大白菜BAC文库的构建及CO相关基因BAC克隆的筛选与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大白菜为十字花科芸薹属植物中重要的蔬菜作物,也是我国种植面积最大的叶用蔬菜。随着分子生物学的发展,基因组结构和功能、基因表达调控的分子机制等成为了蔬菜专家研究的热点问题。大片段基因组文库的构建是基因组学研究必不可少的工具。尽管国际上已经构建了大白菜的基因组文库,但有关芸薹属基因组结构和功能研究依然处于初级阶段,为了给我国大白菜基因组结构及功能研究提供方便,构建我国优良自交系的BAC文库也是当务之急。大白菜主要以营养器官为产品,早期抽薹是大白菜春季生产的主要障碍,严重影响着它的产量和品质,因此,研究培育大白菜晚抽薹品种,满足市场的周年供应成为蔬菜育种工作者的重要任务。研究大白菜开花相关基因及调控的分子机制将为培育抗抽薹新品种提供理论基础及分子鉴定手段。本文以我国优良的大白菜自交系‘85-1’为材料,利用pIndigoBAC5为载体,以
     HindⅢ为限制性内切酶,经过高分子量DNA的制备、DNA与载体的连接、转化等过程,成功构建了大白菜BAC文库。通过构建混合池,用PCR方法筛选了大白菜含有CO相关基因的BAC克隆,并对扩增产物进行了序列分析,为研究大白菜抽薹开花相关基因的序列特征及与其他芸薹属植物基因序列特征的差异性奠定了基础。主要研究结果如下:
     (1)该文库共含有57600个克隆,以单克隆的形式保存在150个384孔板中;以大白菜单倍体基因组总长度550 Mb计算,本文库重组子的覆盖率约为大白菜基因组的10.3倍,该文库得到任意单拷贝DNA序列的概率为99.99 %,文库的覆盖率符合要求,能够满足基因图位克隆、物理图谱构建、基因定位的需要;随机挑取200个BAC克隆,经过检测,其插入片段平均大小为98.4 Kb,插入片段多集中在90~120 Kb之间。85%的BAC克隆插入片段在90 Kb以上,证明片段大小的均一性较好;在200个检测的克隆中,有3个克隆没有插入片段,文库的空载率为1.5%;随机挑取6个BAC克隆进行连续5 d的培养,HindⅢ完全酶切的结果表明,各个克隆经过约125代左右的繁殖,DNA指纹图谱没有变化,证明DNA插入片段能够在大肠杆菌中稳定遗传,克隆的稳定性较好;本试验的连接转化效率为:100~200 Kb的DNA与载体连接转化后,一次转化获得5000个左右的克隆,200~300 Kb的DNA与载体连接转化后,一次转化只获得800个克隆,因此连接转化效率与片段的大小密切相关,片段越大,连接转化效率越低;
     (2)通过拟南芥CO基因的同源序列设计6对引物,对47个384孔板的18048个克隆进行PCR筛选。通过47个一级混合池,48个二级混合池,72个单克隆的三步PCR筛选,共167个PCR反应筛选到3个阳性克隆,分别命名为BrCO97A1、BrCO140N21、BrCO147H21;
     (3)经过NCBI网站的blastn比对,本试验筛选的BAC克隆含有编码constans-like蛋白的基因序列,序列相似性与Brassica rapa(白菜,AA),Brassica napus(甘蓝型油菜,AACC),Brassica juncea(芥菜型油菜,AABB)最接近,其次为Brassica oleracea(甘蓝,CC),序列相似性最小的为Brassica nigra(黑芥,BB)。因此,该克隆上的CO相关基因序列与C基因组的同源性高于B基因组。
     (4)通过与http://brassicadb.org网站上查找的CO相关基因的18个序列进行比对,结果表明:PCR产物序列与Bra008668有96%的最大序列相似性。在与Bra008668的比对结果中,查找到12个SNP位点,其中C/T变异6个,G/A变异2个,A/T变异2个,A/C变异1个,T/G变异1个;平均每51 bp即含有一个SNP位点。尽管这个数字代表性不强,但也说明在大白菜基因组中SNP位点是丰富的。
As an important vegetable belonged to the genus Brassica of the family Brassicaceae, Brassica rapa subsp. pekinensis acts as the most widely planted leaf vegetable in China. With the development of plant molecular biology, the structure and function of genome and the mechanism of gene expression regulation have become hot topics which attract a lot of vegetable researchers. The construction of genomic libraries containing large segments is an essential tool for genomic studies. The BAC library of Chinese cabbage has been constructed internationally, however, the research about the genome structure and function of the genus Brassica is still in initial stage. Therefore, it is important to construct a BAC library of Chinese cabbage cultivar. The edible part of Chinese cabbage is its nutritorium. Early bolting is a major problem of cultivation in spring which seriously decreases the amount and quality of Chinese cabaage. So it is a big task to cultivate the late bolting variety to meet the need of vegetable market. The research on the bloom-related genes and mechanism of gene expression regulation will provide a theoretical basis for cultivating new Chinese cabbage cultivars.
     In the study, using Chinese cabbage inbred line‘85-1’as the material, pIndigoBAC5 as the vector, HindⅢas the restriction enzyme, a Chinese cabbage BAC library was successfully constructed through the production of high molecular weight DNA, connection of DNA and vector, and transformation process. By constructing first- and second-level pools, we screened the BAC clone with CO gene by the method of PCR and analysed SNP loci in the sequence of amplified product. The study lay solid foundations on analysing the sequence character of CO gene and difference with other Brassica plants.
