高分辨测向阵列几何结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在通信、雷达、声纳、地震勘测及生物医学工程等领域里,对辐射源的方向估计是一项重要的课题。传感器阵列可利用辐射源信号抵达不同阵元的波程差进行测向,因而成为当今测向的主要工具。
     来自不同方向的信号呈现出不同的空间频率,测向可以通过对这些信号空间频率的估计来实现。阵列各阵元是安置在空间的采样点,可以通过这些采样点上获得的信号样本来估计信号的空间频率,进而获知信号的波达方向,可见这些采样点的布局方式,也就是阵列的(几何)结构,对系统的测向性能有着重要影响。因此对阵列结构的研究非常必要。
     阵列结构对系统的影响还与系统所采用的测向算法有关。目前最流行的一类算法是基于子空间分解的算法,该方法具有分辨力高、计算复杂度小等优点。但是由于它的高度非线性,采用该算法的系统性能与阵列结构的关系较为复杂。作为阵列结构的设计优化准则,需要对这种关系进行研究,进而得到适用的设计方法。
     困扰子空间类算法的一个重要问题是模糊问题。流形模糊发生的原因是阵列流形上出现了线性相关的导向矢量。因为阵列流形是阵列结构的函数,所以阵列结构对模糊有着直接的影响。对模糊问题的研究可分两方面:
     1、分析阵列结构与模糊的关系。研究某种结构的阵列中是否存在模糊、模糊都发生在哪些角度上。
     2、当模糊发生后,研究这些模糊是否可解,如果可解,找到解决模糊问题的方法。
     针对上述阵列结构问题,本文给出如下一些新的研究结果:
     1、提出一种基于阵列流形长度的指标来比较不同结构线阵的测向精度。
     传统上评价一个阵列的测向性能一般是考察其孔径的大小,但是除了阵列的孔径之外,阵元的数量、各阵元的分布位置等都是影响阵列测向性能的重要因素。作者所提出的指标可将这些因素通盘考虑以评价阵列的测向精度。
     2、推出了立体阵对波达方向估计的CRLB。
     平面阵可用来测入射波的方位角和仰角,但是在低仰角区域,它对仰角的估计变差。立体阵可克服这一缺点。我们推出了立体阵测向的CRLB与其阵列结构的直接关系,证实了立体阵在这方面的优点。
     3、本文给出了线阵、面阵的阵列结构误差与其所造成的子空间算法的测向误差之间的关系。讨论了若干阵列对结构误差的敏感性。
     由于实际阵列都不可避免地存在结构误差,这种误差会降低子空间算法的测向性能。本文通过对阵列流形的研究,给出了结构误差与测向误差之间的解析关系。
     4、提出一种基于二维角度测向性能的面阵设计技术。
     现有的面阵设计方法只考虑到仰角的性能,而面阵可完成二维角度测向,所以,在面阵设计时最好能考虑到二维角度上的测向性能。作者在把波达方向的方位角、仰角坐标系转化为锥角坐标后,提出了这种能兼顾二维方向性能的面阵设计技术。
     5、给出了任意线阵、面阵在仰角方向上无秩二模糊的条件。由于阵列流形的高度非线性,至今对阵列结构与流形模糊的研究仍不完善。鉴于低阶模糊对测向系统的影响更大,本文就任意线阵、面阵在仰角方向上的秩二模糊进行了研究,给出了无秩二模糊的条件。
     6、提出了一种采用最陡下降优化技术的解模糊方法。
     采用稀疏阵列可以提高系统测向性能、节约成本,但是必然会产生流形模糊,因此需要解模糊。由于现有的解模糊方法对系数误差较为敏感,故提出采用了最陡下降优化方法的解模糊算法,实验证明这种方法更为稳健。
In such fields as communication,radar,sonar,seismology and biomedicalengineering,the estimation of Direction of Arrival(DOA) is a very important subject.Sensors array is often employed as the equipment of Direction Finding(DF) because thephase difference of impinging signals between the sensors of array can be used toestimate DOA.
     The impinging signals coming from different DOAs exhibit different spatialfrequencies,the estimation of DOAs can be implemented by estimating spatialfrequencies.The sensors of array are sampling points arranged spatially,samples fromthe sensors can be used to estimate the spatial frequencies,i.e.,the DOAs,so,thearrangement of the spatial sampling points,namely,the array geometry,exerts greatinfluence on the performance of DF system.The study of array geometry is an essentialtopic in array signal processing.
     The influence of array geometry on the performance of DF system depends onDOA estimation algorithms.Subspace algorithms are popular for their high resolutionand low complexity.For the nonlinearity of those algorithms,the relationship betweenarray geometry and the performance of the DF system adopting the algorithms iscomplex.Even though,as the criteria of design and optimization of array geometry,therelationship needs to be studied.
     One problem which subspace algorithms suffer is ambiguity.Manifoldambiguities occur when there are linear dependent steer vectors on array manifold.Manifold is a function of array geometry,so the ambiguities are determined by arraygeometry.The study of ambiguity consists of two parts:
     1.Studying the relationship between the array geometry and ambiguity;Findingthe existence condition of ambiguity on certain array geometry and locating theambiguities.
