser. The layerstack and waveguide structure of the photodetectors are also fully compatible to the active-passive integration technology for the QD laser. Thus they can be integrated with the QD laser on a single chip. The light absorption at1.7μm wavelength region provided by the QDs is analyzed both experimentally and theoretically. The characterization of the photodetectors has shown low dark current, flat spectral response and sufficient electrical bandwidth. A modified rate equation (RE) model has been used to simulate the performance of the QD photodetector and to understand and explain the mechanisms of light absorption in the QDs. An equivalent electrical circuit model has also been applied to figure out the limitation (metal pad capacitance) of the electrical bandwidth.
     Finally in this thesis a high-gain single-layer InAs QD on InAs thin QW active material in the1.6to1.8μm wavelength range has been studied. The amplifiers using this new QD material have shown significantly higher modal gain than the modal gain in the previous QD amplifiers, while still maintaining the same wide gain bandwidth as the previous QD material. This type of new QD material has been demonstrated to be a very promising candidate to be used in the next generation QD tunable lasers or QD waveguide photodetectors for long-wavelength OCT applications. Then an improved RE model has been optimized and applied on the new high gain QD amplifiers to simulate the gain behavior of this material as well as the carrier dynamics in the new QDs.
     The overall work in this thesis has revealed the very high potential of integrating tunable lasers, photodetectors and any other passive photonic waveguide components in a single chip for the SS-OCT application. The presented results have shown a significant progress towards the monolithically integrated SS-OCT system operating at the1.7μ m wavelength region.
引文
[1]D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. Heideman, T. v. Leeuwen, and J. Kalkman, "Integrated-optics-based swept-source optical coherence tomography," Optics Letters, vol.37, pp.4802-4822,2012.
    [2]D. J. Faber and T. G. v. Leeuwen, "Chapter 18 Optical Coherence Tomography, in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. v. Gemert,2nd Edition Springer,2011.
    [3]B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, "Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 μm wavelength region," IEEE Journal of Quantum Electronics, vol. 48, pp.87-98,2012.
    [4]E. W. Bogaart, R. Notzel, Q. Gong, J. E. M. Haverkort, and J. H. Wolter, "Ultrafast carrier capture at room temperature in InAs/InP quantum dots emitting in the 1.55 μm wavelength region," Applied Physics Letters, vol. 86, p.173109,2005.
    [5]B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, M. K. Smit, and E. A. J. M. Bente, "Measurement and analysis of optical gain spectra in 1.6 to 1.8 um lnAs/InP (100) quantum-dot amplifiers, " Optical and Quantum Electronics, vol.41, pp.735-749,2009.
    [6]M. Gioannini and I. Montrosset, "Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers, " Quantum Electronics, IEEE Journal of, vol.43, pp.941-949,2007.
    [7]J. Kotani, P. J. van Veldhoven, T. deVries, B. Smalbrugge, E. A. J. M. Bente, M. K. Smit, and R. Notzel, "First demonstration of single-layer InAs/InP (100) quantum-dot laser:continuous wave, room temperature, ground state, Electronics Letters, vol.45, pp.1317-1318,2009.
    [8]M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, "Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InsGa,,As/GaAs quantum dot lasers," Physical Review B, vol.61, pp.7595-7603, 2000.
    [9]J. P. Weber, "Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters," Quantum Electronics, IEEE Journal of, vol.30, pp.1801-1816,1994.
    [10]D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmur, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, "Diffraction enhanced x-ray imaging," Physics in Medicine and Biology, vol.42, p.2015,1997.
    [II]G. N. Hounsfield, "Computerized transverse axial scanning (tomography): Part 1. Description of system, " British Journal of Radiology, vol.46, pp. 1016-1022,1973.
    [12]H. Stephen, "Medical ultrasound imaging," Physics Education, vol.36, p. 468,2001.
    [13]S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, "Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy, " Applied Physics Letters, vol. 89, p.073115,2006.
    [14]P. Mansfield and A. A. Maudsley, "Medical imaging by NMR, " British Journal of Radiology, vol.50, pp.188-194,1977.
