可进化硬件平台研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可进化硬件(EHWW)能够模拟生物进化过程,在进化算法的指导下进行自重构而接近目标功能,在电路设计、自适应系统等领域有着广泛的应用前景。EHW技术虽然经过了近二十年的发展,但在如何根据应用需求提供层次化的研究平台、有效地对个体进行评估、提高进化速度及规模等方面还存在很大探索空间。
     本文基于课题组自主FPGA技术,关注不同层次、不同粒度的可进化硬件平台对可重构技术、进化算法及评估策略的需求,研究了LUT(查找表)级、模块级、芯片级与网络级四种可进化硬件平台。
     首先,基于课题组自主研发的FPGA芯片建立了LUT级可进化硬件平台,为此平台开发了一种可防止进化停滞的进化算法;设计了LUT级可重构电路,统一了组合逻辑与时序逻辑的进化流程,并提供了自适应评估算法对电路进行评估。实验表明,此平台比已有报道中的同类平台进化速度快十倍以上。
     然后,基于自主FPGA芯片,进一步研究了模块级可进化硬件平台,重点研究其核心需求:模块级部份动态可重构硬件。为此创新设计了一种基于纵向CLB的传输线宏,提供了相应的工具链,并开发了部分动态可重构图像滤波器演示系统。实验表明,该演示系统中硬件电路可在50毫秒内完成模块级重构,适应模块级可进化硬件平台的核心需求。
     再者,为了进一步提高进化速度,研究了一种芯片级可进化硬件平台。此平台以自主设计的集成了CPU核和FPGA核的可编程芯片为主体。在芯片设计时,开发了一种快速重构配置技术,可显著减少重构操作所需的时间;提供了针对不同适应度评估方案的数据交互接口,提高系统可靠性和灵活性;通过硬件加速的方法实现了遗传算法加速。此平台上的进化实验结果表明,进化速度比已有文献中的示例快一个数量级。
     最后,为了提供更高效的模块级进化方案,将自主FPGA技术与片上网络(NOC)技术相结合,研究了一种网络级可进化硬件平台,其核心是一种以多个FPGA核为网络节点的可重构NOC芯片,通过对片上路由器及网络资源接口进行创新设计,使此网络级平台支持网络结构可重构以及网络节点可重构两种特性。仿真和FPGA验证结果表明,此平台原型功能正确,且支持平均每节点每周期每点向网络注入0.7个数据。
Evolvable Hardware (EHW) simulates the biological evolution in nature. It can evolve towards a target function with the guidance of the evolutionary algorithm (EA). It can be promising in the fields such as automated design of circuits and adaptive systems. Being developing for almost 20 years, EHW is still seeking for better platform with different granularity. Solutions for better evaluation strategy, higer evolving speed and larger evolving scale are still to be studied.
     Based on self developed FPGA technologies, this thesis focuses on solutions for muti-level EHW platforms, provides reconfigurable capacity in different granularities, proper EA and tool chains. Solutions for LUT (look up table) level, module level, on-Chip level and network level EHW platforms are proposed here.
     Firstly, based on the FDP FPGA chip designed on our own, an LUT level EHW platform is proposed. An EA that can keep evolving from stagnated is provided on this platform. A new structure of reconfigurable circuit is presented, which can be used for evolving combination logic and sequential logic. And an adaptive evaluation algorithm is used. The experiment result shows that the proposed EHW platform outperforms the previously proposed platform by 10 times of evolving speed.
     Secondly, module level EHW platform is studied. And the emphasis goes to its key requirement:the partially and dynamically recofonfigurable (PDR) hardware. A novel Transfer-Bus macro is proposed to provide PDR capacity. The tool chain for PDR system design is also provided. A PDR image filter was developed and the result shows that less than 50 ms are needed for modular replacement, meeting the main requirements of the module level EHW platform.
