低压轴流风扇周向弯曲动叶内部流动特征的实验和数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在叶轮机械研究领域中应用弯掠叶片技术具有提高气动效率、减小流动损失、拓宽叶轮的稳定运行工况范围和降低气动噪声等显著优点,目前已逐渐成为叶轮机械研究领域的热点。
     本文以低压轴流风扇周向弯曲旋转动叶片为研究对象,采用遗传算法和人工神经网络相结合的组合优化方法,对周向弯曲动叶的弯曲方向和弯曲角度进行了优化设计。并进一步通过实验与数值模拟等研究手段,分别探讨了周向弯曲方向和周向前弯角度大小对低压轴流风机气动和声学性能的影响及其内部流动机理。此外,采用PIV激光流场测试手段在国内首次系统研究了弯掠叶片周向弯曲方向和弯角大小对于旋转动叶叶顶泄漏涡的影响规律。
     本文主要研究内容和研究成果如下:
     1、论文以T35型低压轴流风扇叶片为设计原型,采用遗传算法和人工神经网络相结合的组合优化方法,对周向弯曲动叶的弯曲方向和弯曲角度进行了优化设计。设计得到的周向前弯角度为6.1o的优化叶轮各项气动和声学性能指标均明显优于原型叶轮,同时有效解决了常规弯掠叶片设计中周向前弯叶片压升降低的缺陷。与原型叶轮相比,优化后的叶轮全压系数提高3.56%,气动效率提高1.27%,稳定工作范围增加36.4%,同时比A声压级降低了6dB(A)。
     2、对具有相同弯角大小而周向弯曲方向相反的周向前弯和周向后弯叶轮进行了气动-声学性能的对比研究。实验结果证实,周向前弯8.3o叶轮的气动效率和全压较周向后弯8.3o叶轮分别提高了1.36%和4.24%,同时气动噪声降低了4dB(A)。周向前弯叶轮的总体性能明显优于后弯。但是与常规径向叶片相比,8.3o弯角下叶轮的气动效率和压升均有所降低。通过在出口采用五孔探针测量气动特性参数沿叶高的分布,发现周向前弯叶片的主要流动集中于叶片中部叶高,在改善叶顶流动状况的同时增加了中部流动损失,这也是造成周向前弯8.3o叶轮气动效率和压升降低的主要原因。
     3、国内首次对具有不同弯角大小(1.27o、6.1o、8.3o、12o)的周向前弯动叶轮进行了对比测试。实验结果显示,弯角的大小对于轴流风扇的气动和声学特性参数均有显著的影响。随着前弯角度由0o增加到12o,性能指标存在“先增后减”的变化规律。过大的前弯角度增加了叶片中部的气动损失,抵消了叶片前弯以后对叶顶流动的改善,并造成总体损失增加和效率的降低。前弯角度的优化结果证实最佳的弯角主要取决于动叶前弯后上半叶高损失的减小与叶片中部损失增加之间的平衡。实验结果证实本文的优化方法是有效的。
     4、利用粒子图像测速仪PIV系统对不同周向弯曲方向和弯角大小的叶轮叶顶区域流场进行了对比实验研究。采用基于锁相平均技术的叶顶泄漏涡涡心轨迹分析方法研究了叶顶泄漏涡的运动轨迹及其涡量分布。实验表明,叶片周向后弯导致叶顶泄漏涡起始位置向叶片前缘移动,在该位置泄漏涡强度明显大于前弯叶片。对于周向前弯叶片,随着叶片周向前弯角度的增加,叶顶泄漏涡的起始位置逐渐向叶片后缘移动,叶顶泄漏流动造成的叶顶区域流动堵塞越发严重,旋涡稳定性呈现“先增强后减弱”的发展规律。
     5、利用NUMECA-Fine/Turbo软件计算平台,对本文所研究的五个叶轮内部三维定常流场进行了数值模拟研究。获得了不同径向位置叶片表面、流道内、叶轮出口截面的气动参数分布。通过与实验结果对比,验证了计算结果的准确性。并以此为前提,更加深入地分析了不同周向弯曲方向、不同周向前弯角度对轴流风扇出口流场和叶顶泄漏流动的影响。
     6、根据计及叶片径向力的完全径向平衡方程,结合本文的实验和数值分析结果,探讨了周向弯曲旋转叶片利用叶片径向力的大小和方向控制流道内部压力沿叶高的分布,减小通道二次流和附面层在叶顶的堆积机理,及其对于总体气动-声学性能的影响。
     通过对低压轴流风扇叶片设计中引入周向前弯优化设计方法,以及对周向弯曲动叶片内部流动特征的实验和数值研究,进一步丰富了轴流风扇叶片设计技术,更加全面和深入地认识了周向弯曲叶片的弯曲方向和弯角大小等关键参数对风扇性能和流场的影响,对提高叶轮机械的研制水平具有重要的意义。
In the turbomachinery field, skewed and swept blade technique has played a very important role in the increase of aerodynamic efficiency, decrease of flow loss, extension of stable operating range, and reduction of aerodynamic noise of turbomachinery. Nowadays, this technique has been one of research focuses in the turbomachinery field.
     In this paper, the circumferential skewed rotor blades of low pressure axial fan are as research objects. Using a combined algorithm, including genetic algorithm (GA) and artificial neural network (ANN), a skewed rotor blade is optimized with redesigning skew direction and skew angle of blade. And then, with experiment and simulation computation, the effects of rotor blade skew direction and forward skew angle on aerodynamic and aeroacoustic performance and internal flow mechanism of fan are analyzed respectively. In addition, tip leakage flow of the circumferential skewed rotors is first measured with the particle image velocimetry (PIV) technique in China. The effects of rotor blade skew direction and skew angle on tip leakage flow are first compared and analyzed systemically in China.
