中央空调系统变水温调节可适用域的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中央空调系统作为办公楼、宾馆酒店等现代建筑的耗能大户,合理的节能设计对整个建筑物的节能起到重要作用。随着电价不断上涨,不少业主开始有了对空调系统进行节能改造的要求。
     空调系统应该具备良好的调节性能,以适应空调系统大部分时间在部分负荷下运行的特点。冷水系统的调节主要分量调节与质调节,水泵变频属于量调节,变水温属于质调节。由于变水温调节具有实现条件较为简单、节能改造需要的二次投入少、并且不影响水系统的水力特性等突出优点,使得近年来对其的研究和应用越来越多,成为空调节能的主要手段之一。冷水温度越高,节能效果越好,并且只要调节合理,保证供水状态能够满足负荷的要求,变水温调节是不会影响空调舒适性的。
     本文基于传递函数法,依据典型气象年数据,编写了全年空调冷负荷计算软件。并对办公、公共饮食、宾馆饭店、医疗这4种典型公共建筑的空调负荷进行了模拟计算,并分析了各类建筑的最不利负荷率与平均负荷率的关系。结果表明:不同功能建筑的最不利负荷率与平均负荷率的比值有所不同,最大值为1.325,最小值为1;单一建筑不同时间的最不利负荷率与平均负荷率的比值也有所不同,上午最大,在1.1-1.325之间变化,午后较小,小于1.1;每天的8:00-11:00,由于东向房间首先受到太阳辐射的影响,与其它各朝向房间负荷率差异较大,而在其它时段,各朝向房间负荷率差异不是非常明显;当各类建筑的平均负荷率降低,其最不利负荷率也随之降低,因此当负荷率降低时,变水温调节是适用的。
     通过对表冷器进行校核计算和优化求解可以得到最佳的供水温度。采用计算热交换效率ε1和接触系数ε2的计算方法,对表冷器进行了校核编程计算。在保证室内环境在舒适性空调要求范围内的前提下,结合变水温调节仅适用于最不利负荷率与平均负荷率一致变化的情况下这一特点,以办公建筑为例,分别以平均负荷率和最不利负荷率为输入负荷率进行计算。计算结果表明:以这两种不同负荷率计算出来的冷水进口水温、送风温度以及室内相对湿度均一致变化,计算结果差异很小,故变水温调节对此类建筑是适用的。
As major energy consumer of central air-conditioning in modern architecture including offices, hotels and so on, reasonable energy-saving design application system plays an important role on energy conservation of the whole building.Many building owners began to in request of energy-saving renovation to air conditioning system with rising electricity prices.
     The air-conditioning system should have good regulation performance because air conditioners are under part load operation in most of the time. The regulation of Chilled water system concluded quantity adjustment and quality adjustment, frequency conversion of water supply pump belong to quantity adjustment and variable chilled water temperature belong to qualitative adjustment. Due to variable chilled water temperature adjustment have many prominent advantages such as it could be realized simply, needing less investment in the secondary energy-saving reform, and having on effect on the hydraulic characteristics of the water system and so on, the variable chilled water temperature adjustment got more and more research and application during recent years, and becoming one of the principal means of energy-saving in air-conditioning system.The energy-saving effect was more and more better with temperature rise, variable chilled water temperature adjustment would have no impact on the comfort of air-conditioning as long as regulating reasonably and making sure water supply can meet requirements of cooling load.
     In this paper,based on the transfer function method and typical annual meteorological data, the software of annual hourly air-conditioning cooling load calculation was compiled,then the air-conditioning load of four typical public buildings were simulated, including offices, hotels, public canteens and hospitals, and the relationships between the most unfavorable load rate and the averaged load rate were analyzed. The results indicated that the ratios of the most unfavorable load rate to the averaged load rate would be different for different buildings, the maximum and minimum ratios were 1.325 and 1 respectively. Furthermore,The ratios four one kind of building would change with time, The values were maximum in the morning and changed between 1.1 and 1.325, and less than 1.1 in the afternoon. Due to east rooms were influenced by solar radiation firstly during 8:00 to 11:00 every day, the load rate was quite different from any other orientations rooms, but in other period of time, the differences of load rate in all orientations rooms were not obvious.The most unfavorable load rate would reduce following the decreased trend of the averaged load rate, also the variable chilled water temperature adjustment technology was applicable when the load rate decreased.