     The results are as follows:
     1) The BAC library contains 57600 clones in total and the clones were stored in 150 384-well plates in the form of monoclone; According to the haploid genome size of 550 Mb, the library represented approximately an equivalent of 10.3 fold size of Chinese cabbage haploid genome. Therefore the possibility to find a single-copy gene in this library is 99.99%. Two hundred clones were selected randomly and digested by NotⅠrestriction enzyme. The average insert size is 98.4 Kb and the majority clones are during 90~120 Kb. 85% of BAC clones is longer than 90 Kb, which showed a good uniform of segment size. The clone numbers without insert segment are three among 200 clones, so the rate of empty clone is 1.5%; We selected six BAC clones randomly which were cultured for five days successively. The plasmid was completely digested by restriction enzyme HindⅢ. The result shows that DNA fingerprints of every clone have not changes after about 125 generations. Therefore the genetic stability of insert segment is perfect. Connecting the 100~200 Kb DNA with vector and transforming, we got about 5000 clones, while only about 800 clones were abtained though connecting the 200~300 Kb DNA. So we concluded that the efficiency of connection and transformation is closely related to the length of DNA segment. The longer the segment is, the lower the connection efficiency is.
     2) We designed six pairs of primers according to homologous sequence of the CO gene from Arabidopsis thaliana, and screened the clones from 18048 clones in 47 384-well plates by PCR amplification. In total three positive CO clones were obtained through three steps of PCR screening with 167 reactions. We named them BrCO97A1, BrCO140N21, BrCO147H21 respectively.
     3) The BAC clones contain CO gene which could code constans-like protein. Comparing the sequence of amplification product in the website NCBI, we found that the sequence similarity among the PCR product and Brassica rapa(AA), Brassica napus(AACC) and Brassica juncea(AABB) was high, next to Brassica oleracea(CC), and the third Brassica nigra(BB). So the similarity with genome C is higher than genome B.
     4) By comparing with 18 sequences containing CO gene found in the website http://brassicadb.org, the rusults show that the sequence similarity is 96% between the PCR pruducts and Bra008668. In the readable sequences, we also found 12 SNP locus, in which there are six C/T variants, two G/A variants, two A/T variants, one A/C variants, one T/G variants. There is one SNP locus per 51 bp. It is not a very representative number, but reflected the richness of SNP locus in genome.
引文
[1]解涛,梁卫平,丁达夫.后基因组时代的基因组功能注释[J].生物化学与生物物理进展. 2000, 27: 166-170.
    [2]Tatusov R L, Koonin E V, Lipman D J. A genomic perspective on protein families[J]. Science, 1997, 278: 63-637.
    [3]李子银,陈受宜.植物的功能基因组学研究进展[J].遗传, 2000, 22: 57-60.
    [4]赵剑华,王秀琴,刘芝华,等.功能基因组学的研究内容与方法[J].生物化学与生物物理进展, 2000, 27: 6-8.
    [5]Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome[J]. Science, 2001, 291(5507): 1304-1351.
    [6]Shizuya H, Kouros-Mehr H. The development and applications of bacterial artificial chromosome cloning system[J]. The Keio Journal of Medicine, 2001, 50: 26-30.
    [7]Clarke L, Carbon J. A colony bank containing synthetic Col E1 hybrid plasmids representative of the entire E. coli genome[J]. Cell, 1976, 9: 91.
    [8]方德福.医学分子生物学词典[M].北京:北京医科大学、中国协和医科大学联合出版社, 1996.
    [9]Cohen S N , Chang A C , Boyer HW, et al. Construction of biologically functional bacterial plasmids in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(11): 3240-3244.
    [10]Ioannou P A, Amemiya C T, Garnes J, et al. A new bacteriophage P1-derived vector for thepropagation of large human DNA fragments[J]. Nature Genetics, 1994, 6: 84-89.
    [11]Murray N E, Murray K. Manipulation of restriction targets in phage lambda to form receptor chromosomes for DNA fragments[J]. Nature, 1974, 251: 476-481.
    [12]Murray N E, Brammar W J, Murray K. Lamdoid phages that simplify the recovery of in vitro recombinants[J]. Molecular and General Genetics, 1977, 150: 53-61.
    [13]李南羿,姚占芳,陈明杰.草菇噬菌体基因文库的构建[J].食用菌学报, 2001, 8(2): 15-18
    [14]尚毅,马璐琳,亓增军,等.噬菌体cDNA文库筛选方法的改良[J].生物学杂志, 2010, 27(5): 91-93.
    [15]Collins J, Hohn B. Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lambda heads[J]. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(9): 4242-4246.
    [16]Lazo G R, Stein P A, Ludwig R A. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium[J]. Nature Biotechnology, 1991, 9: 963-967.
    [17]Ma H, Yanofsky M F, Klee H J, et al. Vectors for plant transformation and cosmid libraries[J]. Gene, 1992, 117: 161-167.
    [18]Cross S H, Little P F R. A cosmid vector for systematic chromosome walking[J]. Gene, 1986, 49: 9-22.
    [19]Hauge B M, Hanley S, Giraudat J, et al. Mapping the Arabidopsis genome. Symposia of the Society for Experimental Biology, 1991, 45: 45-56.