     Main research contents and results of this paper are as follows:
     1. In this paper, the archetype is from the T35 No.5 rotor blade of low pressure axial fan. Using a combined algorithm, including GA and ANN, the archetypal rotor blade is optimized with redesigning skew direction and skew angle of blade. The results show that the optimum blade is a circumferential forward-skewed blade having 6.1oskew angle. The rotor blade has better aerodynamic and aeroacoustic performance than the archetypal rotor blade. The problem is solved about whether circumferential forward-skewed blade having lower total pressure than radial blade or not. Compared to the archetypal rotor, the optimized rotor has a higher total pressure rise of 3.56%, a higher efficiency of 1.27%, a wider stable operating range of 36.4% and a lower average A-weight sound pressure level of 6dB(A).
     2. The aerodynamic and aeroacoustic performance of a forward-skewed rotor and a backward-skewed rotor, blades of which have the same skew angle 8.3o, is measured and analyzed. The measurement results show that compared to the backward-skewed 8.3orotor, the forward-skewed 8.3orotor has a higher total pressure rise of 4.24%, a higher efficiency of 1.36% and a lower aerodynamic noise of 4dB(A). The forward-skewed 8.3o rotor has an improved total performance than the backward-skewed 8.3 o rotor. However, compared to the archetypal blade, the forward-skewed 8.3orotor has a lower total pressure rise and efficiency. The radial distributions of aerodynamic parameters are measured with a five-hole probe. The results show that compared to the archetypal blade, there are a higher flow rate and an improved flow in mid-span region of the forward-skewed blade. However, there is a higher flow loss in mid-span region of the forward-skewed blade. As a result, the rotor has a lower total pressure rise and efficiency than the archetypal rotor.
     3. In the forward-skewed rotors, including 1.27o, 6.1o, 8.3o, 12o skew angle, flow field is first measured and analyzed in China. The results show that forward skew angle of blade has obvious effect on aerodynamic and aeroacoustic performance of axial fan. With the increase of forward skew angle of blade from 0o to12o, the performance of axial fan is better and better first and then worse and worse. The forward-skewed rotor with larger blade skew angle than the optimized blade has a higher loss in mid-span region than the optimized rotor. It kills an improved blade tip flow of the forward-skewed blade and results in the increase of total loss and the reduction of efficiency. In the optimized rotor the decrease of loss in higher mid-span region is more than the increase of loss in mid-span region. The measurement results confirm the validity of this optimization design method.
     4. Blade tip flow of the five rotors having different blade skew direction and skew angle is measured with PIV and analyzed. By phase-lock averaged technique, the position of tip leakage vortex center is analyzed and the trajectory of tip leakage vortex and the distribution of vorticity are researched. The measured results show that compared to the forward-skewed rotor, the onset position of tip leakage vortex is closer to leading edge of blade and there is a higher strength of tip leakage vortex in the backward-skewed rotor. With the increase of forward skew angle of blade, the onset position of tip leakage vortex is closer to trailing edge of blade and the flow blockage is aggravated gradually in tip region and the stability of leakage vortex is higher and higher first and then lower and lower.
     5. The three dimensional steady flow fields of the five rotors are simulated with NUMECA computation fluid dynamic software. The results include the radial distribution of aerodynamic parameters on blade surface, in flow passage and at outlet of rotor. Compared to the measurement results, the accuracy of the computation results is validated. And then, the effects of blade skew direction and forward skew angle on outlet flow field of axial fan and tip leakage flow are analyzed further.
     6. Based on full radial equilibrium equation, in circumferential skewed rotor some flow mechanisms are discussed for explaining the above measurement and computation results. The flow mechanisms include that by radial component of body force, there are a controlled radial distribution of static pressure in flow passage, decreased passage second flow and the accumulation of boundary layer in blade tip region. And then, the effects of the above flow mechanisms on aerodynamic and aeroacoustic performance of axial fan are also analyzed.
     By the introduction of this optimization design method based on blade skew in blade design of low pressure axial fan, based on the experimental and computational research on flow characteristic of circumferential skew rotor blade, blade design techniques of axial fan are enriched further. The effects of some key parameters, including blade skew direction, skew angle and so on, on performance and internal flow field of axial fan are understood more comprehensively and further. It is very useful for improvement of design of turbomachinery.