     2.Determining if the ambiguities can be resolved;Designing method to resolvethe ambiguities.
     About the geometry of array,the following novel results are presented in this thesis.
     1.Based on minimal manifold length,an index is suggested,the index can beused to evaluate the accuracy performance of given linear array.
     Conventionally,aperture is often used as an index to compare the performance ofdifferent linear arrays,but it does not take into account the number of sensor and thearray geometry.We propose an index to evaluate accuracy of linear array,the indexconsiders the whole information of array geometry.
     2.The CRLB of DOA estimation on volume array is deduced.
     Planar array can be used to estimate azimuth and elevation,but in the zone of lowelevation,the estimation of elevation becomes worse.To overcome the shortcoming,the application of volume array is suggested.In this thesis,we deduce the relationshipbetween the CRLB of DOA estimation on volume array and the geometry of the volumearray.The CRLB verify the experience that volume array outperform planar array inlow elevation zone
     3.The relationship between the geometry errors of array and errors of DOAsestimated by subspace algorithm is deduced.The sensitivity of several planar arrayswith respect to geometry errors is studied.
     In practice,the arrays suffer geometry errors,this leads to DF errors,so therelationship between them is very important in DF system implementation.Based on thestudy of array manifold,we derive the relationship.
     4.Based on specifications on two independent cone angles,an approach of planararray design is suggested.
     The planar array can estimate two dimensional independent angles,but knowndesign technique of planar array only considers specifications of elevation,so the designapproach that considers the specifications of two dimensional angles is needed.Afterparameters transform from azimuth-elevation to cone angles,one such design approachis proposed.
     5.We identify the linear array free of rank-2 ambiguity and planar array free ofrank 2 elevation ambiguity on given azimuth.
     Because the array manifold is nonlinear function of array geometry,the resultsabout relationship between array geometry and ambiguity are not sufficient.Low rankambiguity is more harmful to DF system,so we identify the linear array free of rank 2 ambiguity,and then,we identify the planar array free of rank 2 elevation ambiguity ongiven azimuth.
     6.Based on steepest descent method,a robust approach to resolve ambiguity isproposed.
     Sparse arrays have advantages of high performance and low cost,but they arecertain to suffer ambiguities,so the methods resolving manifold ambiguities arenecessary.Because the known methods are based on linear programming technique,they are sensitive to coefficient error,a robust method based on steepest descent methodis proposed,simulation results verify the robustness of the proposed method.
引文
[1]S.Pillai.Array Signal Processing.New York:Springer-Verlag,1989,12-17
    [2]Don H.Johnson,Dan E.Dudgeon.Array Signal Processing:Concepts and Techniques.Englewood Cliffs:Prentice Hall,1993,3-6
    [3]肖先赐.现代谱估计—原理与应用.哈尔滨:哈尔滨工业大学出版社,1991年,56-135
    [4]张贤达,保铮.通信信号处理.北京:国防工业出版社,2000,310-312
    [5]沈凤麟,叶中付,钱玉美.信号统计分析与处理.合肥:中国科技大学出版社,2003,502-509
    [6]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法.北京:清华大学出版社,2004,2-7
    [7]S.Bensley,Behnaam Aazhang.Subspace-Based Channel Estimation for Code Division Multiple Access Communication Systems.IEEE Trans.Comm.,1996,44:1009-1020
    [8]L.C.Godara.Part I Applications of Antenna Arrays to Mobile Communications.1997,Proc.IEEE,85(7):1031-1060
    [9]L.C.Godara.Part II Applications of Antenna Arrays to Mobile Communications.1997,Proc.IEEE,85(8):1195-1244
    [10]T.Kuhwald,H.Boche,M.Bronrel.A new Optimum Constrained Beamforming-algorithm for Future Mobile Communication Systems Based on CDMA.1999,ACTS Mobile Communications Summit '99:963-968