     The best chiller water supply temperature was worked out through check calculation and optimization solution of surface air cooler. counting method based on heat efficiencyεl and contact coefficientε2 was used to the check calculation of surface air cooler.Taking office building for example, in the premise of comfort requirements in indoor environment was guaranteed, combined with the characteristic that variable chilled water temperature adjustment only applied to the situation when the most unfavorable load rate and average load rate changed consistent, the most unfavorable load rate and the averaged load rate were taken as optimization input load rate data respectively. The calculation results indicated that chilled inlet water temperature, supply air temperature and indoor relative humidity are all changed consistent, the differences of these parameters were all small when inputting these two different load rates, so the variable chilled water temperature adjustment technology was applicable to this typical public buildings.
引文
[1]http://blog.tianya.cn/blogger/post_read.asp?BlogID=2847335&PostID=26316815
    [2]http://info.hp.hc360.com/2010/09/08155853842.shtml
    [3]卢苇,马一太.中国中央空调的节能潜力预测[J].制冷技术,2004(4)
    [4]范红生.空调节能及其产业化问题争议[J].节能与环保,2004(2)
    [5]袁东立,张雅锐.对空调冷水系统变水温调节节能运行的探讨[J].建筑科学,1991(4):42-46
    [6]周巧航,赵加宁,施雪华.深圳市某办公楼空调系统节能潜力分析[J].暖通空调,2004,34(4):19-22.
    [7]龚明启.浅谈中央空调节能问题及对策[J],山西建筑,2005,31(4):135-136
    [8]刘金平,周登锦.空调系统变冷水温度调节的节能分析[J].暖通空调,2004,34(5):90-91
    [9]http://wenwen.soso.com/z/q111414281.htm
    [10]王玉洁.浅谈中央空调的节能[J].山西能源与节能,2010, (5):53-54
    [11]管德赛.论中央空调系统的节能措施[J],制冷空调与电力机械,2008,29(6):77-79
    [12]李德英.建筑节能技术[M],北京:机械工业出版社,2008
    [13]包永明.中央空调节能技术措施分析[J],中国高新技术企业,2008,16(5):72-73
    [14]李秀娟.基于粗糙集理论的中央空调节能评测的研究[J],控制工程,2010,17(3):286-289
    [15]田崎茂.空调环境控制技术与21世纪,空气调和与冷冻
    [16]John M, Sauer. Dingnosing Low temperature differential ASHAME JOURNAL,1989.6
    [17]Higher flow temperature for finer chiller Control HAC,1987.7
    [18]特灵/怡和技术资料之二,中央制冷系统设计上应考虑的问题
    [19]注训昌,吴元炜.高层建筑空调工程中若干问题的分析,中国建筑科学研究院空调研究所,1987
    [20]陆耀庆.空调水系统的节能调节[J],全国暖通空调制冷1988年学术年会论文集,1988
    [21]雷支容.21世纪中央空调节能方案探讨[J],科技资讯,2009(13)
    [22]宋清弟.综合办公大楼中央空调节能措施的经济效益分析[J],制冷与空调,2009,9 (1):61-63
    [23]潘毅群,吴刚,VolkerHartkop.建筑全能耗分析软件EnergyPlus及其应用[J].暖通空调,2004,34(9):2-7
    [24]刘丹.基于负荷预测的中央空调节能控制[J].山西建筑,2010,36(34):173-174
    [25]潘毅群,吴刚,VolkerHartkop.建筑全能耗分析软件EnergyPlus及其应用[J].暖通空调,2004,34(9):2-7
    [26]燕达,谢晓娜,宋芳婷.建筑环境设计模拟分析软件DeST第一讲建筑模拟技术与DeST发展简介[J].暖通空调,2004,34(7):48-56
    [27]潘云钢.对北京地区办公建筑设计冷负荷与耗冷量的分析[J].暖通空调,2006,36(1):35-42
    [28]管厚林,赵加宁.高层办公楼设计冷负荷与全年耗冷量模拟分析[J].建筑热能通风空调,2004,23(6):49-52
    [29]管厚林,赵加宁.高层办公建筑空调冷负荷率分布影响因素研究[J].哈尔滨工业大学学报,2004,36(5):688-692