引文
1. 张威,戚军芳,吕悦慈,喷雾轴流风机在纺织厂空气调节系统的应用,河北工业科技,2002,19(1):36-38
    2. 刘贵卿,GAF 矿井轴流风机在煤矿中的应用,山西煤炭,2002,22(1):46-47
    3. 欧阳昌设,李冬生,朱清峰等,高大平房仓储粮机械通风的应用,粮食加工,2006,No.4,88-89
    4. 郭欣茹,张亚峰,电子设备机箱的强风冷设计,无线电通信技术,2004,30(2):49-50,55
    5. 苏建明,陈洪涛,第三代移动通信系统基站子设备散热优化设计. 安全与电磁兼容. 2006,No.5,81-83
    6. 管鸿浩,武汉长江隧道通风设计,隧道建设,2005,25(5):23-27
    7. 金文良,李宁军,李清,新七道梁隧道通风系统局部数值仿真模拟研究,公路隧道,2006,No.3,6-10
    8. 娄小军,变频控制地铁变风量控制方案研究:[博士论文].天津:天津大学,2002
    9. 顾建明,袁仲文,王胜利等,低压轴流风机的轴向速度分布,流体机械,1996,24(9):3-5
    10. 周笃高,周江,低压轴流风机性能优化及特性数值计算,煤炭学报,1996,21(1):101-106
    11. 梁锡智,丁桂芬,吴海等,高效低噪轴流式通风机的研制,风机技术,1995,No.3, 2-5
    12. Wright T., Simmons W. E., Blade Sweep for Low-Speed Axial Fans. Journal of Turbomachinery, Transactions of ASME. 1990, 112(1): 151-158
    13. 蔡娜,李地,钟芳源. 弯掠动叶气动-声学优化设计及实验研究. 上海交通大学学报. 1997,31(2):81-85
    14. Beiler M. G., Carolus T. H., Computation And Measurement of the Flow in Axial Flow Fans With Skewed Blades. Journal of Turbomachinery, Transactions of ASME. 1999, 121(1):59-66
    15. Weingold H. D., Neubert R. J., Behlke R. F., Bowed Stator: An Example of CFD Applied to Improve Multistage Compressor Efficiency. Journal of Turbomachinery, Transactions of ASME. 1997, 119(1):161-167
    16. Sasaki T., Breugelmans F., Comparison of Sweep and Dihedral Effects on Compressor Cascade Performance. Journal of Turbomachinery, Transactions of ASME. 1998, 120(3):454-464
    17. XIAO Xin-wen, Andrew A. M., Lakshminarayana B., Tip Clearance Effects in a Turbine Rotor:Part I- Pressure Field and Loss. Journal of Turbomachinery, Transactions of ASME. 2001, 123(2):296-304
    18. Andrew A. M., XIAO Xin-wen, Lakshminarayana B., Tip Clearance Effects in a Turbine Rotor : Part II - Velocity Field and Flow Physics. Journal of Turbomachinery, Transactions of ASME 2001, 123(2):305-313
    19. Lakshminarayana B., Zaccaria M., Marathe B., The Structure of Tip-clearance Flow in Axial Flow Compressors. ASME Journal.of Turbomachinery. 1995, 117(3):336-347
    20. 苏杰先,王仲奇,一代新型轴流式透平机械叶片-叶片的弯扭联合气动成型理论、实验、设计及其应用,透平机械文集,1991,1-12
    21. 吴国华,彭泽琰,严明,任丽芸,压气机“修型”叶栅的实验研究,航空动力学报,1993,8(4):155-157
    22. PENG Ze-yan, WU Guo-hua, YAN Ming, et al., An Experimental Investigation of Technologies of Endwall Flow Control in a Compressor Plane Cascade, NASA, TMX-3347, 1976
    23. Deich M. E., Zaryankin A. E., Filippov G. A., et al., Method of Increasing the Efficiency of Turbine Stages with Short Blades, A.E.I. Translation, No.2816, 1960
    24. Dorman T. E., Welna H., Lindlauf R. W., The Application of Controlled-Vortex, Aerodynamics to Advanced Axial Flow Turbines, ASME paper 68-GT-4, 1968
    25. IO.M., 徐家驹,压气机叶栅的空气动力学,机械工业出版社,1985
    26. Vrasek D. C., Lewis G. W., Moore R. D., Effect of Casing Treatment on Performance of an Inlet Stage for a Transonic Multistage Compressor, NASA, TMX-3347, 1976
    27. 庄平,轴流压气机机匣处理试验及数值研究:[博士论文].北京:北京航空航天大学,1986
    28. 庄平,陆亚均,崔济亚,轴流压气机机匣处理数值研究,中国工程热物理学会第六届年会论文,No.882054,1988
    29. Kawai T., Adachi T., Shinoki S., Secondary Flow and Losses in a Turbine Cascade Equipped with Endwall Boundary Layer Fences (Influence of Fence Position), 日本机械工程学会论文集(B 篇), 1988, 54(505):2492-2497
    30. Behlike R. F., The Development of a Second-Generation of Controlled Diffusion Airfoilsfor Multistage Compressors, ASME Journal of Turbomachinery, 1986, Vol.108, 32-40
    31. Deich M. E., Gubalev A. B., WANG Zhong-qi, A New Method of Profiling the Guide Vane Cascade of Stages with Small Ratios of Diameter to Length, Teplien ergetika, 1962, No.8, 42-46
    32. 钟芳源,王建民,蔡娜等,双激盘理论及其在轴流式弯掠动叶栅气动计算中的应用,航空动力学报,1994,9(4):394-398
    33. 王建民,周向前弯动叶的气动力学和气动声学研究:[博士论文].上海:上海交通大学,1989
    34. 韦俊,前弯动叶在轴流风机和压气机中应用的机理研究-计及旋转和前弯影响的动叶栅出口附面层厚度沿径向分布的计算及其对气动和声学性能的影响:[硕士论文].上海:上海交通大学,1987
    35. 李中,前弯叶片理论与试验研究:[硕士论文].上海:上海交通大学,1992
    36. 蔡娜,钟芳源,轴流式弯掠动叶变工况气动-声学性能的实验研究,工程热物理学报,1996, 17(3):280-285
    37. 蔡娜,钟芳源,弯掠动叶扩大稳定工作范围的实验研究,航空动力学报,1996,11(3):229-232