    [11]Munawwar Mahrnud Sohul.Impact of Antenna Array Geometry on the Capacity of MIMO Communication System.2006 International Conference on Electrical and Computer Engineering,(ICECE '06):80-83
    [12]A.A.Abouda,H.M.E1-Sallabi,S.G.Haggrnan.Impact of Antenna Array Geometry on MIMO Channel Eigenvalues Personal,Indoor and Mobile Radio Communications.2005 IEEE 16th International Symposium on PIMRC Vol.1:568-572
    [13]W.L.Stutzman.Shaped-Beam Synthesis of Nonuniformly Spaced Linear Arrays.IEEE Trans.Antennas Propagat,1972,20:499-501
    [14]H.Unz.Linear Arrays with Arbitrarily Distributed Elements.IRE Trans.Antennas Propagat.,1960,8:222-223
    [15]Y.T.Lo,S.W.Lee,Q.H.Lee.Optimization of Directivity and Signal-Noise Ratio of An Arbitrary Antenna Array.Proc.IEEE,1966,54:1033-1045
    [16] G .J. Van der Maas. A simplified Calculation for Dolph-Tchebycheff Arrays. J. Appl. Phys.,1954,25(1):121-124
    [17] R. F. Harrington. Sidelobe Reduction by Nonuniform Element Spacing. IEEE Trans. Antennas Propagat., 1961,9:187
    [18] M. G . Andreasan. Linear Arrays with Variable Interelement Spacings. IEEE Trans. Antennas Propagat., 1962, 10:137-143
    [19] A. Ishimaru. Theory of Unequally-Spaced Arrays. IEEE Trans. Antennas Propagat., 1962, 11:691-702
    [20] R. S. Elliott. On Discretizing Continuous Aperture Distributions. IEEE Trans. Antennas Propagat., 1977,25:617-621
    [21] T. T. Taylor. Design of Line-Source Antennas for Narrow Beamwidth and Low Side Lobes. IRE Trans. Antennas Propagat, 1955,3:16-28
    [22] A. T. Moffet. Minimum Redundancy Linear Arrays. IEEE Trans. AP, 1968,16:172-175
    [23] G. Nemhauser, M. I. Skolnik, J. W. Sheman. Dynamic Programming Applied to Unequally Spaced Arrays. IEEE Trans. Antennas Propagat., 1964, 12:35-43
    [24] B. P. Kumar, G. R. Branner. Design of Unequally Spaced Arrays for Performance Improvement. IEEE Trans. Antennas Propagat., 1999,47:511 -523
    [25] Fabienne B. T. Marchaud, Geoffrey D. de Villiers, E. Roy Pike. Element Positioning for Linear Arrays Using Generalized Gaussian Quadrature. IEEE Trans. On antennas and Propagation, 2003,51(6):1357-1363
    [26] B. P. Kumar, G. R. Branner. Design of Unequally Spaced Arrays for Performance Improvement. IEEE Trans. Antennas Propagat, 1999,. 47:511-523
    [27] G. D. deVilliers, F. B. T. Marchaud, E. R. Pike. Generalized Gaussian Quadrature Applied to an Inverse Problem in Antenna Theory. Inverse Problems, 2001, Vol. 17:1163-1179
    [28] C. Y. Tseng, L. J. Griffiths. A Simple Algorithm to Achieve Desired Patterns for Arbitrary Arrays. IEEE Trans, on Signal Processing, 1992,40(11):2737-2746
    [29] C. Y. Tseng, L. J. Griffiths. A Unified Approach to the Design of Linear Constraints in Minimum Variance Adaptive Beamformers. IEEE Trans, on Antennas and Propagation, 1992, 40(12):1533- 1542
    [30] C. Y. Tseng, L. J. Griffiths. An Iterative Approach for Deterministic Beamformer Design. 1989 IEEE Proc.On Communications, Computers and Signal Processing:439-442
    [31] C. Y. Tseng, L. J. Griffiths. Sidelobe Suppression in Minimum Redundancy Linear Arrays. 1992 IEEE Proc. On Statistical Signal and Array Processing:288-291
    [32] D. Pearson, S. U. Pillai, Y. Lee. An Algorithm for Near-Optimal Placement of Sensor Elements. IEEE Trans. Inform. Theory, 1990, 36:1280-1284
    [33] R. O. Schmidt. Multiple Emitter Location and Signal Parameter Estimation. IEEE Trans.,1986,AP-34(3):276-280
    [34] R. O. Schmidt. A Signal Subspace Approach to Multiple Emitter Location and Spectral Estimation: [Ph.D. dissertation]. Stanford.Stanford Univ. 1981:56-63
    [35] J A. Cadzow, Y. S. Kim, D. C. Shiue. General Directin-of-Arrival Estimation: A General Signal Subspace Approach. IEEE Trans. onAES., 1989, 25(l):31-46
    [36] R. Roy, T. Kailath. ESPRIT-A Subspace Rotation Approach to Estimation of Parameters of Cissoids in Noise. IEEE Trams. On ASSP. 1986,34(5):1340-1342