     Thirdly, to further improve the speed of evolution, an SOC chip is designed to build an on-chip level EHW platform. The SOC chip proposed here was integrated with a CPU IP and an FPGA IP. A fast self-reconfiguration technology was introduced to accelerate the reconfiguration; according to the requirements for different fitness evaluation strategies, a dedicated data-exchange interface was designed to provide a more flexible and robust platform; to accelerate the EA, a hardware random number generator (RNG) was designed to provide random numbers. Experiment results show that these proposed technology speeds up the whole platform in an order of magnitude.
     Lastly, to provide a platform with better modularization capacity, a network level EHW platform is proposed. The main solution for network level EHW platform is a reconfigurable "network on chip" (NOC) prototype. The key modules of the NOC chip are designed to provide two features:reconfigurable network topology and reconfigurable nodes.Simulation and FPGA validation show that the proposed NOC prototype functions correctly and the network can support a maxium throughput of injecting 0.7 packets of data per node per cycle in a set pattern.
引文
[1]Stoica Adrian. Evolvable hardware:from on-chip circuit synthesis to evolvable space systems[A]. In:Proceedings of The International Symposium on Multiple-Valued Logic[C].Piscataway, United States:IEEE,2000:161-169.
    [2]Stoica Adrian.,Zebulum R.,Keymeulen D..Progress and challenges in building evolvable device[A].In:Proceedings of The Third NASA/DoD Workshop on, Evolvable Hardware[C]. Piscataway, United States:IEEE,2001:33.
    [3]Mange D,Sipper M,Stauffer A, Toward self-Repairing and self-replicating hardware:the embryonics apporach[A].In:Proceedings of The 2nd NASA/DoD workshop on Evolvable Hardware[C]. Palo Alto, CA, USA,2000,205-214.
    [4]T. Higuchi, M. Iwata,1. Kajitani. Evolvable Hardware with Genetic Learning[A].In:Proceedings of the IEEE International Symposium on Circuits and Systems Vol.4 [C].Piscataway, United States:IEEE,1996:29-32.
    [5]T. Higuchi, M. Iwata, I. Kajitani.Evolvable Hardware and its Applications to Pattern Recognition and Fault-tolerant System[J]. Towards Evolvable Hardware:The Evolutionary Engineering Approach (Lecture Notes in Computer Science).Springer-Verlag,1996, Vol. 1062:118-135.
    [6]T. Higuchi. Real-World Applications of Analog and Digital Evolvable Hardware[J]. IEEE Transaction on Evolutionary Computation.1999,3 (3),220-235.
    [7]S. Thorsten, X. Yao. Using Negative Correlation to Evolve Fault-Tolerant Circuits[A].In:The 5th International Conference on Evolvable Systems[C]. Trondheim, Norway, 2003:35-46.
    [8]Garis H D. Evolvable Hardware Genetic Programming of a Darwin Machine in:Branko Soucek and the IRIS Group(Eds.)[M]. Dynamic, Genetic and Chaotic Programming. John Willey&Sons,Inc.,1992:373-393.
    [9]A. Thompson. Explorations in Design Space:Unconventional Electronics Design Through Artificial Evolution[J]. IEEE Transation on Evolutionary Computation.1999,3 (3): 167-196.
    [10]Glette, K.,Torresen, J.,Yasunaga, M., Yamaguchi, Y. On-Chip Evolution Using a Soft Processor Core Applied to Image Recognition[A].In:Proceedings of First NASA/ESA Conference on Adaptive Hardware and Systems[C].Istanbul, Turkey,2006:373-380.
    [11]J. Torresen. A Divide-and-Conquer Approach to Evolvalbe Hardware[A]. In:Proceedings of the Second International Conference on Evolvable Systems:From Biology to Hardware [C]. 1998:57-65.
    [12]Lukas Sekanina, Tomas Martinek.Zbysek Gajda. Extrinsic and Intrinsic Evolution of Multifunctional Combinational Modules[A]. IEEE Congress on Evolutionary Computation[C].Vancouver, BC, Canada:IEEE,2006:2771-2778.