    [15]A. Kherlopian, T. Song, Q. Duan, M. Neimark, M. Po, J. Gohagan, and A. Laine, "A review of imaging techniques for systems biology," BMC Systems Biology, vol.2, p.74,2008.
    [16]A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Disease Markers, vol.18, pp.313-337,2002.
    [17]A. F. Fercher and et al., "Optical coherence tomography - principles and applications," Reports on Progress in Physics, vol.66, p.239,2003.
    [18]B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Optics Letters, vol.27, pp.1800-1802,2002.
    [19]J. Welzel, "Optical coherence tomography in dermatology:a review," Skin Research and Technology, vol.7, pp.1-9,2001.
    [20]G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science, vol.276, pp.2037-2039,1997.
    [21]H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, "En-face optical coherence tomography-a novel application of non-invasive imaging to art conservation," Optics Express, vol.13, pp.6133-6144,2005.
    [22]R. C. Youngquist, S. Carr, and D. E. N. Davies, "Optical coherence-domain reflectometry:a new optical evaluation technique," Optics Letters, vol. 12, pp.158-160,1987.
    [23]Y. K. Kim and Y. P. Kim, "High-speed time-domain optical coherence tomography with an imaging speed of ten frames per second with 2000 A-scan, " Optical Engineering, vol.49, pp.055601-055601,2010.
    [24]M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Optics Express, vol.11, pp.2183-2189,2003.
    [25]B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed Spectral/Fourierdomain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Optics Express, vol. 16, pp.15149-15169,2008.
    [26]S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Optics Express, vol.11, pp.2953-2963,2003.
    [27]V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A.E. Cable, "High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm, " Optics Letters, vol.32, pp.361-363,2007.
    [28]C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral interferometry, " Journal of the Optical Society of America B, vol.17, pp.1795-1802,2000.
    [29]N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve, " Optics Express, vol.12, pp.367-376,2004.
    [30]M. Brezinski, "Chapter 5 Optical Coherence Tomography Theory," in Optical Coherence Tomography:Principles and Applications, Academic Press, Elsevier,2006.
    [31]A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, "Optical coherence tomography:a review of clinical development from bench to bedside," Journal of Biomedical Optics, vol.12, pp.051403-051403,2007.
    [32]W. Demtroder, Laser spectroscopy Vol.1:Basic principles,4th ed. Berlin: Springer,2008.
    [33]J. A. Izatt and M. A. Choma, "Chapter 2 Theory of Optical Coherence Tomography, " in Optical Coherence Tomography Technology and Applications, W. Drexler and J. G. Fujimoto, Springer,2008.
    [34]M. E. J. van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, "Recent developments in optical coherence tomography for imaging the retina, " Progress in Retinal and Eye Research, vol.26, pp.57-77, 2007.
    [35]B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050nm versus 800nm in retinal pathologies:enhanced performance and choroidal penetration in cataract patients," Journal of Biomedical Optics, vol.12, pp. 041211-041211,2007.
    [36]J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nature Medicine, vol.1, pp.970-972, 1995.
    [37]T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm, " Journal of Biomedical Optics, vol.6, pp.167-176,2001.
    [38]A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, "Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm, " Optics and Spectroscopy, vol.99, pp.836-842,2005.
    [39]V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, "Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm," Biomedical Optics Express, vol.1, pp.176-185,2010.
    [40]S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, "Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples, " Applied Physics Express, vol.4, p.052501, 2011.
    [41]J. Eun Joo, L. Ju Han, R. Byung Sup, K. Myoung Jin, H. Sung Hwan, L. Woo-Jin S. Jae-Jin, J. Myung Yung, and K. Chang-Seok, "Spectrally sampled OCT imaging based on 1.7-μn continuous-wave supercontinuum source," IEEE Journal of Selected Topics in Quantum Electronics, vol.18, pp.1200-1208, 2012.
    [42]U. Sharma, E. W. Chang, and S. H. Yun, "Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth, " Optics Express, vol.16, pp.19712-19723,2008.
    [43]S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Optics Letters, vol.28, pp.1981-1983,2003.