    [37] R. Roy, T. Kailath. ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques. IEEE Trans. on ASSP, 1989,37(7):984-995
    [38] J. A. Cadzow. A High Resolution Direction-of-Arrival Algorithm for Narrow-Band Coherent and Incoherent Sources. IEEE Trans, on ASSP, 1988, 36(7):965-979
    [39] B. D. Rao, K. V. S. Hari. Performance Analysis of Root-MUSIC. IEEE Trans. on ASSP. 1989,37(12): 1939-1949
    [40] R. Kumaresan, D. W. Tufts. Estimating the Angles of Arrival of Multiple Plane Waves. IEEE Trans. on AES. ,1983, 19(1):134-139
    [41] P. Stoica, A. Nehorai. MUSIC,Maximum Likelihood,and Cramer-Rao Bound. IEEE Trans.Acoust., Speech, Signal Processing, 1989,37:720-741
    [42] I. Dacos, A. Manikas. Estimating the Manifold Parameters of One-Dimensional Arrays of Sensors. J. Rranklin Inst. Eng. Appl. Math., 1995,332B(3):307-332
    [43] A. Manikas, H. R. Karimi,I. Dacos. Study of the Detection and Revolution Capabilities of a One Dimensional Array of Sensors by Using Differential Geometry. IEE. Proc. Radar Sonar and Navig. 1994, 141(2):83-92
    [44] H. R. Karimi, A. Manikas. The Manifold of a Planar Array and Its Effects on the Accuracy of Direction-Finding Systems. IEE Proceedings on Radar, Sonar and Navigation, 1996, 143(6):349-357
    [45] A. Manikas, A. Alexiou, H. R. Karimi. Comparison of the Ultimate Direction-Finding Capabilities of a Number of Planar Array Geometries. IEE Proceedings on Radar, Sonar and Navigation, 1997, 144(6):321-329
    [46] H. R. Karimi, A. Manikas. The Manifold of a Planar Array and Its Effects on the Accuracy of Direction-Finding Systems. IEE. Proceedings. On Radar, Sonar, Navigation. 1996, 143(6):349-357
    [47] M. Wax, J. Ziskind. On Unique Localization of Multiple Sources by Passive Sensor Arrays. IEEE Trans. Acoust., Speech, Signal Processing. 1989, 37:996-1000
    [48] M. Wax. On Unique Localization of Constrained-Signal Sources. IEEE Trans. on Signal Processing, 1992,40:1542-1547
    [49] T. H. Lo James, L. Marple. Jr. Stanley. Observability Conditions for Multiple Signal Direction Finding and Array Sensor Localization. IEEE Trans. On Signal Processing, 1992, 40(11):2641-2650
    [50] L. C. Godara, A. Cantoni. Uniqueness and Linear Independence of Steering Vectors in Array Space. J.Acoust.Soc.Amer, 1981,70(2):476-475
    [51] A. Manikas, C. Proukakis. Modeling and Estimation of Ambiguities in Linear Arrays. IEEE Trans. Signal Processing, 1998,46:2166-2179
    [52] N.dowlut. An Extended Ambiguity Criterion for Array Design. 2002 Sensor Array and Multichannel Signal Processing Workshop Proceedings: 189-193
    [53] A. Manikas, C. Proukakis, V. lefkaditis. Investigative Study of Planar Array Ambiguities Based on "Hyperhelical" Parameterization. IEEE Trans. On Signal Processing, 1999, 47(6):1532-1541
    [54] Kah-Chye Tan, Goh Zenton. Counterexample to Conjecture for Characterizing Higher Ambiguities. IEEE. Trans. On Signal Processing, 1996, 44:1028-1029
    [55] Kah-Chye Tan, Goh Zenton. A Detailed Derivation of Arrays Free of Higher Ambiguities. IEEE. Trans. On Signal Processing, 44(2):351-359
    [56] Kah-Chye Tan, Say Song Goh, Eng-Chye Tan. A Study of the Rank-Ambuigty Issues in Direction-of-Arrival Estimaiton. IEEE. Trans. on Signal Processing, 1996, 44(4):880-887
    [57] Kah-Chye Tan, Goh Zenton. A Study of the Uniqueness of Steering Vectors in Array Processing. Signal Processing, 1993, 34:245-256
    [58] Kah-Chye Tan, Goh Zenton. A Construction of Arrays Free of High Rank Ambiguities. 1994 ICASSP,5:545-548
    [59] Y. I. Abramovich, N. K. Spencer, A. Y. Gorokhov. Resolving Manifold Ambiguities in Direction-of-Arrival Estimation for Nonuniform Linear Antenna Arrays. IEEE Trans. On Signal. Processing, 1999,47 (10):2629-2643
    [60] Y. I. Abramovich, D. A. Gray, A. Y. Gorokhov, N. K. Spencer. Positive Definite Toeplitz Completion in DOA Estimation for Nonuniform Linear Antenna Arrays - Part Ⅰ: Fully Augmentable Arrays. IEEE Trans. On Signal Processing, 1998, 46 (9):2458-2471