    [20]Giraudat J, Hauge B M, Valon C, et al. Isolation of the Arabidopsis ABI3 gene by positional cloning[J]. The Plant Cell, 1992, 4: 1251-1261.
    [21]易厚富,刘兵,范云.水稻广亲和品种核DNA cosmid文库的构建和鉴定[J].热带亚热带植物学报, 2001, 9(3): 185-189.
    [22]Burke D T, Carle G F, Olson M, Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors[J]. Science, 1987, 236: 806-812.
    [23]Albertsen H M, Abderrahim H, Cann H M, et al. Construction and characterization of a Yeast Artificial Chromosome library containing seven haploid human genome equivalents[J]. Proceedings of the National Academy of Sciences, USA. 1990, 87: 4256-4260.
    [24]Neil D L, Villasante A, Fisher R B, et al. Structural instability of human tandemly repeated DNA sequences cloned in yeast artificial chromosome vectors[J]. Nucleic Acids Research, 1990, 18: 1421-1428.
    [25]Kipling D, Wilson H E, Thomson E J, et al. YAC cloning Mus musculus telomeric DNA: physical, genetic, in situ and STS markers for the distal telomere of chromosome 10[J]. Human Molecular Genetics, 1995, 4: 1007-1014.
    [26]Chumakov I M, Rigault P, Le Gall I, et al. A YAC contig map of the human genome[J]. Nuture, 1995, 377(6547 Suppl.): 175-297.
    [27]Chartier F L, Keer J T, Sutcliffe M J, et al. Construction of a mouse yeast artificial chromosome library in a recombination-deficient strain of yeast[J]. Nature Genetics, 1992, 1:132-136.
    [28]Nusbaum C, Slonim D K, Harris K L, et al. A YAC-based physical map of the mouse genome[J]. Nature Genetics, 1999, 229(4): 388-393.
    [29]Umehara Y, Inagaki A, Tanoue H, et al. Construction and characterization of a rice YAC library for physical mapping[J]. Molecular Breeding, 1995, 1: 79-89.
    [30]Umehara Y, Tanoue H, Kurata N, et al. An ordered yeast artificial chromosome library covering over half of rice chromosome 6[J]. Genome Research, 1996, 6: 935-942.
    [31]Kurata N, Umehara Y, Tanoue H, et al. Physical mapping of the rice genome with YAC clones[J]. Plant Molecular Biology, 1997, 35(1-2): 101-113.
    [32]Saji S, Umehara Y, Antonio B A, et al. A physical map with yeast artificial chromosome (YAC) clones covering 63 % of the 12 rice chromosomes[J]. Genome, 2001, 44: 32-37.
    [33]Grill E, Somerville C. Construction and characterization of a yeast artificial chromosome library of Arabidopsis which is suitable for chromosome walking[J]. Molecular and General Genetics, 1991, 226(3): 484-490.
    [34]Schmidt R, West J, Love K, et al. Physical map and organization of Arabidopsis thaliana chromosome 4[J]. Science, 1995, 270: 480-483.
    [35]Zachgo E A, Wang M L, Dewdney J, et al. A physical map of chromosome 2 of Arabidopsis thaliana[J]. Genome Research, 1996, 6: 19-25.
    [36]Canilleri C, Lafleuriel J, Macadre C, et al. A YAC contig map of Arabidopsis thaliana chromosome 3[J]. The Plant Journal, 1998, 14: 633-642.
    [37]Martin G B, Ganal M W, Tanksley S D. Construction of a yeast artificial chromosome library of tomato and identification of choned segments linked to two disease resistance loci[J]. Molecular General Genetics, 1992, 233(1-2): 25-32.
    [38]Simons G, Groenendijk J, Wijbrandi J, et al. Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy[J]. The Plant Cell, 1998, 10: 1055-1068.
    [39]Edwards K J, Thompson H, Edwards D, et al. Construction and characterization of a yeast artificial chromosome library containing three haploid maize genome equivalents[J]. Plant Molecular Biology, 1992, 19(2): 299-308.
    [40]Klein C B and Costa M. DNA methylation, heterochromatin and epigenetic carcinogens[J]. Mutation Research, 1997, 386: 163-180.
    [41]Anderson C. Genome shortcut leads to problems[J]. Science, 1993, 259: 1684-1687.
    [42]Venter J C, Smith H O, Hood L. A new strategy for genome sequencing[J]. Nature, 1996, 381: 364-366.
    [43]Venter J C, Adams M D, Sutton G G, et al. Shotgun sequencing of the human genome[J]. Science, 1998, 280: 1540-1542.
    [44]O’Connor M, Peifer M, Bender W. Construction of large DNA segments in Escherichia coli[J]. Science, 1989, 244:1307-1312.
    [45]Sternberg N, Ruether J, deRiel K. Generation of a 50,000-member human DNA library with an average DNA insert size of 75-100 kbp in a bacteriophage P1 cloning vector[J]. The New Biologist, 1990, 2(2): 151-162.
    [46]Pierce J C, Sternberg N, Sauer B. A mouse genomic library in the bacteriophage P1 cloning system: organization and characterization[J]. Mammalian Genome, 1992, 3: 550-558.
    [47]Shizuya H, Birren B, Kim U J, et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89: 8794-8797.