    [44]B. W. Tilma, "Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7μm wavelength region," Ph.D. thesis, Technische Universiteit Eindhoven, The Netherlands,2011.
    [45]Thorlabs 0CS1300SS System. Available: http://www,thorlabs.de/newgrouppage9.cfm?objectGroup ID=2098
    [46]Santec HSL series High Speed Scanning Lasers. Available: http://www,santec.com/en/products/oct/lightsource-for-octsystem?gclid=C Nvdz8Srg7QCFcrItAodd18AqA
    [47]Topcon DRI OCT-1 SS-OCT system. Available: http://www,topcon-medical.eu/eu/products/177-dri-oct-1-swept-source-oct . html
    [48]Thorlabs High-Speed MEMS-Tunable VCSEL for Swept Source OCT. Available: http://www,thorlabs.com/newgrouppage9.cfm?ob.jectgroup id=6473
    [49]Thorlabs PDB120 series. Available: http://www,thorlabs.de/newgrouppage9.cfm?ob.jectgroup id=2151
    [50]V. D. Nguyen, B. I. Akca, K. Worhoff, R. M. de Ridder, M. Pollnau, T. G. van Leeuwen, and J. Kalkman, "Spectral domain optical coherence tomography imaging with an integrated optics spectrometer, " Optics Letters, vol.36, pp.1293-1295,2011.
    [51]B. I. Akca, V. Nguyen, J. Kalkman, N. Ismail, G. Sengo, S. Fei, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Worhoff, and R. M. de Ridder, "Toward spectral-domain optical coherence tomography on a chip," IEEE Journal of Selected Topics in Quantum Electronics, vol.18, pp.1223-1233,2012.
    [52]I. B. Akca, C. Lantian, G. Sengo, K. Worhoff, R. M. de Ridder, and M. Pollnau, "Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry," IEEE Photonics Technology Letters, vol.24, pp.848-850,2012.
    [53]B. I. Akca, C. R. Doerr, G. Sengo, K. Worhoff, M. Pollnau, and R. M. de Ridder, "Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer," Optics Express, vol.20, pp.18313-18318,2012.
    [54]D. Culemann, A. Knuettel, and E. Voges, "Integrated optical sensor in glass for optical coherence tomography (OCT)," IEEE Journal of Selected Topics in Quantum Electronics, vol.6, pp.730-734,2000.
    [55]J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, "Ultra-low-loss high-aspect-ratio Si3N1 waveguides," Optics Express, vol. 19, pp.3163-3174,2011.
    [56]G. Yurtsever, P. Dumon, W. Bogaerts, and R. Baets, "Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography, " in Proc. SPIE 7554, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV,2010, pp.75541B-75541B.
    [57]V. D. Nguyen, N. Ismail, F. Sun, K. Worhoff, T. G. vanLeeuwen, and J. Kalkman, "SiON integrated optics elliptic couplers for fizeau-based optical coherence tomography, " Journal of Lightwave Technology, vol.28, pp. 2836-2842,2010.
    [58]N. Ismail, L. Chang, G. Sengo, R. M. de Ridder, M. Pollnau, and K. Worhoff, "Polymer microlenses for collimating light from single-mode silicon oxynitride optical waveguides, " in 16th European Conference on Integrated Optics (EC10 2012), Barcelona, Spain,2012.
    [59]G. Yurtsever and R. Baets, "Towards integrated optical coherence tomography system on silicon on insulator, " in Proceedings Symposium IEEE/LEOS Benelux Chapter,2008, Twente,2008.
    [60]L. Xu, "Monolithic integrated reflective transceiver in Indium Phosphide, " Ph.D. thesis, Technische Universiteit Eindhoven,2009.
    [61]B. W. Tilma, Y. Jiao, P. J. van Veldhoven, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, "InP-based monolithically integrated tunable wavelength filters in the 1.6-1.8 μm wavelength region for tunable laser purposes," Journal of Lightwave Technology, vol.29, pp.2818-2830,2011.
    [62]M. K. Smit and C. Van Dam, "PHASAR-based WDM-devices:Principles, design and applications, " IEEE Journal of Selected Topics in Quantum Electronics, vol.2, pp.236-250,1996.