    38. 蔡娜,李地,钟芳源,新型弯掠动叶风机性能实验,流体机械,1996,24(11):3-7
    39. 蔡娜,轴流式弯掠动叶片的气动一声学性能计算及设计方法的研究:[博士论文].上海:上海交通大学,1994
    40. 刘富斌,杜朝辉,钟芳源,轴流通风机动叶前弯对扩大稳定工况的试验研究,风机技术,1999,(6):5-9
    41. 欧阳华,钟芳源,叶轮机械气动噪声及周向前弯动叶降噪技术的研究,风机技术,2002,(5):11-15
    42. OU YANG Hua, YANG Bo, ZHONG Fang-yuan, et al. Plain Cascade Research on a Reversible Combined Blade. Chinese Journal of Mechanical Engineering, 2003,No.1
    43. 欧阳华,杨波,钟芳源等,直接反转完全可逆式组合叶栅的实验研究,流体力学实验与测量,2002,16(4):47-51
    44. 杨波,欧阳华,钟芳源等,组合叶栅的定义及其应用研究,航空动力学报,2002,17(3):309-313
    45. 杨波,欧阳华,钟芳源等,组合叶栅的实验研究(一),空气动力学报,2002,20(3):300-311
    46. 钟芳源,杨波,欧阳华,可逆式轴流风机叶片设计新方案的探讨,流体机械,2000,28(12):13-17
    47. 欧阳华,新型可逆式弯掠组合叶片的研究:[博士论文].上海:上海交通大学,2002
    48. 杨波,可逆式轴流风机设计新方案-组合叶栅性能的研究:[博士论文].上海:上海交通大学,2001
    49. 邢秀清,单鹏,周盛,风扇转子前缘曲线相对掠对性能的影响,航空动力学报,2000,15(1):39-43
    50. 邢秀清,周盛,赵晓路,掠弯叶片前缘曲线同流场结构的关联,航空动力学报,2000,15(4):337-341
    51. 李秋实,李玲,陆亚钧,民用通风机气动设计中弯掠长叶片的数值模拟,北京航空航天大学学报,2001,27(1):44-47
    52. 黄其柏,掠形叶片轴流风机涡流噪声的研究,华中理工大学学报,1998,26(2):1-3
    53. 周亚峰,胡国荣,压气机转子叶片弯曲对其气动性能的影响,航空发动机,1996,(2):42-45
    54. 宋彦萍,李娜,王松涛,王仲奇,弯曲动叶对跨音轴流压气机性能的影响,工程热物理学报,2004,25(4):582-584
    55. 杨东旭,由世俊,田铖,利用FLUENT软件模拟地铁专用轴流风机(二)—弯掠组合翼型叶片轴流风机,流体机械,2003,31(12):11-13
    56. 杨爱玲,陈康民,掠动叶对小型轴流风扇转子气动及声学特性的影响研究,流体机械,2002,30(1):18-20
    57. 杨爱玲,气动掠对小型轴流风扇转子气动及声学特性影响的数值研究.上海:上海理工大学博士后出站报告,2000
    58. Mohammed K. P., Raj R. D., Investigation on Axial Flow Fan Impeller with Forward Swept Blades. ASME Paper 77-FE-1, 1977
    59. Yamaguchi N., Tominaga T., Mitsubishi T., Secondary Loss Reduction by Forward Skewing of Axial Compressor Rotor Blading. Proceeding of 1991 Yokohama International Gas Turbine Congress. 1991, Vol.12, 61-68
    60. Yamaguchi N., Tominaga T., Performance Improvement by Forward Skewed Blading of Axial Fan Moving Blades. 11th ISABE 93-7055, 1993
    61. Carolus T. H., Beiler M. G., Skewed Blades in Low Pressure Fans: a survey of noise reduction mechanisms. AIAA-97-1591-CP, 1997
    62. Carolus T. H., Stremel M., Sichelschaufeln Bei Axialventilatoren. Luftungstechnik. 2000, Bd.51, 33-39
    63. Corsini A., Rispoli F., Using Sweep to Extend the Stall-free Operational Range in Axial Fan Rotors, Proceedings of the Institution of Mechanical Engineers, Part A: Journal ofPower and Energy, 2004, 218(3):129-140
    64. Corsini A., Rispoli F., The Role of Forward Sweep in Subsonic Axial Fan Rotor Aerodynamics at Design and Off-design Operating Conditions, American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, 2003, Vol.6 A, 543-553
    65. Neubert R., Gendrich C. P., HSCT Forward Swept Fan Performance, American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, 2003, Vol.6 A, 625-631
    66. CAI Na, XU Jian-zhong, Benaissa A., Aerodynamic and Aeroacoustic Performance of a Skewed Rotor, American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, 2003, Vol.6 A, 497-504
    67. Wadia A. R., Szucs P. N., Crall D. W., Inner Workings of Aerodynamic Sweep. Journal of Turbomachinery, Transactions of ASME. 1998, 120(4): 671-682
    68. 刘大响,程荣辉,世界航空动力技术的现状及发展动向,北京航空航天大学学报,2002,28(5):490-496
    69. Stanley W. K., General Electric Tests Forward Swept Fan Technology, International Aviation, 1997, No.1
    70. 郭琦,李兆庆,军用发动机压缩系统的技术进展,国际航空,2006
    71. Mikkelson D. C., Mithell G. A., Bober L. J., Summary of Recent NASA Propeller Research, NASA, TM-83733, 1984,165-178
    72. 梁春华,掠形叶片,航空发动机,1999,No.2,15pp
    73. Garrent Turbine Co., Makers Lead in Compressor Uses, Aviation Week and Space Technology, 1983, 215-218
    74. Pierre S., All-New Turbofan, International Aviation, 2004, No.12
    75. Parker R., Rolls-Royce Aeroengine Technology-A Vision of Excellence [R], Rolls-Royce &AVIC Symposium, 2003
    76. Ni R.H., Advanced Modeling Techniques for New Commerical Engines [R], ISABE 99-7043
    77. Gummer V., Wenger U., Kau H.P., Using Sweep and Dihedral to Control Three Dimensional Flow in Transonic Stators of Axial Compressors [R], ASME 2000-GT-0491