    [48]Gingrich J C, Boehrer D M, Games J A, et al. Construction and characterization of human chromosome 2-specific cosmid, fosmid, and PAC clone libraries[J]. Genomics, 1996, 32: 65-74.
    [49]Hosoda F, Nishimura S, Uchida H, et al. An F factor based cloning system for large DNA fragments[J]. Nucleic Acids Research, 1990, 18: 3863-3869.
    [50]Choi S, Creelman R A, Mullet J E, et al. Construction and characterization of a bacterial artificial chromosome library of Arabidopsis thaliana[J]. Plant Molecular Biology Reporter, 1995, 13: 124-128.
    [51]Lin X, Kaul S, Rounsley S, et al. Sequencing and analysis of chromosome 2 of the plant Arabidopsis thaliana[J]. Nature, 1999, 402: 761-768.
    [52]Mayer K, Sch?ller C, Wambutt R, et al. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana[J]. Nature, 1999, 402: 769-777.
    [53]彭开蔓,张洪斌,张启发.优良水稻品种明恢63BAC文库的构建[J].植物学报, 1998, 40(12): 1108-1114.
    [54]Qiu F, Jin D M, Fu J M, et al. Construction and characterization of a bacterial artificial chromosome library of thermo-sensitive genie male-sterile rice 5460S[J]. Science in China Series C: Life Sciences, 1999, 29(5): 515-524.
    [55]陈琪,邓一文,黄彬彬,等.抗稻瘟病水稻BAC文库的构建与鉴定[J].上海大学学报(自然科学版), 2007, 13(3): 325-330.
    [56]毛丹青,罗美中.水稻培矮64S(PA64S)基因组BAC文库的构建与分析[J].中国农业科技导报, 2010, 12(3): 103-107.
    [57]Ma Z Y, Song W, Peter J S, et al. Non-gridded library: A new approach for BAC(bacterial artificial chromosome)exploitation in hexaploid wheat(Triticum aestivum)[J]. Nucleic Acids Research, 2000, 28(24): e106.
    [58]Chen F G, Zhang X Y, Xia G M, et al. Construction and characterization of a bacterial artificial chromosome library for Triticum boeoticum[J]. Acta Botanica Sinica, 2002, 44: 451-456.
    [59]Zhang F D, Zheng Y L, Cao Z G. Construction of a bacterial artificial chromosome library of S-type CMS maize mitochondria[J]. Chinese Science Bulletin, 2000, 45(18): 1692-1697.
    [60]Yang J L, Wang Q H, Deng D Y, et al. Construction and characterization of a bacterial artificial chromosome library of maize inbred line 77Ht2[J]. Plant Molecular Biology Reporter, 2003, 21(2): 159-169.
    [61]Yu Y, Tomkins J P, Waugh R, et al. A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes[J]. Theoretical and Applied Genetics, 2000, 101: 1093-1099.
    [62]王省芬,马骏,马峙英,等.高纤维强力棉花种质系苏远7235BAC文库的构建[J].棉花学报, 2006, 18(4): 200-203.
    [63]Danesh D, Pe?uela S, Mudge J, et al. A bacterial artificial chromosome library for soybean and identification of clones near a major cyst nematode resistance gene[J]. Theoretical and Applied Genetics, 1998, 96: 196-202.
    [64]Salimath S S, Bhattacharyya M K. Generation of a soybean BAC library, and identification of DNA sequences tightly linked to the Rps1-k disease resistance gene[J]. Theoretical and Applied Genetics, 1999, 98: 712-720.
    [65]许靖曼,魏文辉,沙爱华,等.大豆多粒荚特异材料BAC文库的构建[J].中国油料作物学报, 2010, 32(2): 191-195.
    [66]Vicente J G, King G J. Characterization of disease resistance gene-like sequences in Brassica oleracea L[J]. Theoretical and Applied Genetics, 2001, 102: 555-563.
    [67]Gao M, Li G, Yang B, et al. Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence[J]. Genome, 2004, 47: 666-679.
    [68]陈书元,晁金泉,徐有明,等.甘蓝型油菜—新疆野生油菜二体异附加系BAC文库的构建[J].中国油料作物学报, 2008, 30(2): 137-142.
    [69]关媛,陈琪,潘俊松,等.黄瓜(Cucumis sativus L.) BAC文库的构建及连锁群特异克隆的分离[J].自然科学进展, 2008, 18(2): 211-215.
    [70]http://sgn.cornell.edu[DB/OL].
    [71]http://www.potatogenome.net[DB/OL].
    [72]Vinatzer B A, Zhang H B, Sansavini S. Construction and characterization of a bacterial artificial chromosome library of apple[J]. Theoretical and Applied Genetics, 1998, 97: 1183-1190.
    [73]潘腾飞,潘东明,姜翠翠,等.琯溪蜜柚BAC文库的构建和汁胞粒化相关基因的筛选[J].中国农业科学, 2010, 43(18): 3791-3797.
    [74]Nam Y W, Penmetsa R V, Endre G, et al. Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes[J]. Theoretical and Applied Genetics, 1999, 98: 638-646.
    [75]Hohmann U, Jacobs G, Telgmann A, et al. A bacterial artificial chromosome (BAC) library of sugar beet and a physical map of the region encompassing the bolting gene B[J]. Molecular Genetics and Genomics, 2003, 269: 126-136.
    [76]代培红,孟志刚,罗淑萍,等.棉花线粒体基因组细菌人工染色体文库的构建[J].新疆农业大学学报, 2007, 30(4): 57-62.