    [61] Y. I. Abramovich, D. A. Gray, A. Y. Gorokhov, N. K. Spencer. Positive Definite Toeplitz Completion for Fully Augmentable Nonuniform Linear Antenna Arrays. Proc.1996 ICASSP.Vol.5:2551-1554
    [62] Y. I. Abramovich, N. K. Spencer, A. Y. Gorokhov. Positive-Definite Toeplitz Completion in DOA Estimation for Nonuniform Linear Antenna Arrays - Part Ⅱ Partially Augmentable Arrays. IEEE Trans. On Signal Processing, 1999,47 (6): 1502-1521
    [63] Y. I. Abramovich, N. K. Spencer, A. Y. Gorokhov. Positive-Definite Toeplitz Completion in DOA Estimation for Partially Augmentable Nonuniform Linear Antenna Arrays. Proc. 1996. SSAP: 550-553
    [64] Y. I. Abramovich, D. A. Gray, N. K. Spencer, A. Y. Gorokhov. Ambiguities in Direction-of-Arrival Estimation for Nonuniform Linear Antenna Arrays. Proc. 1996 ISSPA: 631-634
    [65] Y. I. Abramovich, N. K. Spencer, A. Y. Gorokov. DOA Estimation for Noninteger Linear Antenna Arrays with More Uncorrelated Sources than Sensors. IEEE Trans. ON Signal Processing, 2000, 48(4):943-955
    [66] Y. I. Abramovich, N. K. Spencer, A. Y. Gorokov. Detection of More Uncorrelated Gaussian Sources than Sensors Using Fully Augmentable Sparse Antenna Arrays. Proc. of 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop:139-143
    [67] Y. I. Abramovich, N. K. Spencer, A. Y. Gorokov. Detection-Estimation of More Uncorrelated Gaussian Sources than Sensors in Nonuniform Linear Antenna Arrays-Part Ⅰ: Fully Augmentable Arrays. IEEE Trans, on Signal Processing, 2001,49(5):959-971
    [68] David Rejdemyhr. Model Errors in High Resolution Direction of Arrival Processing in a Radar Application 1999 Proc. Fifth International Symposium on Signal Processing and its Applications(ISSPA '99):22-25
    [69] A. J. Weiss, B. Friedlander. Performance of Direction-Finding Systems with Sensor Gain and Phase Uncertainties.Circuits, Syst. Signal processing, 1993,12(l):3-33
    [70]B.Friedlander.A Sensitivity Analysis of the MUSIC Algorithm.IEEE Trans.Acoust.,peech,Signal Processing,1990,38(10):1740-1751
    [71]A.Lee Swindlehurst,Thomas Kailath.A Performance Analysis of Subspace-Based Methods in the Presence of Model Errors,Part Ⅰ:The MUSIC Algorithm IEEE Trans.On Signal Processing,1992,40(7):1758-1774
    [72]Do-Hong Tuan,Tusser Peter.An Analysis of Wideband Direction-of-Arrival Estimation for Closely-Spaced Sources in the Presence of Array Model Errors.IEEE.Microwave and Wireless Components Letters,2003,13(8):314-316
    [73]苏卫民,倪晋麟,刘国岁,张光义.通道失配对MUSIC空间谱及其分辨力的影响.电子学报,1998,26(9):143-145
    [74]苏卫民,顾红,倪晋麟,刘国岁,张光义.通道幅相误差条件下MUSIC空间谱的统计性能.电子学报,2001,28(6):105-107
    [75]J.Anthony.Weiss,B.Friedlander.Effects of Modeling Errors on the Resolution Threshold of the MUSIC Algorithm.IEEE Trans.On Signal Processing,1994,42(6):1519-1526
    [76]张翼,柯亨玉,程丰,李国玮.基于MUSIC算法高频地波雷达的角分辨率.电波科学学报,2003,18(3):164-269
    [77]刘洪盛,肖先赐.线阵阵元位置误差造成的测向误差估算.电波科学学报,2006,2l(5):717-721
    [78]E.Ashok,P.M.Schultheiss.The Effect of an Auxiliary Source on the Performance of a Randomly Perturbed Array.Proc.1984 ICASSP '84,40:1
    [79]M.Zhang,Z.D.Zhu.Array Shape Calibration Using Sources in Known Locations.Processings of the 1993 IEEE National Aerospace and Electronics Conference,NAECO,70-73
    [80]K.Stavropoulos,A.Manikas.Array Calibration in the Presence of Unknown Sensor Characteristics and Mutual Coupling.Proceedings of the European Signal Processing Confernce (EUSIPO2000),2000,3:1417-1420
    [81]N.Fistas,A.Manikas.A New General Array Calibratin Method.Processings of IEEE ICASSP94,1994,4:73-76
    [82]B.C.Ng,W.Ser.Array Shape Calibration Using Sources in Known Locations.Processings of Singapore ICCS/ISITA,92,1992,836-840
    [83]E.Hung.Matrix-construction Calibration Method for Antenna Arrays.IEEE Trans.on Aerospace and Electronic Systems,2000,36 (3):819-828
    [84]贾永康,保铮,吴洹.一种阵列天线位置、幅度及相位误差的有源校正方法.电子学报,1996,24(3):47-52
    [85]Y.Rockah,P.M.Schultheiss.Array Shape Calibration Using Sources in Unknown Locations-Part Ⅰ:Far Field Sources.IEEE Trans.On ASSP,1987,35(3):286-317