    [13]Sekanina, L.Friedl. On Routine Implementation of Virtual Evolvable Devices Using COMBO6[A].In:Proceeding of The 2004 NASA/DoD Conference on Evolvable Hardware[C]. Seattle, USA:IEEE Computer Society Press,2004:63-70.
    [14]Zdenek Vasicek,Lukas Sekanina. Evaluation of a New Platform For Image Filter Evolution[A].In:Proceeding of The Conference on Adaptive Hardware and Systems(AHS 2007) Computation[C].1999,3(3):167-196.
    [15]G Tufte et al.Evolving an Adaptive Digital Filter[A]. In:Proceedings of the Second NASA/DOD Workshop on Evolvable Hardware[C].CA, U.S.A:Palo Alto,2000:143-145.
    [16]J. R. Koza et al.Automated Synthesis ofAnalog Electrical Circuits by Means of Genetic Programming[J]. IEEE Transaction on Evolutionary Computation.1997,1 (2):109-128.
    [17]陈毓屏.一个新的研究领域一演化硬件[J].航空计算技术.1998,28(1):1-8.
    [18]康立山,何巍,陈毓屏.用函数型可编程逻辑器件实现演化硬件[J].计算机学报,1999,22(7):781-784.
    [19]曾三友,颜雪松,康立山.演化计算及其在深空探测应用可行性研究[A].中国宇航学会深空探测技术专业委员会第一届学术会议论文集[C].2005:297-302.
    [20]赵曙光等.基于函数级FPGA原型的演化硬件内部进化,计算机学报.2002,25(5):666-669.
    [21]赵曙光等.基于进化的电子电路自动设计方法[J].电路与系统学报.2002,7(1):72-78.
    [22]赵曙光,杨万海.一种用于演化硬件的染色体编码新方法[J].西安电子科技大学学报.2000,27(6):778-780.
    [23]赵曙光,刘贵喜,杨万海.可进化硬件的基本原理与关键技术[J].系统工程与电子技术.2002,1:70-73.
    [24]J. He, X. Wang, M. Zhang, Q. Fang. New Research on Scalability of Lossless Image Compression by GP Engine[A].In:Proceeding of 2005 NASA/DoD Conference on Evolvable Hardware[C].2005:160-164.
    [25]方潜生,王煦法,何劲松.硬件进化的快速算法模型研究[J].中国科学技术大学学报.2003,33(5):612-618.
    [26]林勇,罗文坚,王煦法.硬件电路的选择性进化冗余[J].中国科学技术大学学报.2006,36(5):523-529.
    [27]林勇,罗文坚,钱海,王煦法.n×n阵列胚胎电子系统应用中的优化设计问题分析[J].中国科学技术大学学报.2007,37(2):171-176.
    [28]刘慧,朱明程.一种新型仿生硬件容错系统—一胚胎电子系统[J].半导体技术.2002,27(5):29-32.
    [29]朱明程,温粤.FPGA动态可重构数字电路容错系统的研究[J].东南大学学报(自然科学版).2000,30(4):1-5.
    [30]Andrew J.,Greensted. RISA:A Hardware Platform for Evolutionary Design[A].In:Proceedings of the 2007 IEEE Workshop on Evolvable and Adaptive Hardware[C]. USA:Inst. of Elec. and Elec. Eng,2007:1-7.
    [31]Yann Thoma, Eduardo Sanchez. A Reconfigurable Chip for Evolvable Hardware Genetic and Evolutionary Computation" -GECCO 2004
    [32]Hollingworth, G. Smith, S. Tyrrell, A, Safe Intrinsic Evolution of Virtex Devices. In: Proceedings of The Second NASA/DoD Workshop on Evolvable Hardware. Palo Alto, California, IEEE Computer Society Press,2000:195-202
    [33]Xilinx Inc.. "XC6200 Field Programmable Gate Arrays Product Specification" [EB/OL], 1997. http://datasheets4u.com/XC6200-datasheet.html
    [34]Xilinx Inc.. "Virtex-E Field Programmable Gate Arrays Product Specification" [EB/OL], 2002. http://www.xilinx.com/support/documentation/data_sheets/ds022-1.pdf
    [35]Xilinx Inc.. "Virtex-Ⅱ Platform FPGAs:Complete Data Sheet" [EB/OL],2005. http:// www.xilinx.com/support/documentation/data_sheets/ds031.pdf
    [36]Xilinx Inc.. "Virtex-Ⅱ Pro and Virtex-Ⅱ Pro X Platform FPGAs:Complete Data Sheet" [EB/OL],2005.