    [77]费晓燕,赵洪锟,刘晓东,等.大豆细胞质雄性不育系配套保持系线粒体基因组BAC文库的构建[J].大豆科学, 2011, 30(3): 401-404.
    [78]Kim U J, Shizuya H, de Jong P J, et al. Stable propagation of cosmid size human DNA insert in an F factor based vector[J]. Nucleic Acids Research, 1992, 20(5): 1083-1085.
    [79]程洁,张玲玲,黄晓婷,等.栉孔扇贝Fosmid文库的构建及基因组结构特征分析[J].中国海洋大学学报, 2008, 38(1): 78-88.
    [80]李朋波,薛龙飞,王彦霞,等.雷蒙德氏棉叶绿体基因组Fosmid文库构建[J].棉花学报, 2011, 23(1): 10~14.
    [81]Hamilton C M. A binary-BAC system for plant transformation with high molecular weight DNA[J]. Gene, 1997, 200: 107-116.
    [82]Hamilton C M. BIBAC technology: progress and prospects[J]. Agbiotech News and Information, 1998, 10(1): 23-28.
    [83]Liu Y G, Shirano Y, Fukaki H, et al. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerate positional choning[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 6535-6540.
    [84]Liu Y G, Nagaki K, Fujita M, et al. Development of an efficient maintenance and screening system for large-insert genomic DNA libraries of hexaploid wheat in a transformation- competent artificial chromosome (TAC) vector[J]. The Plant Journal, 2000, 23(5): 687-695.
    [85]Liu Y G, Liu H M, Qiu W H, et al. Development of new transformation-Competent artificial chromosome vectors and rice genomic libraries for efficient gene cloning[J]. Gene, 2002, 282:247-255.
    [86]刘华清,周丽君,段远霖,等.籼稻品种H359基因组可转化人工染色体(TAC)文库的构建[J].分子植物育种, 2003, 1(1): 27-32.
    [87]郭煕志,刘耀光,罗达.以可转化人工染色体TAC载体为基础的百脉根基因组文库的构建及筛选[J].植物生理与分子生物学报, 2004, 30(2): 234-238.
    [88]Sawa S, Watanabe K, Goto K, et al, FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domain[J]. Genes Development, 1999, 13: 1079-1088.
    [89]Sato S, Kato T, Kakegawa K, et al. Role of putative membrane-bound endo-1,4-β-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2001, 42: 251-263.
    [90]张洋,张晓军,刘斌,等.基因组研究的关键平台——大片段文库[J].海洋科学, 2008, 32(4): 74-81.
    [91]李磊.野生稻基因组富集文库的构建及抗性基因筛选[D].中南大学硕士学位论文, 2008.
    [92]Firth N, Ippen-Ihler K, Skurray R A. Structure and function of the F factor and mechanism of conjugation. In Neidhardt F C, CurtissⅢR, Ingraham J L, et al. , Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. American Society for Microbiology, Washington, D. C. 1996, 2377-2401.
    [93]Frijters A C, Wang Z, Van Damme M, et al. Construction of a BAC library containing large EcoRⅠand HindⅢgenomic fragments of lettuce[J]. Theoretical and Applied Genetics, 1997, 94: 390- 399.
    [94]刘越.矮败-中国春小麦品系BAC文库的构建与筛选[D].中国农业科学院硕士学位论文, 2003.
    [95]Osoegawa K, Woon P Y, Zhao B, et al. An improved approach for construction of bacterial artificial chromosome libraries[J]. Genomics, 1998, 52:1-8.
    [96]Qian Y, Jin L, Su B. Construction and characterization of bacterial artificial chromosome library of black-handed spider monkey (Ateles geoffroyi) [J]. Genome, 2004, 47(2): 239-245.
    [97]Liu W, Zhao Y, Liu Z, et al. Construction of a 7-fold BAC library and cytogenetic mapping of 10 genes in the giant panda(Ailuropoda melanoleuca) [J]. BMC Genomics, 2006, 7: 294.
    [98]Tao Q Z, Zhang H B. Cloning and stable maintenance of DNA fragments over 300kb in Escherichia coli with conventional plasmid-based vectors[J]. Nucleic Acids Research, 1998, 26(21): 4901-4909.
    [99]耿波.黑龙江野鲤细菌人工染色体基因组文库的构建及在基因组研究中的应用[D].吉林大学博士学位论文, 2007.
    [100]Arondel V, Lemieux B, Hwang I, et al. Map-based cloning of a gene controlling omega-3 fatty desaturation in Arabidopsis[J]. Science, 1992, 258: 1353-1355.
    [101]Stein N, Catherine F, Thomas W, et al. Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.) [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 13436-13441.
    [102]Yan L, Loukoianov A, Tranquilli G, et al. Positional cloning of the wheat vernalization gene VRN1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 6263-6268.
    [103]徐洪伟,周晓馥.图位克隆技术在水稻基因定位和克隆中的应用[J].吉林师范大学学报(自然科学版), 2008, (4): 28-30.
    [104]洪国藩.水稻基因组重叠群——1998年1月向全球公开重叠群的细节.生命科学, 1998, 10(1): 1-3.
    [105]Mozo T, Dewar K, Dunn P, et al. A complete BAC-based physical map of the Arabidopsis thaliana genome[J]. Nature Genetics, 1999, 22: 271-275.