    [86]Y.Rockah,P.M.Schultheiss.Array Shape Calibration Using Sources in Unknown Locations-Part Ⅱ:Near Field Sources and Estimator Implementation.IEEE Trans.On ASSP,1987,35(3):724-735
    [87]B.Friedlander,A.J.Weiss.Eigenstructure Methods for Direction Finding with Sensor Gain and Phase Uncertainties.Proc.IEEE Int.Conf.Acoust.,Speech,Signal Processing,1988,2681-2684
    [88]J.S.Hong.Genetic Approach to Beating Estimation with Sensor Location Uncertainties.Electronic letters,1993,29(23):2013-2014
    [89]A.J.Weiss,B.Friedlander.Array Shape Calibration Using Sources in Unknown Locations-A Maximum Likelihood Approach.IEEE Trans.On ASSP,1989,37(12):1958-1966
    [90]M.Viberg,A.L.Swindlehurst.A Bayesian Approach to Auto-calibration for Parametric Array Signal Processing.IEEE Trans.On signal processing,1994,42(12);3495-3507
    [91]P.M.Schultheiss,J.P.Ianniello.Optimum Range and Bearing Estimation with Randomly Perturbed Arrays.J.Acoust.SOC.Amer,1980,68:167-173
    [92]M.Pesavento,A.B.Gershman,K.M.Wong.Direction Finding in Partly-calibrated Sensor Arrays Composed of Multiple Subarrays.IEEE Trans.Signal Processing,2002,50:210-2115
    [93]C.M.S.See,A.B.Gershman.Subspace-based Direction Finding in Partly Calibrated Arrays of Arbitrary Geometry.Proc.ICASSP,Orlando,FL,2002:3013-3016
    [94]M.Pesavento,A.B.Gershman,K.M.Wong,J.F.B(o|¨)hme.Direction Finding in Partly Calibrated Arrays Composed of Nonidentical Subarrays:A Computationally Efficient Algorithm for the RARE Estimator.Proc.IEEE Statist.Signal Process.Workshop,Singapore,Aug.2001:536-539
    [95]Chong Meng Samson See,B.Alex.Gershman.Direction-of-Arrival Estimation in Partly Calibrated Subarray-Based Sensor Arrays.IEEE.Trans.On Signal Processing,2004,52(2):329-338
    [96]Fu Li,Richard J.Vxcaro.Sensitivity Analysis of DOA Estimation Algorithms to Sensor Errors.IEEE Trans.on aerospace and electronic systems,1992,28(3):708-717
    [97]A.Sleiman,A.Manikas.Sensitivity Analysis of Manifold Surfaces in Presence of Uncertainties.Proc.2001 SEE Antennes Non Standard:Techniques et Traitements:33-38
    [98]A.Alexiou,A.Manikas.Array Robustness to Sensor Failure.Proc.IEEE Phased Array Systems and Technology,2000:177-180
    [99]M.G.Andreasan.Linear Arrays with Variable Interelement Spacings.IEEE Trans.Antennas Propagat.,1962,10:137-143
    [100]刘洪盛,肖先赐.面阵测向性能相对于阵元位置误差敏感性研究.电波科学学报,2008,23(1):90-94
    [101]A.Manikas,A.Sleiman.Manifold Studies of Nonlinear Antenna Array Geometries.IEEE Trans.on Signal Processing,2001,49(3):497-506
    [102]A.Sleiman,A.Manikas.The Impact of Sensor Positioning on the Array Manifold.IEEE Trans.on Antennas and Propagation,2003,51 (9):2227-2237
    [103]H.Krim,M.Viberg.Two Decades of Array Signal Processing Research.IEEE Signal Procesing Magazine,1996,13(4):67-69
    [104]P.Stoica,A.Nehorai.Performance Study of Conditional and Unconditional Direction-of-arrival Estimation.IEEE Trans.Acoust.,Speech,Signal Processing,1990,38:1783-1795
    [105]C.R.Rao,L.C Zhao.Asymptotic Behavior of Maximum Likelihood Estimates of Superimposed Exponential Signals.IEEE Trans.On Signal Processing,1993,41:1461-1464
    [106]梅向明,黄敬之.微分几何.北京:高等教育出版社,2003,36-40
    [107]陈维桓.微分儿何初步.北京:北京大学出版社,1990,17
    [108]Chuan-chih Hsiung.A First Course in Differential Geometry.New York:John Wiley,1981,110
    [109]E.J.Vertatschitsch,S.Haykin.Impact of Linear Array Geometry on Direction-of-Arrival Estimation for a Single Source.IEEE Transactions on Antennas and Propagation,1991,39:576-584
    [110]G.S.Bloom,S.W.Golomb.Numbered Complete Graphs,Unusual Rulers,and Assorted Applications.International Conference on Theory and Applications of Graphs,Lecture Notes in Math(642),Springer-Verlag,1978:53-65
    [111]A.Dollas,W.T.Rankin,D.McCracken.An New Algorithm for Golomb Ruler Derivation and Proof of the 19 Mark Ruler.IEEE Trans.Inform.Theory,1998,44:379-382