    [63]P. Munoz, D. Pastor, and J. Capmany, "Modeling and design of arrayed waveguide gratings, " Journal of Lightwave Technology, vol.20, p.661,04/01 2002.
    [64]L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits,2nd ed.:Chichester:Wiley,2012.
    [65]Y. Barbarin, E. A. J. M. Bente, C. Marquet, E. J. S. Leclere, J. J. M. Binsma, and M. K. Smit, "Measurement of reflectivity of butt-joint active-passive interfaces in integrated extended cavity lasers, " IEEE Photonics Technology Letters, vol.17, pp.2265-2267,2005.
    [66]TUeDACS. Tu/e Data Acquisition & Control System - AWG100. Available: www. tuedacs. nl
    [67]V. Liepins, "High-resolution spectral analysis by using basis function adaptation approach," Ph.D. thesis, University of Latvia, Latvian,1997.
    [68]S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Optics Letters, vol.22, pp. 340-342,1997.
    [69]B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, "Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers," Optics Letters, vol.35, pp.3733-3735,2010.
    [70]Y. Jiao, B. W. Tilma, J. Kotani, R. Notzel, M. K. Smit, S. He, and E. A. J. M. Bente, "InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7 μm, " Optics Express, vol.20, pp.3675-3692,2012.
    [71]L. Xu, X. J. M. Leijtens, P. J. Urban, E. Smalbrugge, T. d. Vries, Y. S. Oei, R. Notzel, H. d. Waardt, and M. K. Smit, "Novel reflective SOA with MMI-loop mirror based on semi-insultating InP, " in Proceedings of the 13th annual symposium of the IEEE/LEOS Benelux Chapter, Enschede, The Netherlands,2008, pp.43-46.
    [72]D. D'Agostino, M. S. Tahvili, M. J. Trainor, D. McCullogh, H. P. M. M. Ambrosius, and M. K. Smit, "Design and characterization of spot size converters for integration in InP-based photonic integrated circuits," in Proceedings of the 16th Annual symposium of the IEEE Photonics Benelux Chapter, Ghent, Belgium,2011, pp.209-212.
    [73]Ultra fast Sensors. Available: http://www. ultrafastsensors. com/Amplifier. htm
    [74]L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, "High performance InP-based photonic ICs—a tutorial," Journal of Lightwave Technology, vol.29, pp.554-570, 2011.
    [75]P. Dumon, W. Bogaerts, R. Baets, J. M. Fedeli, and L. Fulbert, "Towards foundry approach for silicon photonics:silicon photonics platform ePIXfab," Electronics Letters, vol.45, pp.581-582,2009.
    [76]N. N. Ledentsov, "Long-wavelength quantum-dot lasers on GaAs substrates: from media to device concepts, " IEEE Journal of Selected Topics in Quantum Electronics, vol.8, pp.1015-1024,2002.
    [77]M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, "Generic foundry model for inP-based photonics," IET Optoelectronics, vol.5, pp.187-194,2011.
    [78]G. H. Olsen, T. Z. Zamerowski, R. T. Smith, and E. P. Bert in, "InGaAsP quaternary alloys:Composition, refractive index and lattice mismatch," Journal of Electronic Materials, vol.9, pp.977-987,1980.
    [79]P. J. A. Thijs, L. F. Tiemeijer, J. J. M. Binsma, and T. VanDongon, "Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers," IEEE Journal of Quantum Electronics, vol.30, pp. 477-499,1994.
    [80]R. Notzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, "Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range:wavelength tuning, stacking, polarization control, and lasing," Japanese Journal of Applied Physics, vol.45, pp. 6544-6549,2006.
    [81]J. J. Coleman, "Strained-layer InGaAs quantum-well heterostructure lasers, " IEEE Journal of Selected Topics in Quantum Electronics, vol.6, pp.1008-1013,2000.
    [82]0.-K. Kwon, K.-h. Kim, E.-D. Sim, J.-H. Kim, H.-S. Kim, and K.-R. Oh, "Asymmetric multiple-quantum-well laser diodes with wide and flat gain," Optics Letters, vol.28, pp.2189-2191,2003.