    [37]IBM Inc.128-Bit Processor Local Bus Architecture Specifications.Version 4.7[SO/OL],2007. http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3BBB27E5BCC165BA87256A2B 0064FFB4/$file/P1bBus_as_01_pub.pdf
    [38]潘光华,来金梅,陈利光等.FPGA可编程逻辑单元时序功能的设计实现[J].电子学报.2008,36(08),1480-1484.
    [39]Hecht Ronald, Kubisch Stephan, Herrholtz Andreas, Timmermann Dirk. Dynamic reconfiguration with hardwired networks-on-chip on future FPGAs[A]. In Proceedings of International Conference on Field Programmable Logic and Applications[C]. Piscataway, NJ:IEEE Computer Society,2005:527-530.
    [40]Tota Sergio V,Casu Mario R, Motto Paolo, Roch Massimo Ruo, Zamboni Maurizio. The NoCRay graphic accelerator:A case-study for MP-SoC network-on-chip design methodology[A]. In:Proceedings of 2007 International Symposium on System-on-Chip[C]. Piscataway, NJ:IEEE Computer Society,2007:1-4.
    [41]D. Levi and S. Guccione. Geneticfpga:Evolving stable circuits on mainstream fpga devices[A]. In:Proceedings of SPIE-The International Society for Optical Engineering[C]. Bellingham, WA, United States:Society of Photo-Optical Instrumentation Engineers,1999:114-121.
    [42]G. Hollingworth, S. Smith, and A. Tyrrell. The intrinsic evolution of virtex devices through internet reconfigurable logic[A]. In:Proceedings of the Third International Conference on Evolvable System[C]. Piscataway, United States:IEEE,2000:72-79.
    [43]T Higuchi, M Murakawa, M Iwata, I Kajitani, W Liu. Evolvable hardware at function level[A]. In:IEEE International Conference on Evolutionary Computation[C], Piscataway, United States:IEEE,1997:187-192.
    [44]Keum-Sung Hwang, Sung-Bae Cho. Evolving diverse hardwares using speciated genetic algorithm[A].In:Proceedings of the 2002 Congress on Evolutionary Computation, Volume [C]. Piscataway, United States:IEEE:2002:437-442.
    [45]Emanuele Stomeo,Tatiana Kalganova. Improving EHW Performance Introducing a New Decomposition Strategy[A].In:Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems[C].Piscataway, United States:IEEE,2004:439-444.
    [46]D. Job V. Vassilev, J. Miller. Towards the automatic design of more efficient digital circuits[A]. In:Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware[C].Silicon Valley, USA:IEEE Computer Society,2000:161-160.
    [47]Liu, R., Zeng, S. Y. An efficient multi-objective evolutionary algorithm for combinational circuit design[A]. In:Proceedings of the first NASA/ESA conference on adaptive hardware and systems[C]. Piscataway, United States:IEEE,2006:215-221.
    [48]E. Stomeo, T. Kalganova, and C. Lambert. Generalized Disjunction Decomposition for Evolvable Hardware[J]. IEEE Transactions on Systems:Man, and Cybernetics - Part B. 36(5),2006:1024-1043.
    [49]J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, J. Luka. Dynamic and Partial FPGA Exploitation[A].In:Proc. IEEE[C]. vol.95, no.2,2007:438-452.
    [50]Raaijmakers, S., Wong, S.. Run-Time Partial Reconfiguration for Removal, Placement and Routing on the Virtex-Ⅱ Pro[A].In:Proceedings-2007 International Conference on Field Programmable Logic and Applications, FPL[C]. United States:IEEE,2007:679-683.