    [112]Y.Bresler,A.Macovski.On the Number of Signals Resolvable by a Uniform Linear Array.IEEE Trans.Acoust.Speech Signal Process.,1986,34:1361-1375
    [113]吕泽均.高分辨阵列测向技术研究:[博士学位论文],成都:成都电子科技大学,2002,37-45
    [114] H. R. Karimi, A. Manikas. Cone-Angle Parameterization of the Array Manifold in DF System. Journal of the Franklin Institute (Engineering & Applied Mathematics), 1998, 335B(2):375-394
    [115] A. Flieller, P. Larzabal, H. Clergeot. Study of Ambiguityies in Array Maniflold: A General Framework. Proc. 1996 8th IEEE Signal Processing Workshop on Statistical Signal and Array Processing:574-577
    [116] H. Wang, J. R. Liu, H. Andersion. Spatial Smoothing for Array with Arbitrary Geometry. Proc.ICASSP 1994, Vol.5:509-512
    [117] J. J. Fuchs. Extension of the Pisarenko Method to Sparse Linear Arrays. IEEE Trans. On Signal Processing, 1997,45:2413-2421
    [118] A. B. Gershman, J. F. Bohme. A Note on Most Favorable Array Geometries for DOA Estimation and Array Interpolation. IEEE Signal Processing Lett., 1997,4: 232-235
    [119] J. J. Fuchs. Extension of the Pisarenko Method to Sparse Linear Arrays. Proc. ICASSP, Detroit,1995:2100-2103
    [120] E. Jacobs, E. W. Ralston. Ambiguity Resolution in Interferometry. IEEE Transactions on Aerospace and Electronic Systems, 1981, 17(6):766-780
    [121] D. W. Tufts, H. Ge, R. Kumaresan. Resolving Ambiguities in Estimating Spatial Frequencies in Sparse Linear Arrays. Proc. ICASSP, Adelaide, Australia, 1994,2:345-348
    [122] Ching-Yih Tseng, David D. Feldman, Lloyd J. Griffiths. Steering Vector Estimation in Uncalibrated Arrays. IEEE Trans. Signal Processing, 1995,43(6):1397-1412
    [123] Y. I. Abramovich, N. K. Spencer, A. Y. Gorokhov. Identifiablity and Manifold Ambiguity in DOA Estimation for Nonuniform Linear Antenna Arrays. Proc. Int. Conf. Acoust., Speech, Signal Process., 1999, Phoenix, AZ, Vol.5:2845-2848
    [124] A. Stuart J. K. Ord, Kendall. Advanced Theory of Statistics. London, U.K.:Halsted, 1991,Vol.2:607
    [125] S. Pillai, Y. Bar-Ness, F. Haber. A New Approach to Array Geometry for Improved Spatial Spectrum Estimation. Proc. IEEE, 1985, 73:1522-1524
    [126] S. Pillai, F. Haber. Statistical Analysis of a High Resolution Spatial Spectrum Estimator Utilizing an Augmented Covariance Matrix. IEEE Trans. On Acoustics, Speech, And Signal Processing, 1987, 35(11):1517-1523
    [127] C. Johnson. Matrix Completion Problems: A Survey. Proc. 1990 symp. Applied math.,40:171-198
    [128]C.Chambers,T.C.Tozer,K.C.Sharman,T.S.Durrani.Temporal and Spatial Sampling Influence on the Estimates of Superimposed Narrowband Signals:When Less Can Mean More.IEEE Trans.Signal Processing,1996,44:3085-3098
    [129]Stephen W.Lang,James H.McClellan.Spectral Estimation for Sensor arrays.IEEE.Trans.on ASSP.1983,31(2):349-358
    [130]S.Haykin.Adaptive Filter Theory,3rd ed.Englewood Cliffs,NJ:Prentice-Hall,1996:906
    [131]局余马,胡金德,林翠琴,王飞燕,邢文训.线性代数.北京:清华大学出版社,1994,272-276
    [132]T.W.Anderson.An Introduction to Multivariate Statistical Analysis.New York:Wiley,1984,245-256
    [133]陈宝林.最优化理论与算法.北京:清华大学出版社,1989,189-199
    [134]B.Widrows,John M.Mccool,Micheal G.Larimore,C.R.Johnson,J.R.Stationary and Nonstationary Learning Characteristics of the LMS Adaptive Filter.Proc.Of The IEEE.1977,64(8):1151-1162
    [135]H.A.D'assumpcao.Some New Signal Processors for Arrays of Sensors.IEEE Trans.On Information Theory,1980,26(4):441-453
    [136]H.Clergeot,S.Tressens,A.Ouamri.Performance of High Resolution Requencies Estimation Methods Compared to the Cramer-Rao Bounds.IEEE Trans.Acoust.,Speech,Signal Processing,1989,37(11):1703-1720
    [137]P.Stoica,A.Nehorai.MUSIC,Maximum Likelihood and Cramer-Rao Bound:Further Results and Comparisions.IEEE Trans.On ASSP,1990,38(12):2140-2150
    [138]W.Du,R.L.Kirlin.Improved Spatial Smoothing Techniques for DOA Estimation of Coherent Signals.IEEE Trans.On SP,1991,39(5):1208-1210
    [139]A.J.Barabell.Improving the Resolution Performance of Eigenstruchture-Based Direction Finding Algorithms.ICASSP,1983,336-339