    [106]Wu C, Sun S, Nimmakayala P, et al. A BAC-and BIBAC-based physical map of the soybean genome[J]. Genome Research, 2004, 14: 319-326.
    [107]Mun J H, Kwon S J, Yang T J, et al. The first generation of a BAC-based physical map of Brassica rapa[J]. BMC Genomics, 2008, 9: 280.
    [108]Goff S A , Ricke D , Lan T H, et al. A draft sequence of the rice genome (Oryzasativa L. ssp. japonica) [J]. Science, 2002 , 296 (5565) : 92-100.
    [109]Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryzasativa L. ssp. indica) [J]. Science, 2002, 296 (5565): 79-92.
    [110]International rice genome sequencing project. The map-based sequence of the rice genome [J]. Nature, 2005, 436(7052): 793-800.
    [111]刘蓉蓉.高等植物基因组测序回顾与展望[J].生物技术通报, 2011, 5: 10-14.
    [112]Hattori M. Fujiyama A, Taylor T D, et al. The DNA sequencing of human chromosome 21[J]. Nature, 2000, 405: 311-319.
    [113]Kim U J, Shizuya H, Chen X N, et al. Characterization of a human chromosome 22 enriched bacterial artificial chromosome sublibrary[J]. Genetic Analysis, 1995, 12: 73-79.
    [114]Kim U J, Birren B W, Slepak T, et al. Construction and characterization of a human bacterial artificial chromosome library[J]. Genomics, 1996, 34: 213-218.
    [115]Dunham I, Hunt A R, et al. The DNA sequencing of human chromosome 22[J]. Nature, 1999, 402: 489-495.
    [116]Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome complexity, diversity, and dynamics[J]. Science, 2009, 326(5956): 1112-1115.
    [117]Paterson A H, Bowers J E, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009, 457: 551-556.
    [118]Chan A P, Crabtree J, Zhao Q, et al. Draft genome sequence of the oilseed species Ricinus communis[J]. Nature Biotechnology, 2010, 28(9): 951-959.
    [119]Hennig W. The revolution of biology of the genome[J]. Cell Research, 2004, 14: 1-7.
    [120]Initiative A G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814): 796-815.
    [121]Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J].Nature, 2010, 463: 178-183.
    [122]Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus domestica Borkh.) [J]. Nature Genetics, 2010, 48: 833-839.
    [123]Achenbach U C, Tang X M, Ballvora A, et al. Comparison of the chromosome maps around a resistance hot spot on chromosome 5 of potato and tomato using BAC-FISH painting[J]. Genome, 2010, 53: 103-110.
    [124]覃瑞,魏文辉,金危危,等.与Gm-6和Pi-5(t)连锁的栽培稻BAC克隆在药用野生稻中的FISH定位[J].科学通报, 2000, 45: 2427-2430.
    [125]李霞,李宗芸,覃瑞,等.与Pi-2(t)基因连锁的栽培稻BAC克隆在药用野生稻和栽培稻中的比较物理定位[J].武汉大学学报(理学版), 2001, 47(4): 503-507.
    [126]王凯,张燕洁,关兵,等.棉花细菌人工染色体的荧光原位杂交(BAC-FISH)技术[J].生物化学与生物物理进展. 2007, 34(11): 1216-1222.
    [127]Dong F, Song J, Naess S K, et al. Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato[J]. Theoretical and Applied Genetics, 2000, 101: 1001-1007.
    [128]Cheng Z, Buell C R, Wing R A, et al. Toward a cytological characterization of the rice genome[J]. Genome Research, 2001, 11: 2133-2141.
    [129]鄢慧民,宋运淳,李立家,等.水稻Xa21基因在水稻和玉米中的比较物理定位[J].植物学报, 1999, 41: 249-253.
    [130]Kim J S, Childs K L, Islam-Faridi M N, et al. Integrated karyotyping of sorghum by in situ hybridization of landed BACs[J]. Genome, 2002, 45: 402-412.
    [131]Tang X M, de Boer J M, van Eck H J, et al. Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology[J]. Chromosome Research, 2009, 17: 899-915.
    [132]Lichtenzveig J, Scheuring C, Dodge J, et al. Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L[J]. Theoretical and Applied Genetics, 2004, 110: 492-510.
    [133]陆才瑞,喻树迅,于霁雯,等.功能性分子标记(ISAP)的开发及评价[J].遗传, 2008, 30(9): 1207-1216.
    [134]李媛媛,傅廷栋,马朝芝.芸薹属植物比较基因组学研究进展[J].植物学通报, 2007, 24(2): 200-207.
    [135]http://www.brassica.info[DB/OL].
    [136]Bancroft I. The multinational Brassica genome project[J]. Acta Horticulturae, 2006, 706: 65-66.
    [137]王晶,孟金陵.芸薹属作物基因组研究进展及其在育种中的意义[J].分子植物育种, 2010, 8(5): 837- 845.
    [138]Gao M, Li G, Potter D, et al. Comparative analysis of methylthioalkylmalate synthase (MAM) gene family and flanking DNA sequences in Brassica oleracea and Arabidopsis thaliana[J]. Plant Cell Reports, 2006, 25: 592-598.
    [139]Trick M, Bancroft I, Lim Y P. The Brassica rapa genome sequencing initiative[J]. Genes,enomes and Genomics, 2007, 1: 35-39.