    78. Brown N. A., The Use of Skewed Blades for Skip Propellers and Truck Fans, Noise and Fluids Engineering, 1977
    79. 高金满,倾斜叶片在某型发动机上的初步应用,航空动力学报,1990,5(2):113-117,186
    80. 桂幸民,周拜豪,压缩系统跨音进口级弯掠叶片空气动力学概述,航空动力学报,1995,10(4):407-411
    81. 周盛,韩振学,孟庆国,计算流体力学在吸气式推进领域中的某些应用,空气动力学学报,1998,16(1):97-107
    82. Rains D. A., Tip Clearance Flows in Axial Flow Compressors and Pumps. California Institute of Technology, Hydrodynamics and Mechanical Engineering Laboratories, Report No. 5, 1954
    83. Chen G. T., Greitzer E. M., Tan C. S., et al, Similarity Analysis of Compressor Tip Clearance Flow Structure, ASME Journal of Turbormachinery, 1991, 113(2):260-271
    84. Lakshminarayana B., Fluid Dynamics and Heat Transfer of Turbomachinery, Wiley-interscience Publication, 1995
    85. 王晓宇,徐力平,程元中,朱岩,叶轮机转子内流场的三维激光测量,航空动力学报,1992,7(1):9-13
    86. 马宏伟,蒋浩康,压气机转子通道内尖区三维平均流场,航空动力学报,1997,12(2):167-220
    87. 马宏伟,蒋浩康,聂超群,轴流风机转子通道内尖区三维流场,工程热物理学报,1998, 19(1):45-48
    88. 马宏伟,蒋浩康,轴流压气机叶尖泄漏涡的时均流动,工程热物理学报,1998,19(6):681-686
    89. 竺晓程,杜朝辉,带叶顶间隙轴流转子三维流动的数值模拟,上海交通大学学报,2003,37(9):1480-1483
    90. 郭强,竺晓程,胡丹梅,杜朝辉,采用 PIV 研究轴流风机叶顶泄漏流动,2004,18(1):33-37
    91. 竺晓程,林万来,杜朝辉,轴流通风机叶顶区域流动的实验研究,上海交通大学学报,2005,39(2):177-181
    92. 邓向阳,张宏武,朱俊强等,压气机非定常叶顶间隙流的数值模拟研究,工程热物理学报,2006,27(2):229-231
    93. Dring R. P., Joslyn H. D., Hardin L. W., An Investigation of Axial Compressor Rotor Aerodynamics, Journal of Engineering for Power, 1982,Vol.104, 84-96
    94. Lakshminarayana B., Pouagare M., Davino R., Three-Dimensional Flow Field in the Tip Region of a Compressor Rotor Passage—PartⅠ: Mean Velocity Profiles and Annulus Wall Boundary Layer,Journal of Engineering for Power, 1982, Vol.104, 760-771
    95. Lakshminarayana B., Davino R., Pouagare M., Three-Dimensional Flow Field in the Tip Region of a Compressor Rotor Passage—PartⅡ: Turbulence Properties, Journal of Engineering for Power, 1982,Vol.104, 772-781
    96. Lakshminarayana B., Murthy K. N. S., Laser-Doppler Velocimeter Measurement of Annulus Wall Boundary Layer Development in a Compressor Rotor, Journal of Turbomachinery, 1988, 110(3): 377-385
    97. Murthy K. N. S., Lakshminarayana B., Laser Doppler Velocimeter Measurement in the Tip Region of a Compressor Rotor, AIAA Journal, 1986, 24(5): 807-814
    98. INOUE Masahiro, Kuroumaru M., Three Dimensional Structure and Decay of Vortices Behind an Axial Flow Rotating Blade Row, Journal of Engineering for Gas Turbine and Power,1984, 106(3): 561-569
    99. INOUE Masahiro, Kuroumaru M., Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor, Journal of Turbomachinery, 1989, 111(3): 250-256
    100.INOUE Masahiro, Kuroumaru M., Fukuhara M., Behavior of Tip Leakage Flow Behind an Axial Compressor Rotor, Journal of Turbomachinery, 1986, 108(1): 7-14
    101.INOUE Masahiro, FURUKAWA Masato, SAIKI Kazuhisa, et al, Physical Explanations of Tip Leakage Flow Field in an Axial Compressor Rotor, American Society of Mechanical Engineers (Paper), 98-GT-91, 1998, 12pp
    102.FURUKAWA Masato, INOUE Masahiro, SAIKI Kazuhisa, et al, Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics, Journal of Turbomachinery, Transactions of the ASME, 1999, 121(3): 469-480
    103.Puddu P., Tip Leakage Flow Characteristics Downstream of an Axial Flow Fan, American Society of Mechanical Engineers (Paper), 96-GT-508, 1996, 12pp
    104.Nikolaou I. G., Giannakoglou K. C., Papailiou K. D., Study of Radial Tip Clearance Effects in a Low-speed Axial Compressor Rotor, American Society of Mechanical Engineers (Paper), 96-GT-37, 1996, 12pp
    105.MYUNG Hwan-joo, BAEK Je-hyun, Mean Velocity Characteristics behind a Forward-swept Axial-flow fan, JSME International Journal, Series B, 1999, 42(3): 476-488