    [140]T.J.Shah,M.Wax,T.Kailath.On Spatial Smoothing for Estimation of Coherent Signals.IEEE Trans.On ASSP,1985,33(4):806-811
    [141]S.U.Pillai,B.H.Kwon.Performance Analysis of MUSIC-type High Resolution Estimators for Direction Finding in Corrolated and Coherent Scenes.IEEE Trans.On ASSP,1989,37(8):1176-1189
    [142]B.D.Rao,K.V.S.Haft.Effect of Spatial Smoothing on the Performance of MUSIC and the Minimum-Norm Method.IEE Proc.Radar and signal processing,-F,1990,137(6):449-458
    [143] D. A. Linebarger, D. H. Johnson. The Effect of Spatial Averaging on Spatial Correlation Matrices in the Presence of Coherent Signals. IEEE Trans. On ASSP, 1990, 38(5):880-884
    [144] B. Porat, B. Friedlander. Analysis of the Asymptotic Relative Efficiency of the MUSIC Algorithm. IEEE Trans. On ASSP,1988,36(4):532-543
    [145] H. Akaike. A New Look at the Statistical Model Identification. IEEE Trans. On AC, 1974,19(6):716-723
    [146] M. Wax, I. Ziskind. Detection of the Number of Coherent Signals by the MDL Principle. IEEE.Trans. On ASSP, 1989, 37(8):1190-1196
    [147] L. C. Zhao, P. R. Krishnaiah,Z. D. Bai. Remarks on Certain Criteria for Detection of Numbers of Signals. IEEE. on ASSP, 1987,35(1):129-132
    [148] Y. Yin, P. Krishnaiah. On Some Nonparametric Methods for Detection of the Number of Signals. IEEE Trans. On ASSP, 1987, 35(11):1533-1538
    [149] K. M. Wong, Q. Zhang, J. P. Reilly. On information Theoretic Criteria for Determining the Number of Signals in High Resolution Array Procesing. IEEE Trans on ASSP, 1990, 38(11):1959-1971
    [150] Q. Zhang, K. M. Wong. Statistical Analysis of the Performance of Information Theoretic Criteria in the Detection of the Number of Signals in Array Processing. IEEE. Trans. On ASSP,1989,37(10):1557-1567
    [151] J. H. Cozzens, M. J. Sousa. Source Emumeration in a Correlate Signed Environment. IEEE Trans. On SP, 1994,42(2):304-317
    [152] W. Chen, J. P. Reilly. Detection of the Number of Signals in Nosie with Band Covariance Matrices. IEEE Trans. On SP, 1992,42(5):377-380
    [153] H. T. Wu, J. Yang, F. K. Chen. Source Number Estimation Using Transformed Gerschgorin Radii. IEEE. Trans. On SP, 1995,43(6):1325-1333
    [154] M. Wax, T. Kailath. Detection of Signals by Information Theoretic Criteria. IEEE. Trans on ASSP, 1985, 33(2):387-392
    [155] Young-Su Kim, Young-So Kim, Hung-Ryong Kang, Han-Kyu Park. A New Covariance Matrix Estimation Method for Resolution Enhancement via Virtual Expansion. 2000. 5th International Conference on Signal Processing Proceedings(2000. WCCC-ICSP), 1:189-192
    [156] Richard O. Nielsen. Azimuth and Elevation Angle Estimation with a Three-Dimensional Array. IEEE Journal of ocean engineering. 1994, 19(1):84-86
    [157]N.Dowlut,A.Manikas,A Polynomial Rooting Approach to Super-Resolution Array Design.IEEE.Trans.On Signal Processing,2000,48(6):1559-1569
    [158]刘洪盛,肖先赐.一种基于最小流形长度的高精度线阵设计.航空学报,2008,29(2):462-466
    [159]J.M.Hinich,W.Rule.Beating Estimation Using a Larger Towed Array.J.Acoust.SOC.Amer.,1975,58:1023-1029
    [160]J.M.Hinich,W.Rule.Bearing Estimation Using a Pertubed Linear Array.J.Acoust.SOC.Amer.,1977,61:1540-1544
    [161]R.O.Schmidt.Multilinear Array Manifold Interpolation.IEEE Trans.On Signal Processing,1992,40(4):857-866
    [162]A.J.Wess,B.Friedlander.Manifold Interpolatin for Diversely Polarized Arrays.IEE.Proceedings Radar,Sonar Navig,1994,141(1):19-24
    [163]M.Zhang,Z.D.Zhu.DOA Estimation with Gain,Phase and Positon Perturbations.Proceedings of the IEEE National Aerospace and Electronics Conference(NAECO),1993,67-69
    [164]Uku Baysal,Randolph L.Moses.On the Geometry of Isotropic Arrays.IEEE Trans.On Signal Processing,2003,51 (6):1459-1478
    [165]H.Gazzah and S.Marcos,Analysis and Design of (Non-)Isotropic Arrays for 3D Direction Finding,IEEE SSP Conf.,Bordeaux,France ,2005,17-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700