    [83]M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, "InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective area MOCVD," IEEE Journal of Quantum Electronics, vol.29, pp.2088-2096,1993.
    [84]E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, "Monolithically integrated active components:a quantum-well intermixing approach," IEEE Journal of Selected Topics in Quantum Electronics, vol.11, pp.343-355,2005.
    [85]B. Mason, G. A. Fish, S. P. DenBaars, and L. A. Coldren, "Ridge waveguide sampled grating DBR lasers with 22-nm quasi-continuous tuning range, " IEEE Photonics Technology Letters, vol.10, pp.1211-1213,1998.
    [86]J. J. M. Binsma, P. J. A. Thijs, T. v. Dongen, E. J. Jansen, A. A. M. T. Staring, G. N. v. d. Hoven, and L. F. Tiemeijer, "Characterization of butt-joint InGaAsP waveguides and their application to 1310 nm DBR-type MQW gain-clamped semiconductor optical amplifiers," IEICE TRANSACTIONS on Electronics, vol. E80-C, pp.675-681,1997.
    [87]X. Leijtens, "JePPIX:the platform for Indium Phosphide-based photonics, " IET Optoelectronics, vol.5, pp.202-206,2011.
    [88]Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, "Extremely small AWG demultiplexer fabricated on InP by using a double-etch Process," IEEE Photonics Technology Letters, vol.16, pp. 2478-2480,2004.
    [89]M. Heck, "Ultrafast integrated semiconductor laser technology at 1.55 Iμm, Ph.D., Technische Universiteit Eindhoven,2008.
    [90]D. Keil and E. Anderson, "Characterization of reactive ion etch lag scaling," Journal of Vacuum Science and Technology B, vol.19, p.2082,2001.
    [91]Shelf life of polyimi.de. Available: http://hdmicrosystems.com/HDMicroSysteiiis/en LS/pdf/Shelf Life Bulletin. pdf
    [92]M. D. Caterer, T. H. Daubenspeck, T. G. Fercnce, S. J. Holmes, and R. M. Quinn, "Processing thick multilevel polyimide films for 3-D stacked memory," IEEE Transactions on Advanced Packaging, vol.22, pp.189-199, 1999.
    [93]B. Cui, Y. Cortot, and T. Veres, "Polyimide nanostructures fabricated by nanoimprint lithography and its applications, " Microelectronic Engineering, vol.83, pp.906-909,2006.
    [94]Y. Chu, X. Zheng, H. Zhang, X. Liu, and Y. Guo, "The impact of phase errors on arrayed waveguide gratings, " IEEE Journal of Selected Topics in Quantum Electronics, vol.8, pp.1122-1129,2002.
    [95]E. Sacher, "Dielectric properties of polyimide film. II. DC properties," IEEE Transactions on Electrical Insulation, vol. EI-14, pp.85-93,1979.
    [96]J. Zhang, J. Jing, P. Wang, and Z. Chen, "Polarization-maintaining buffered Fourier domain mode-locked swept source for optical coherence tomography, " Optics Letters, vol.36, pp.4788-4790,2011.
    [97]M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," Journal of Biomedical Optics, vol.10, p.044009,2005.
    [98]A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, "Widely tunable DS-DBR laser with monolithically integrated SOA:design and performance, " IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp.149-156,2005.
    [99]A. Q. Liu and X. M. Zhang, "A review of MEMS external-cavity tunable lasers, " Journal of Micromechanics and Microengineering, vol.17, p. R1,2007.
    [100]M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nature Photonics, vol.2, pp.180-184,2008.
    [101]V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, "High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range," Electronics Letters, vol.48, pp.867-869,2012.
    [102]A. Oster, G. Erbert, and H. Wenzel, "Gain spectra measurements by a variable stripe length method with current injection," Electronics Letters, vol.33, pp.864-866,1997.
    [103]X. J. M. Leijtens, P. Le Lourec, and M. K. Smit, "S-matrix oriented CAD-tool for simulating complex integrated optical circuits," IEEE Journal of Selected Topics in Quantum Electronics, vol.2, pp.257-262,1996.