    106.LEE Gong-hee, BAEK Je-hyun, A Numerical Study on the Structure of Tip Clearance Flow in a Highly Forward-swept Axial-flow Fan, American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 2002, 257(2): 799-806
    107.LEE Gong-hee, BAEK Je-hyun, MYUNG Hwan-joo, Structure of Tip Leakage Flow in aForward-Swept Axial-Flow Fan, Turbulence and Combustion, 2003, 70(1-4): 241-265
    108.LEE Gong-hee, BAEK Je-hyun, MYUNG Hwan-joo, Effect of Blade Loading on the Structure of Tip Leakage Flow in a Forward-swept Axial-flow Fan, HVAC and R Research, 2005, 11(1): 95-117
    109.JANG Choon-Man, OGATA Nobuyoshi, FURUKAWA Masato, et al, Characteristics of Three-dimensional Flow Field and Velocity Fluctuation Near the Rotor Tip in an Axial Flow Fan (relation to the noise generation), Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2002, 68, (673): 2460-2466
    110.JANG Choon-Man, FUKANO Tohru, FURUKAWA Masato, Effects of the Tip Clearance on Vortical Flow and Its Relation to Noise in an Axial Flow Fan, JSME International Journal, Series B: Fluids and Thermal Engineering, 2003, 46(3): 356-365
    111.Gupta A., Khalid S. A., McNulty G. S., et al, Prediction of Low Speed Compressor Rotor Flowfields with Large Tip Clearances, American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, 2003, Vol.6 B, 1135-1145
    112.Decker J. J., Beacher B. F., Scott Mcnulty G. S., Arif Khalid S., The Impact of Forward Swept Rotors on Tip-limited Low-speed Axial Compressors, American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, 2003, Vol.6 A, 613-624
    113.Mcnulty G.. S., Decker J. J., Beacher B. F., et al, The Impact of Forward Swept Rotors on Tip Clearance Flows in Subsonic Axial Compressors, Journal of Turbomachinery, 2004, 126(4): 445-454
    114.YOON Jong-Hwan, LEE Sang-Joon, Stereoscopic PIV Measurements of Flow behind an Isolated Low-speed Axial-fan, Experimental Thermal and Fluid Science, 2004, 28(8): 791-802
    115.伊卫林,黄鸿雁,韩万金,轴流压气机叶片优化设计,热能动力工程,2005,21(2):140-144
    116.伊卫林,黄鸿雁,韩万金,模拟退火算法与响应面模型在压气机动叶优化设计中的应用,动力工程,2006,26(4):483-485,524
    117.伊卫林,黄鸿雁,韩万金,基于数值优化方法的跨声速压气机掠动叶设计,推进技术,2006,27(1): 33-36,51
    118.伊卫林,黄鸿雁,韩万金,基于数值优化的跨音速压气机动叶三维设计,燃气轮机技术,2006,19(2):34-38,63
    119.尉涵,袁新,轴流压气机多叶片排的气动优化设计,热能动力工程,2005,20(6):603-606
    120.JANG Choon-man, KIM Kwang-yong, Optimization of a stator blade using response surface method in a single-stage transonic axial compressor, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2005, 219(8): 595-604
    121.JANG Choon-man, LI Ping, KIM Kwang-yong, Optimization of blade sweep in a transonic axial compressor rotor, JSME, Series B: Fluids and Thermal Engineering, 2006, 48(4): 793-801
    122.JANG Choon-man, Samad A., KIM Kwang-yong, Optimal design of swept, leaned and skewed blades in a transonic axial compressor, Proceedings of the ASME Turbo Expo, 2006, 6 PartB: 1279-1288
    123.Lotfi O., Teixeira J. A., Ivey P. C., et al., Aerodynamic optimization of industrial fan blade cascades, Proceedings of the ASME Turbo Expo, 2005, 6, Part B: 1059-1066
    124.Lotfi O., Teixeira J. A., Ivey P. C., et al., Shape optimisation of axial fan blades using genetic algorithms and a 3D Navier-Stokes solver, Proceedings of the ASME Turbo Expo, 2006, 6, Part B: 1373-1383
    125.Ahn C. S., Kim K. Y., Aerodynamic Design Optimization of an Axial Flow Compressor Rotor, ASME International Gas Turbine Institute, Turbo Expo, 2002, Vol.5 part B: 813-819
    126.伊卫林,黄鸿雁,韩万今,轴流压气机叶片优化设计,热能动力工程,2006,21(2): 140-144
    127.王妍,林宗虎,改进 BP 神经网络再流型判别中的应用,热能动力工程,2001,16(1): 63-64,90
    128.Benini E., Three-dimensional multi-objective design optimization of a transonic compressor rotor, Journal of propusion and power, 2004, 20(3): 559-565
    129.李军,李国君,丰镇平,应用复合进化算法的叶栅气动优化设计方法的研究,机械科学与技术,2005,24(4):412-414
    130.樊会元,席光,王尚锦,一个神经网络结合遗传算法的叶轮逆命题设计方法,航空动力学报,2000,15(1): 47-50