    [30]赵志安,杨纯华.现代化办公楼空调冷负荷特性及设备选择[J].暖通空调,2002,32(6):59-61
    [31]张扬,曹亮,王彬.空调负荷计算的神经网络模型[J].制冷与空调,2006,(1):85-87
    [32]曹双华,曹家枞.基于小波变换的神经网络空调负荷预测研究[J].暖通空调,2005,35(4):13-17
    [33]刘玮,王智伟,袁照旺,等.人工神经网络在商场建筑物冷负荷预测中的应用[J].长安大学学报,2004,21(4):58-61
    [34]Crawley D.B, Lawrie L.K, Winkelmann F.C, et al. Energy Plus:creating a new-generation building energy simulation program [J]. Energy and Buildings,2001, 33(4):319-331
    [35]惠州大金三石空调有限公司的水冷整体式冷水机.技术资料,HDS98-1
    [36]薛殿华.空气调节[M]第一版.清华大学出版社,1997
    [37]赵礼嘉,浦东国际机场空调系统变水温运行分析.流体机械,2003,31(11)
    [38]张雅锐,袁东立.建筑空调冷水系统变水温运行的节能分析.暖通空调,1991,21(5)
    [39]ASHRAE Handbook, Fundermentals.1972
    [40]陆琼文,刘传聚,曹静.浦东国际机场变空调供水温度节能运行方案分析[J].暖通空调,2003,33(2):123-125
    [41]翁文兵,宋振宁,陈剑波,于昌勇.小型中央空调系统变水温调节特性的实验研究[J].流体机械,2006,34(11):8-11
    [42]刘飞龙,朱冬生,闫军威,李静,周璇.区域供冷质调节的节能分析[J].流体机械,2007,35(11):70-73
    [43]闫军威,刘飞龙,朱冬生,周璇,李静.广州大学城区域供冷系统质调节的节能分析[J].建筑科学,2007,23(12):27-29
    [44]刘金平,麦粤帮.中央空调系统变水温和变水量协调优化控制研究[J].建筑科学,2007,23(6):12-15
    [45]S P Kavanaugh, K Rafferty. Ground-Source Heat Pump:Design of Geothermal Systems for Commercial and Institutional Buildings [M], Atlanta:ASHRAE,1997
    [46]Sanner B. Ground coupled heat pumps with seasonal cold storage[A]. In:Proceedings of the International Energy Agency Heat Pump Conference [C]. New York:Elsevier Science Publishers,1993.301
    [47]Metz P D. Design, construction and operation of solar assisted heat pump ground coupled storage experiments at Brookheven National Laboratory [A]. In:Proceeding of 4th Annual heat pump technology conference [C]. Stillwater:Oklahoma State University,1979
    [48]李洪欣.基于两参数的表冷器建模方法研究[J].建筑热能通风空调,2009,28(6):15-17
    [49]梅奎,梁彩华,张小松.变流量对表冷器性能的影响[J].化工学报,2008,59(S2):109-113
    [50]王剑明,张虹,王建伟.变风量空调系统表冷器设计及其控制仿真[J].暖通空调,2009,39(2):142-144
    [51]张伟,彭飞,冯翠花等.水流速对表冷器传热系数影响的分析[J].制冷空调与电力机械,2009,30(130):50-52
    [52]任述光.表冷器传热传质的数值模拟及特性研究[J].制冷与空调,2009,23(3):6-9
    [53]倪美琴,刘光远,刘卫波等.表冷器热力计算方法的分析与比较[J].暖通空调,2008,38(7):75-78
    [54]张丽,黄虎,宫金珠等.适于表冷器校核计算的分布参数模型及实验验证[J].建筑 热能通风空调,2009,28(5):14-17
    [55]王厉,马景辉.对表冷器热工计算中几个问题的探究[J].暖通空调,2007,37(11):43-48
    [56]唐化程.大型表冷器在地铁设计中的应用[J].山西建筑,2009,35(5):179-180
    [57]陈剑波,杜宁,林欣.变水温空调系统的运行节能分析[J].暖通空调,2007,37(8):161-164
    [58]杨文辉.公共建筑空调系统综合节能运行模式研究[D].重庆大学硕士论文.2008
    [59]李运华,张吉礼.大型公共建筑运行能耗评价指标的探讨[J].全国暖通空调制冷2006学术年会资料集.2006.
    [60]许远超.中央空调水系统优化控制策略研究[D].南京理工大学硕士论文.2005:37.
    [61]陆亚俊.暖通空调[M].北京:中国建筑工业出版社,2002.15-17.
    [62]王飞,胡文斌.广州地区办公建筑空调负荷特性及分布规律探讨[J].科学技术与工程,2010,10(23):5799-5801
    [63]陈源祥.中央空调冷热源问题探讨[J].山西建筑,2004,30(6):71-72.
    [64]中国气象局气象信息中心气象资料室.中国建筑热环境分析专用气象数据集[CP/DK].北京:中国建筑工业出版社,2005:光盘资料.
    [65]连之伟.热质交换原理与设备[M].中国建筑工业出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700