    [104]D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and a. et, "Optical coherence tomography, Science, vol.254, pp.1178-1181,1991.
    [105]D.-J. Faber, ed. Department of Biomedical Engineering and Physics, Academic Medical Center (AMC), Meibergdreef 9,1105 AZ Amsterdam, The Netherlands, 2007.
    [106]D. J. Faber and T. G. v. Leeuwen, "Optical coherence tomography," in Optical-thermal response of laser-irradiated tissue, A. J. Welch and M. J. C. v. Gemert, 2 Springer,2011.
    [107]I. Kimukin, N. Biyikli, B. Butun,0. Aytur, S. M. Unlu, and E. Ozbay, "InGaAs-based high-performance p-i-n photodiodes, " IEEE Photonics Technology Letters, vol.14, pp.366-368,2002.
    [108]H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, "InP-based waveguide-integrated photodetector with 100-GHz bandwidth," IEEE Journal of Selected Topics in Quantum Electronics, vol.10, pp.668-672,2004.
    [109]Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, "Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors, " Infrared Physics & Technology, vol.47, pp.257-262,2006.
    [110]J. Oh, S. Csutak, and C. Campbell, "High-speed interdigitated Ge PIN photodetectors," IEEE Photonics Technology Letters, vol.14, pp.369-371, 2002.
    [111]A. Rogalski and R. Ciupa, "Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes, " Journal of Electronic Materials, vol.28, pp.630-636,1999.
    [112]Thorlabs SIRS series. Available: http://www. thorlabs. com/NewGroupPage9. cfm?Ob.jectGroup ID=1297
    [113]Hamamatsu G8423 series. Available: http://sales.hamamatsu. com/index. php?id=13157898
    [114]Thorlabs FDG series. Available: http://www.thorlabs. com/-\ewGroupPage9. cfm?Ob.iectGroup ID=2822
    [115]Hamamatsu P series. Available: http://.jp.hamamatsu. com/products/sensor-ssd/pdl28/pdl34/index en. html
    [116]B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources," Journal of Biomedical Optics, vol.3, pp.76-79,1998.
    [117]C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, "Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors," Applied Physics Letters, vol.91, p.031106, 2007.
    [118]S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, "Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector, " Applied Physics Letters, vol.73, pp.963-965, 1998.
    [119]S.-F. Tang, S.-Y. Lin, and S.-C. Lee, "Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector, " Applied Physics Letters, vol.78, pp.2428-2430,2001.
    [120]H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bentc, Y. S. Oci, M. K. Smit, S. Anantathanasarn, and R. Notzel, "Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm," Electronics Letters, vol.44, pp.522-523, 2008.
    [121]Y. C. Xin, L. Yan, A. Martinez, T. J. Rotter, S. Hui, Z. Lei, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method, " IEEE Journal of Quantum Electronics, vol.42, pp.725-732, 2006.
    [122]L. Yang, D. Dai, B. Yang, Z. Sheng, and S. He, "Characteristic analysis of tapered lens fibers for light focusing and butt-coupling to a silicon rib waveguide," Applied Optics, vol.48, pp.672-678,2009.
    [123]A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, "Orientation dependence of the optical properties in InAs quantum-dash lasers on InP, " Applied Physics Letters, vol.81, pp.981-983, 2002.
    [124]X. Ling, M. Nikoufard, X. Leijtens, T. de Vries, E. Smalbrugge, R. Notzel, 0. Yok Siang, and M. K. Smit, "High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate," IEEE Photonics Technology Letters, vol.20, pp.1941-1943,2008.
    [125]K. Kato, S. Hata, K. Kawano, J. Yoshida, and A. Kozen, "A high-efficiency 50 GHz InGaAs multimode waveguide photodetector," IEEE Journal of Quantum Electronics, vol.28, pp.2728-2735,1992.
    [126]M. Gioannini, A. Sevega, and I. Montrosset, "Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers, Optical and Quantum Electronics, vol.38, pp.381-394,2006.
    [127]H. Jiang and P. K. L. Yu, "Equivalent circuit analysis of harmonic distortions in photodiode, " IEEE Photonics Technology Letters, vol.10, pp. 1608-1610,1998.