    131.Demeulenaere A., Liqout A., Dijkers R., et al, Design and Optimization of an Industrial Pump: Application of Genetic Algorithms and Neural Network, Proceedings of theAmerican Society of Mechanical Engineers Fluids Engineering Division Summer Conference, 2005, Vol.1, part B: 1519-1527
    132.Demeulenaere A., Liqout A., Hirsch C., Application of Multipoint Optimization to the Design of Turbomachinery Blades, Proceedings of the ASME Turbo Expo 2004, 2004, Vol.5, part B: 1481-1490
    133.Islek A. A., Optimization of Micro Compressor Blades Using CFD Analysis and Artificial Intelligence, Proceedings of the ASME/JSME Joint Fluids Engineering Conference, 2003, Vol.1 part C, 2139-2146
    134.Mengistu T., Ghaly W., Single and Multipoint Shape Optimization of Gas Turbine Blade Cascades, Collection of Technical Papers - 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004, Vol.3, 1652-1662
    135.王仲奇,郑严,叶轮机械弯扭叶片的研究现状及发展趋势,中国工程科学,2000, 2(6):40-48
    136.王正志,薄涛,进化计算,长沙:国防科技大学出版社,2000
    137.云庆夏,进化算法,北京:冶金工业出版社,2000
    138.玄光男,遗传算法与工程优化,北京:清华大学出版社,2004
    139.李敏强,遗传算法的基本理论与应用,北京:科学出版社,2002
    140.程相君,神经网络原理及其应用,北京:国防工业出版社,1995
    141.焦李成,神经网络系统理论,西安:西安电子科技大学出版社,1990
    142.周继成,人工神经网络,北京:科学普及出版社,1993
    143.徐秉铮,张百灵,韦岗,神经网络理论与应用,广州:华南理工大学出版社,1994
    144.王伟,人工神经网络原理,北京:北京航空航天大学出版社,1995
    145.石家庄市风机厂有限责任公司,T35-11 轴流通风机说明书,1999
    146.宋德耀,罗次申,顾大伟,气动全消声室设计方案探讨,节能低噪声轴流风机气动热力学气动声学研究成果鉴定会,上海交通大学,1987
    147.通风机空气动力性能试验方法(GB/T1236-2000),北京:中国标准出版社,2000
    148.风机和罗茨鼓风机噪声测量方法 GB/T2888/91,中华人民共和国国家标准,1991
    149.Treaster A.L., and Yocum A.M., The Calibration and Application of Five-Hole Probes, ISA Transaction, 1979,18(3):23-34
    150.陈克诚,流体力学实验技术,北京:机械工业出版社,1983
    151.姜桐,吴克启,叶轮机械内部流动实验分析方法,北京:机械工业出版社,1989
    152.王子延,热能与动力工程测试技术,西安:西安交通大学出版社,1998
    153.戴昌晖,流体流动测量,北京:航空工业出版社,1992
    154.钟兢军,弯曲叶片控制扩压叶栅二次流动的实验研究:[博士论文].哈尔滨:哈尔滨工业大学,1995
    155.Landhaeusser A., Calibration of a 5-Hole Probe and Test of an Evaluation Method for Flow Field Measurements, DFV R mitt. 1986, 86-19
    156.孟昭勇,陈浩,张志军,智能型五孔探针测试仪的研制,中国航空学会第七届叶轮机学术会议,CSAA94-PT-18, 1994
    157.Dominy R.G., Hodson H.P., Investigation of Factors Influencing the Calibation of Five-Hole Probes for Three-dimensional Flow Measurements, Journal of Turbomachinery, Transactions of the ASME, 1993,115(3):513-519
    158.Dantec Measurement Technology A/S, FlowMap Particle Image Velocimetry Instrumentation Installation &User’s guide, 1996
    159.王灿星,林建忠,山本富士夫,二维 PIV 图像处理算法,水动力学研究与进展,2001,16(4): 399-404
    160.F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry, second edition, Academic Press, 1981
    161.Bich W., Cox M.G., Harris P.M., Evolution of the Guide to the Expression of Uncertainty in Measurement, Metrologia, 2006, 43(4): 161-166
    162.Wolfgang K., Measurement Uncertainty According to ISO/BIPM-GUM, Thermochimica Acta, 2002, 382(1-2): 1-16
    163.ISO, Guide to the Expression of Uncertainty in Measurement, ISO, Geneva, Switzerland, 1993
    164.吴华伟,不确定度在实验流体动力学中的应用研究:[硕士论文].武汉:华中科技大学,2004
    165.张玉坤,误差与不确定度,宇航计测技术,1998,18(1):44-47
    166.荣瑞琴,测量误差、不确定度合数据处理的探讨,山西电力技术,1998,No.4,53-56
    167.Wagner S. R., On the Quantitative Characterization of the Uncertainty of Experimental Results in Metrology, PTB Mitteilungen, 1979, 89(2): 83-89
    168.刘智敏,不确定度及其实践,北京:中国标准出版社,1999
    169.肖明耀,康金玉,测量不确定度表达指南/国际标准化组织,北京:中国计量出版社,1994
    170.钟芳源,节能低噪轴流/离心风机(理论,计算,设计,实验研究)论文集,北京:机械工业出版社,1994
    171.WADIA A R, SZUCS P N, CRALL D W, et al, Forward Swept Rotor Studies inMultistage Fans With Inlet Distortion, ASME International Gas Turbine Institute, Turbo Expo, 2002, 5A: 11-21
    172.VITALIY N, Parametric Investigation of Entire Annular Recess Casing Treatment on Compressor Stable Operation [J], Experimental Thermal and Fluid Science, 2005, 29(2): 209-215
    173.商景泰,通风机手册,北京:机械工业出版社,1996
    174.陈花玲,苏强,张铁山等,多叶片离心通风机气动噪声特性及其控制,西安交通大学学报,1995,29(7): 14-20
    175.俞济梁,周晓军,轴流通风机比 A 声级噪声限值的探讨,重庆大学学报(自然科学版),1995,18(1): 77-80