    [140]Suwabe K, Morgan C, Bancroft I. Integration of Brassica a genome genetic linkage map between Brassica napus and B. rapa[J]. Genome, 2008, 51: 169-176.
    [141]Howell E C, Barker G C, Jones G H, et al. Integration of the cytogenetic and genetic linkage maps of Brassica oleracea[J]. Genetics, 2002, 161: 1225-1234.
    [142]Jackson S A, Cheng Z, Wang M L, et al. Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome[J]. Genetics, 2000, 156: 833-838.
    [143]Lysak M A, Koch M A, Pecinka A, et al. Chromosome triplication found across the tribe Brassiceae[J]. Genome Research, 2005, 15: 516-525.
    [144]Lysak M A, Berr A, Pecinka A, et al. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 5224-5229.
    [145]Gao M, Li G, McComble W R, et al. Comparative analysis of a transposon-rich Brassica oleracea BAC clone with its corresponding sequence in A. thaliana[J]. Theoretical and Applied Genetics, 2005, 111: 949-955.
    [146]Town C D, Cheung F, Maltl R, et al. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy[J]. The Plant Cell, 2006, 18: 1348-1359.
    [147]Park J Y, Koo D H, Hong C P, et al. Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kb gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5[J]. Molecular Genetics and Genomics, 2005, 274(6): 579-588.
    [148]Hong C P, Plaha P, Koo D H, et al. A survey of the Brassica rapa genome by BAC-end sequence analysis and comparative analysis with Arabidopsis thaliana[J]. Molecules and Cells, 2006, 22: 300-307.
    [149]Yang TJ, Kim J S, Lim K B, et al. The Korea Brassica Genome Project: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis[J]. Comparative and Functional Genomics, 2005, 6: 138-146.
    [150]Yang TJ, Kim J S, Kwon S J, et al. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa[J]. The Plant Cell, 2006, 18: 1339-1347.
    [151]Qiu D, Gao M, Li G, et al. Comparative sequence analysis for Brassica oleracea with similar sequences in B. rapa and Arabidopsis thaliana[J], Plant Cell Reports, 2009, 28: 649-661.
    [152]Lim Y P, Plaha P, Choi S R, et al. Toward unraveling the structure of Brassica rapa genome[J]. Physiologia Plantarum, 2006, 126: 585-591.
    [153]Levy Y Y, Dean C. The transition to flowering[J]. The Plant Cell, 1998, 10: 1973-1989.
    [154]Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2004, 55(1): 521-535.
    [155]Boss P K, Bastow R M, Mylne J S, et al. Multiple pathways in the decision to flower: enabling, promoting, and resetting[J]. The Plant Cell, 2004, 16: S18-S31.
    [156]He Y, Amasino R M. Role of chromatin modification in flowering time control[J]. Trends in Plant Science, 2005, 10: 30-35.
    [157]Irish V F, Sussex I M. Function of the apetala-1 gene during Arabidopsis floral development[J]. The Plant Cell, 1990, 2(8), 741-753.
    [158]Schultz E A, Haughn G W. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis[J]. The Plant Cell, 1991, 3(8), 771-781.
    [159]Jack T. Molecular and Genetic Mechanisms of Floral Control[J]. The Plant ce11, 2004, 16: 1-17.
    [160]Yasushi K, Weigel D. Move on up, it's time for change-mobile signals controlling photoperiod-dependent flowering[J]. Genes and Development, 2007, 21: 2371-2384.
    [161]Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors[J]. Cell, 1995, 80(6): 847-857.
    [162]Guo H W, Yang W Y. Regulations of flowering time by Arabidopsis photoreceptors[J]. Science, 1998, 279: 1360-1363.
    [163]Kardailsky I. Activation tagging of the floral inducer FT[J]. Science, 1999, 286: 1962-1965.
    [164]Onouchi H, Igeńo M I, Périlleux C, et al. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes[J]. The Plant Cell, 2000, 12: 885-900.
    [165]Bagnall D J, King, R W. Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana Heynh.[J]. Plant Physiology, 1995, 108: 1495-1503.
    [166]Green R M, Tobin E M. Loss of the circadian clock associated protein I in Arabidopsis results in altered clock-regulated gene expression[J]Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4176-4179.
    [167]Klejnot J, Lin C. A CONSTANS experience brought to light[J]. Science, 2004, 303(13): 965-966.
    [168]Valverde F, Mouradov A, Soppe W, et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering[J]. Science, 2004, 303:1003-1006.
    [169]Imaizumi T, Schultz T F, Harmon F G, et al. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis[J]. Science, 2005, 309: 293-297.
    [170]Nakamichi N, Kita M, Niinuma K, et al. Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway[J]. Plant and Cell Physiology, 2007, 48(6): 822-832.
    [171]Baurle I, Dean C. The timing of development transitions in plants[J]. Cell, 2006, 125(4): 655-664.
    [172]Imaizuni T, Kay S A. Photoperiodic control of flowering: not only by coincidence[J]. Trends inPlant Science, 2006, 11(11): 550-558.
    [173]Takase T, Yasuhara M, Geekiyanage S, et al. Overexpression of the chimeric gene of the floral regulator CONSTANS and the EAR motif repressor causes late flowering in Arabidopsis[J]. Plant Cell Reports, 2007, 26: 815-821.