    [128]G. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, "Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well," Electronics Letters, vol.35, pp.1163-1165, 1999.
    [129]P. Caroff, C. Paranthoen, C. Platz,0. Dehaese, H. Folliot, N. Bertru, C. Labbe, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, "High-gain and low-threshold InAs quantum-dot lasers on InP, " Applied Physics Letters, vol. 87, pp.-, Dec 122005.
    [130]P. Borri, W. Langbein, J. M. Hvam, F. Hcinrichsdorff, M. H. Mao, and D. Bimberg, "Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers," IEEE Photonics Technology Letters, vol.12, pp.594-596,2000.
    [131]Z.-z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z.-G. Wang, "Quantum-dot superluminescent diode:A proposal for an ultra-wide output spectrum," Optical and Quantum Electronics, vol.31, p.1235,1999.
    [132]M. Holm, M.-E. Pistol, and C. Pryor, "Calculations of the electronic structure of strained InAs quantum dots in InP, " Journal of Applled Physics, vol.92, pp.932-936,2002.
    [133]P. Werle, "A review of recent advances in semiconductor laser based gas monitors," Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, vol.54, pp.197-236,1998.
    [134]G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures," IEEE Journal of Quantum Electronics, vol.36, pp. 1272-1279,2000.
    [135]0. B. Shchekin and D. G. Deppe, "Low-threshold high-T/sub 0/1.3-/spl mu/m InAs quantum-dot lasers due to p-type modulation doping of the active region," IEEE Photonics Technology Letters, vol.14, pp.1231-1233,2002.
    [136]G. Ozgur, A. Demir, and D. G. Deppe, "Threshold temperature dependence of a quantum-dot laser diode wth and without p-doping, " IEEE Journal of Quantum Electronics, vol.45, pp.1265-1272,2009.
    [137]M. Mitsuhara, M. Ogasawara, M. Oishi, H. Sugiura, and K. Kasaya, "2.05-μm wavelength InGaAs-InGaAs distributed-feedback multiquantum-well lasers with 10-mW output power," IEEE Photonics Technology Letters, vol.11, pp. 33-35,1999.
    [138]T. Sato, M. Mitsuhara, and Y. Kondo, "InAs quantum-well distributed feedback lasers emitting at 2.3 μm for gas sensing applications," NTT Technical Review, vol.7, pp.1-7,2009.
    [139]T. Sato, K. Mitsuhara, T. Watanabe, K. Kasaya, T. Takeshita, and Y. Kondo, "2.1-μm-wavelength InGaAs multiple-quantum-well distributed feedback lasers grown by MOVPE using Sb surfactant, " IEEE Journal of Selected Topics in Quantum Electronics, vol.13, pp.1079-1083,2007.
    [140]B. W. Hakki and T. L. Paoli, "Gain spectra in GaAs double-heterostructure injection lasers, " Journal of Applied Physics, vol.46, pp.1299-1306,1975.
    [141]J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, "Determination of single-pass optical gain and internal loss using a multisection device," Applied Physics Letters, vol.75, pp.2527-2529, 1999.
    [142]M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, "Modeling room-temperature lasing spectra of 1.3-mu m self-assembled InAs/GaAs quantum-dot lasers:Homogeneous broadening of optical gain under current injection, " Journal of Applied Physics, vol.97, pp.043523-8,2005.
    [143]N. Tansu and L. J. Mawst, "Current injection efficiency of InGaAsN quantum-well lasers," Journal of Applied Physics, vol.97, pp.054502-18, 2005.
    [144]H. Zhao, G. Liu, R. A. Arif, and N. Tansu, "Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes," SolidState Electronics, vol.54, pp.1119-1124,2010.
    [145]M. Rossetti, P. Bardella, M. Gioannini, and L Montrosset, "Carrier transport effects in multi layer quantum dot lasers and SLDs," in Proceedings of the 14th European Conference on integrated Optics and Technical Exhibition (EC10 2008), Eindhoven, the Netherlands,2008.