    176.Rollet-Miet P., Laurence D., Ferziger J., LES and RANS of Turbulent Flow in Tube Bundles, International Journal of Heat and Fluid Flow, 1999, 20(3): 241-254
    177.John D. A., Computational Fluid Dynamics: The Basics with Applications, McGraw-Hill, 2002
    178.Versteeg H. K., Malalasekera W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Wiley, New York, 1995
    179.P R Spalart,S R Allmaras.One-equation Turbulence Model for Aerodynamic Flows.La Recherche Aerospatiale, 1994, No.1, 5-21
    180.朱自强,应用计算流体力学,北京,北京航空航天出版社,1998
    181.宁方飞,徐力平,Spalart-Allmaras 湍流模型在内流流场数值模拟中的应用,工程热物理学报,2001,22(3):304-306
    182.LEE Gong-hee, PARK Jong-ll, BAEK Je-hyun, Performance Assessment of Turbulence Models for the Quantitative Prediction of Tip Leakage Flow in Turbomachines, Proceedings of the ASME Turbo Expo 2004, 5B: 1501-1511
    183.苏欣荣,袁新,多级轴流压气机全工况特性预测,热力透平,2005,34(4):203-206
    184.赖焕新,康顺,谭春青等,有无叶顶间隙条件下斜流风机叶轮内部三维流动的数值研究,航空动力学报,2000,15(1):17-21
    185.KANG Shun, Numerical Investigation of a High Speed Centrifugal Compressor Impeller, 2005, Proceedings of the ASME Turbo Expo 2005, 813-821
    186.Maruzewski P., Leboeuf F., Numerical Simulation of a Spatial Turbo-pump Stage, 2002, ASME, Fluids Engineering Division, 257(1): 297-302
    187.Numeca International Inc., FINETM Numeca’s Flow Integrated Environment, User Manual, Version 6.2, 2004
    188.Numeca International Inc., IGGTM Interactive Geometry Modeler and Grid Generator, User Manual, version 4.9-1, 2004
    189.Numeca International Inc., Autogrid Interactive Geometry Modeller and Grid Generator, User Manual, version 4.9-1, 2004
    190.Numeca International Inc., CFViewTM Computational Field Visualization System, User Manual, version 4.2-1, 2004
    191.FUKANO T., KODAMA Y., TAKAMATSU Y., Noise Generated by Low Pressure Axial Flow Fans, I: Modeling of the Turbulent Noise, Journal of Sound and Vibration, 1977, Vol.50, 63-74
    192.张莉,离心叶轮机械内部非定常流动的研究:[博士论文].上海:上海交通大学,2001
    193.Haimes R., Kenwright D., On the Velocity Gradient Tensor and Fluid Feature Extraction. AIAA Paper 99-3288, 1999, 10pp
    194.Sujuki D., Haimes R., Identification of Swirling Flow in 3-D Vector Fields. AIAA Paper 95-1715, 1995, 8pp
    195.Yamamoto A., Yanagl R., Production and Development of Secondary Flows and Losses Within a Three Dimensional Turbine Stator Cascade, ASME Paper No. 85-GT-217, 1985
    196.Yamamoto A., Production and Development of Secondary Flows and Losses Within Two Types of Straight Turbine Cascades, Part I: A Stator Case, ASME Paper No. 86-GT-184, 1986
    197.Gregory –Smith D. G., Graves C. P., Secondary Flows and Losses in a Turbine Cascade, Viscous Effects in Turbomachines, AGARD-CP-214, 1977
    198.Moore J., Ransmayr A., Flow in a Turbine Cascade, Part I: Loss and Leading-Edge Effects, ASME Paper No.83-GT-68, 1983
    199.Kameier F., Neise W., Experimental Study of Tip Clearance Losses and Noise in Axial Turbomachines and Their Reduction, Journal of Turbomachinery ASME, 1997, 119(3): 460-471
    200.王仲奇,秦仁,透平机械原理(修订本),北京:机械工业出版社,1988
    201.舒士甄,朱力,柯玄龄等,叶轮机械原理,北京:清华大学出版社,1991
    202.Jennions I. K., Stow P., A Quasi-three-dimensional Thurbomachinery Blade Design System: Part I. Throghflow Analysis, Journal of Engineering for Gas Turbines and Power ASME, 1985, 107(2): 301-307
    203.Jennions I. K., Stow P., A Quasi-three-dimensional Thurbomachinery Blade Design System: Part II. Computerized System, Journal of Engineering for Gas Turbines andPower ASME, 1985, 107(2): 308-316
    204.Jackson R., Wood N. B., Boston A., Efficient Modeling of Blade Lean Effects within the Turbomachinery Throughflow Method, International Journal of Heat and Fluid Flow, 1989, 10(1): 32-39
    205.Koch C. C., Smith L. H. Jr., Loss Sources and Magnitudes in Axial-Flow Compressor, Journal of Engineering for Power ASME Series A, 1976, 98(3): 411-424

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700