    [174]Yano M, KatayoseY, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS[J]. The Plant Ce11, 2000, 12: 2473-2484.
    [175]Moon Y H, Chae S, Jung J Y, et al. Expressed sequence tags of radish flower buds and characterization of a CONSTANSLIKE1 gene[J]. Molecules and Cells, 1998, 8: 452-458.
    [176]Liu J, Yu J, Mcintosh L, et al. Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering[J]. Plant Physiology, 2001, 125(4): 1821-1830.
    [177]Yuceer C, Harkess R L, Land S B, et al. Structure and developmental regulation of CONSTANS-LIKE genes isolated from Populus deltoids[J]. Plant Science, 2002, 163: 615-625.
    [178]Nemoto Y, Kisaka M, Fuse T, et al. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice[J]. The Plant Journal, 2003, 36(1): 82-93.
    [179]Martin J, Storgaard M, Andersen C H, et al. Photoperiodic regulation of flowering in Perennial ryegrass involving a CONSTANS-like homolog[J]. Plant Molecular Biology, 2004, 56(2): 159-169.
    [180]Hecht V, Foucher F, Ferrándiz C, et al. Conservation of Arabidopsis flowering genes in model legumes[J]. Plant Physiology, 2005, 137: 1420-1434.
    [181]Drobyazina P E, Khavkin E E. A Structural homolog of CONSTANS in potato[J]. Russian Journal of Plant Physiology, 2006, 53(5): 698-701.
    [182]Ben-naim O, Eshed R, Parnis A, et al. The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA[J]. The Plant Journal, 2006, 46(3): 462-476.
    [183]赵志琴,安丽君,李芳,等.草莓CO基因克隆与表达分析[J].中国农业大学学报, 2010, 15(1): 19-24.
    [184]Hayama R, Agashe B, Luley E, et al. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis[J]. The Plant Cell, 2007, 19: 2988-3000.
    [185]Turner A, Beales J, Faure S, et al. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science, 2005, 310: 1031-1034.
    [186]Miller T A, Muslin E H, Dorweiler J E. A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods[J]. Planta, 2008, 227(6): 1377-1388.
    [187]Chia TY P, Müller A, Jung C, et al. Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting(B) gene locus[J]. Journal of Experimental Botany, 2008, 59(10): 2735-2748.
    [188]Tadege M, Sheldon C C, Helliwell C A, et al. Control of flowering time by FLC orthologues in Brassica napus[J]. The Plant Journal, 2001, 28(5): 545-553.
    [189]Schranz M E, Quijada P, Sung S, et al. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa[J]. Genetics. 2002, 162: 1457-1468.
    [190]Axelsson T, Shavorskaya O, Lagercranz U. Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene[J]. Genome, 2001, 44: 856-864.
    [191]申书兴,侯喜林,张成合.利用小孢子培养创建大白菜初级三体的研究[J].园艺学报, 2006, 33 (6): 1209-1214.
    [192]张玉成.结球甘蓝—大白菜部分单体异附加系的创建[D].河北农业大学硕士学位论文, 2008.
    [193]顾爱侠,郑宝智,王彦华,等.附加甘蓝3号染色体的大白菜单体异附加系的获得[J].园艺学报, 2009, 36 (1): 39-44.
    [194]张巍巍,申书兴,王彦华,等.结球甘蓝—大白菜异源三倍体小孢子培养的研究[J].园艺学报, 2009, 36 (4): 583-586.
    [195]石学萍,冯大领,王彦华,等.大白菜开花相关基因FLC1的BAC克隆筛选及分析[J].园艺学报, 2010, 37(9): 1513-1516.
    [196]Zhang H B, Zhao X P, Ding X L, et al. Preparation of megabase-size DNA from plant nuclei[J]. The Plant Journal, 1995, 7: 175-184.
    [197]周玉雷,徐粤宇,赵茂林,等.多汁赖草高分子量核DNA的有效制备[J].草业科学, 2007, 24(10): 52-56.
    [198]Bennett M D, Leitch I J. Nuclear DNA amounts in angiosperms[J]. Annals of Botany, 1995, 76(2): 113-176.
    [199]Johnston J S, Pepper A E, Hall A E, et al. Evolution of genome size in Brassicaceae[J]. Annals of Botany, 2005, 95(1): 229-235.
    [200]郑拥民.棉花品种细菌人工染色体(BAC)文库的构建[D].河北农业大学硕士学位论文, 2005.
    [201]Woon P Y, Osoegawa K, Kaisaki P J, et al. Construction and characterization of a10-fold genome equivalent rat Pl-derived artificial chromosome library[J]. Genomics, 1998, 50(3): 306-316.
    [202]Strong S J, OhtaY, Litman G W, et al. Marked improvement of PAC and BAC cloning is achieved using electroelution of pulsed-field gel-separated partial digests of genomic DNA[J]. Nucleic Acids Research, 1997, 25: 3959-3961.
    [203]吴新东,陈芳,李鑫,等.中国美利奴细毛羊BAC文库的三维PCR筛选[J].生物工程学报, 2008, 24(10): 1828-1831.
    [204]Yang W C, Bai X D, Kabelka E, et al. Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags[J]. Molecular Breeding, 2004, 14: 2134.
    [205]张洪映,毛新国,景蕊莲,等.小麦TaPK7基因单核苷酸多态性与抗旱性的关系[J].作物学报, 2008, 34(9): 1537-1543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700