    [51]P. Sedcole, B. Blodget, T. Becker, J. Anderson, P. Lysaght. Modular dynamic reconfiguration in Virtex FPGAs[J]. IEE Proceedings:Computers and Digital Techniques.vol.153, no.3, 2006:157-164.
    [52]Sheetal U. Bhandari. Real Time Video Processing on FPGA Using on the Fly Partial Reconfiguration[A]. International Conference on Signal Processing Systems[C].Piscataway, United States:IEEE,2009:244-247.
    [53]IBM Inc.128-Bit Processor Local Bus Architecture Specifications [EB/OL]. Version 4.7, 2007.http://www-01. ibm.com/chips/techlib/techlib.nsf/techdocs/3BBB27E5BCC165BA8725 6A2B0064FFB4/$file/PIbBus_as_01_pub.pdf
    [54]IBM Inc. On-Chip Peripheral Bus Architecture Specifications [SO/OL].Version 2.1,2001. IBM Inc. On-Chip Peripheral Bus Architecture Specifications [S/OL]. http://ens.ewi.tudelft.nl/Education/courses/et4351/opb_ibm_spec.pdf
    [55]Xilinx Inc. Two Flows for Partial Reconfiguration:Module Based or Difference Based[A]. In: Proceedings - International Conference on Field-Programmable Technology[C].Piscataway, United States:IEEE,2010:208-215.
    [56]Tobias Bjerregaard, Shankar Mahadevan. A Survey of Research and Practices of Network On Chip[J]. In:ACM Computing Surveys, Vol.38(1),2006:1-es.
    [57]Davide Bertozzi and Luca Benini,2004. Xpipes:A Network - on - Chip Architecture for Gigascale Systems - on_Chip. In IEEE CIRCUITS AND SYSTEMS MAGAZINE, Vol4(2), 2004:18-31.
    [58]Jose DUATO, Sudhakar YALAMANCHILI, Lionel Ni. INTERCONNECTION NETWORKS AN ENGINEERING APPROACH(Revised Printing)[M]. Elsevier Science, 2003:5-10.
    [59]Tobias Bjerregaard, Jens Spars. A Scheduling Discipline for Latency and Bandwidth Guarantees in Asynchronous Network - on - Chip[A]. In:Proceedings of the 11th IEEE International Symposium on Asynchronous Circuits and Systems[C].Piscataway, United States:IEEE,2005:34-43.
    [60]Tobias Bjerregaard, Jens Spars. A Router Architecture for Connection - Oriented Service Guarantees in the MANGO Clockless Network - on - Chip[A]. In:Proceedings of the Design, Automation and Test in Europe Conference and Exhibition[C].Piscataway, United States:IEEE,2005:1226.
    [61]John D. Owens, William J. Dally, Ron Ho, D.N. Jayasimha. Research Challenages For On-Chip Interconnection Networks[J]. IEEE Computer Society.2007:1.
    [62]E.Rijpkema, K.GW.Goossens, A.RaduIescu. Trade Offs in the Design of a Router with Both Guaranteed and Best - Effort Services for Network on Chip[A]. Proceedings of the Design Automation and Test in Europe Conference and Exhibition[C].Piscataway, United States:IEEE,2003:294-302.
    [63]Ning Hou,Duoli Zhang,Gaoming Du,Yukun Song,Haihua Wen. Design and performance evaluation of virtual-channel based NoC[A].In:Procedding of 2009 3rd International Conference on Anu-counterfeiting, Security, and Identification in Communication[C].Piscataway. United States:IEEE Computer Society,2009:294-298.
    [64]Feiyang Liu,Huaxi Gu,Yintang Yang.Performance study of virtual-channel router for Network-on-Chip[A]. In:Proceedings of International Conference on Computer Design and Applications V5. Piscataway, United States:IEEE Computer Society,2010:255-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700