    [146]M. Rossetti, P. Bardella, and I. Montrosset, "Time-domain travelling-wave model for quantum dot passively mode-locked lasers, " IEEE Journal of Quantum Electronics, vol.47, pp.139-150,2011.
    [147]F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, "Spectral analysis of 1.55-μm InAs-InP(113)B quantum-dot lasers based on a multipopulation rate equations model," IEEE Journal of Quantum Electronics, vol.45, pp.872-878,2009.
    [148]Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, "Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates, " Physical Review B, vol.54, p.11528,1996.
    [149]H. Lee, W. Yang, and P. C. Sercel, "Temperature and excitation dependence of photoluminescence line shape in InAs/GaAs quantum-dot structures," Physical Review B, vol.55, p.9757,1997.
    [150]W. Ouerghui, A. Melliti, M. A. Maaref, and J. Bloch, "Dependence on temperature of homogeneous broadening of InGaAs/InAs/GaAs quantum dot fundamental transitions," Physica E:Low-dimensional Systems and Nanostructures, vol.28, pp.519-524,2005.
    [151]H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, "Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer," IEEE Journal of Selected Topics in Quantum Electronics, vol.3, pp.188-195,1997.
    [152]Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tunnermann, "High-gain quantum-dot semiconductor optical amplifier for 1300 nra, " IEEE Journal of Quantum Electronics, vol.39, pp.1409-1414, 2003.
    [153]S. Latkowski, M. K. Smit, and E. A. J. M. Bente, "Integrated tunable semiconductor laser geometry based on asymmetric Mach-Zehnder interferometers for gas sensing applications, " in Proceedings of the 17th Annual symposium of the IEEE Photonics Benelux Chapter, Mons, Belgium,2012, pp.199-202.
    [154]B. Yang, L. Yang, R. Hu, S. Zhen, D. Dai, Q. Liu, and S. He, "Fabrication and Characterization of Small Optical Ridge Waveguides Based on SU-8 Polymer," Journal of Lightwave Technology, vol.27, pp.4091-4096,2009.
    [155]L. Yang, B. Yang, Z. Sheng, J. Wang, D. Dai, and S. He, "Compact 2x2 tapered multimode interference couplers based on SU-8 polymer rectangular waveguides," Applied Physics Letters, vol.93, pp.203304-3,11/17/2008.
    [156]D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, "Compact Microracetrack Resonator Devices Based on Small SU-8 Polymer Strip Waveguides," IEEE Photonics Technology Letters, vol.21, pp.254-256,2009.
    [157]B. Yang, Y. Zhu, Y. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, "Compact Arrayed Waveguide Grating Devices Based on Small SU-8 Strip Waveguides," Journal of Lightwave Technology, vol.29, pp.2009-2014,2011.
    [158]Y. Jiao, D. Dai, Y. Shi, and S. He, "Shortened Polarization Beam Splitters With Two Cascaded Multimode Interference Sections, " IEEE Photonics Technology Letters, vol.21, pp.1538-1540,2009.
    [159]Y. Jiao, Y. Zhu, X. Hong, Y. Shi, L. Xu, and S. He, "An Integrated Optical Mixer Based on SU8 Polymer for PDM-QPSK Demodulation," IEEE Photonics Technology Letters, vol.23, pp.1490-1492,2011.
    [160]R. Yang and W. Wang, "Out-of-plane polymer refractive microlens fabricated based on direct lithography of Su-8, " Sensors and Actuators A:Physical, vol.113, pp.71-77,6/15/2004.
    [161]K. Ju-Nan, H. Chia-Chun, Y. Sung-Yi, and L. Gwo-Bin, "An SU-8 microlens array fabricated by soft replica molding for cell counting applications, " Journal of Micromechanics and Microengineering, vol.17, p.693,2007.
    [162]J. T. Robinson and M. Lipson, "Direction-dependent optical modes in nanoscale Silicon waveguides," Opt. Express, vol.19, pp.18380-18392, 09/122011.
    [163]T. Mizumoto, R. Takei, and Y. Shoji, "Waveguide Optical Isolators for Integrated Optics, " Quantum Electronics, IEEE Journal of, vol.48, pp. 252-260,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700