光网络节点关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤通信作为一种大容量、长距离传输技术已经得到广泛应用。在使用范围方面,它已经从骨干网、城域网延伸到接入网;在系统容量方面,单波长容量和波长数量都在不断增加;在传输距离方面,无中继距离越来越长,新的纪录不断诞生;在管理和控制方面,智能化程度越来越高,实现了光层交换。
     光纤通信技术中,网络中的节点设备的部署非常关键。在骨干和城域网中,光纤构成网状拓扑,关键节点包括光交叉连接器(OXC)和光分插复用器(OADM),而这些节点应具有向自适应特性过渡的能力;在光接入网中,利用现有的SDH网络承载分组接入业务已成为发展的趋势,其中EoS(Ethernet over SDH)技术作为以太网光接入的实现方案得到了越来越广泛的应用。论文将分别对动态重构型OADM(ROADM)、EoS接入节点进行详细的分析,设计了实现方案,并完成了样机的研制。
     现有的ASON对底层传送平面并没有进行改进。在控制层实现光路的拆分、上下和路由时,传送平面缺少对光信号智能的监控和调节,由于色散、功率不均衡和信号的损伤,ASON的传送质量和业务的生存性就无法得到保障。针对这个问题,现在业界提出了自适应光网络的概念。较之ASON,自适应光网络拥有更好的自适应和自组织能力。它能够对各种业务实现自适应地接入,根据业务要求和实际网络状况自适应地调整节点传输参数,优化网络性能。本文将讲述自适应光网络的体系结构、技术特点,并提出一种由WDM网络向自适应光网络演进的新型节点方案。
     本论文以“基于PC和LAN技术的集中监控和接入综合系统”等项目为依托,具体创新并完成了以下内容:
     1.设计并完成一种新型的可搬移式ROADM设备的整体方案,该方案属于国内首创。设计了调谐型动态波长上下路模块,有效地实现了设备的动态重构特性、系统的可扩展性和波长变换单元(OTU)插卡的通用性;对当前OADM组件的类型、结构进行分析比较,对波长上下路单元和光性能监测单元的具体设计和实现进行了详细叙述,进行了实验验证。提出了使用“一镜斜置三镜腔型”可调谐解复用光接收集成器件改进节点结构,并通过实验验证了新结构性能的优越性。
     2.通过理论仿真和实验分析了ROADM节点各模块的特性,并综合起来讨论了节点光信噪比、功率代价等主要性能指标,同时分析了级联时系统的传输性能变化状况,提出了使用直通功率代价和下路功率代价来进行节点设计的方法。以上理论可用于未来多波长网络的设计。
     3.分析比较了在SDH系统中实现以太网业务接入的各种方案。设计实现了基于LAPS技术的EoS接入节点系统,可在现有SDH网络中提供以太网业务的接入,该方案提供的E1接口能够很好地满足ITU-T G.703规范的各项指标。
     4.对自适应光网络的网络体系结构、技术特点进行了研究,介绍了自适应光网络的发展进程,提出了一种新型的基于OSC自适应技术、可调谐解复用光接收集成技术和波长选择开关(WSS)技术的WDM网络向自适应光网络演进的节点方案。
Optical transmission technology which can provide high capacity, long distance communication, has been used widely. The technology is still active and is undergoing new innovations. It covers the range from wide area network, metro area network to local area network; Transmission capacity increases greatly according to the growth of data rate of each wavelength and the number of wavelengths multiplexed; Transmission span with no electric regeneration extends farther and farther, and the new world records can never has a long life; The intelligence of transmission system has been improved a lot, and the automatic switching in optical layer becomes true.
     Optical fiber communication needs not only the basic physical links made up by optical fiber, but also the nodes to deal with the optical and electric signals. Optical backbone and metro networks typically have mesh topologies, in which the key nodes are Optical Cross-Connect (OXC) and Optical Add/Drop Multiplexer (OADM). While optical access networks use EoS (Ethernet over SDH) technology to support packedge service on exiting SDH networks. These nodes will be analyzed in details in this dissertation.
     At present, ASON do not make any progress to transport plane. When the optical wavelengths adding/dropping and routing are realized in control plane, transport plane is lack of intelligent monitoring and adjusting to optical level signal. Because of dispersion, power unequalization and somthing else, the transmission quality of ASON can not be guaranteed. So the Adaptive Optical Networks is raised. Compared to ASON, Adaptive Optical Networks has better self-adaptive and self-organization ability. It can realize adaptive service access and adaptive transmission parameters adjusting accorsding the service requirements and the reality of optical network. This dissertation analyzes the layer model, service model, and the network architecture of Adaptive Optical Network (AON) and design a node program that make the WDM network evolve to AON.
     The research work included in this dissertation is supported by "Research on and Implementation of Reconfigurable OADM in WDM system" and "DWDM OSC Self-adaptive System" . The main contents and innovations are as follows:
     1.Design and implement the Add/Drop Unit in ROADM equipment. Adopt the "Broadcast and Selection" dynamic add/drop scheme to cope with the critical conditions of war field. This architecture can realize the dynamic reconfigurability and scalability of the system. The 8 optical transform units have the same size and can be mix-plugged. The types and structures of OADM are analyzed and compared. The details of the design and realization of Add/Drop Unit are introduced, and the add/drop function is verified.
     2.Analyze the performance and characteristics of every main module and the whole ROADM node through theory simulation and experiment. Also the design methods of node is raised, this theory can be applied in the design of dynamic WDM optical networks.
     3.Analyze and compare different ways to implement Ethernet access in SDH system. Design EoS access node system based on LAPS technology. This system can provide packet service on exiting SDH networks. The E1 interface of this system meets the requitment of ITU-T G.703.
     4.Research the layer model, service model, and the network architecture of Apaptive Optical Network (AON), analyze the development of AON. Present a new approach to make WDM evolve to AON based on OSC self-adaptive technology, Tunable integrated optical demultiplexing receiver technology and Wavelength Selective Switch (WSS) technology.
引文
[1] ITU-T G.652 Characteristics of a single-mode optical fibre and cable
    [2] 黄章勇 光纤通信用光电子器件和组件 北京邮电大学出版社 2001年7月 pp8,pp23
    [3] Kiysohi Fukuchi et al. 10.92 Tb/s (273x40 Gb/s) triple-band/ultra-dense WDM optical-repeated transmission experiment (A). OFC 2001, PD21
    [4] 纪越峰,冯建和,徐大雄,光分插复用器的设计原则和功能实现 高技术通讯 2003年7月,pp16-20
    [5] 徐荣,龚倩,张光海,城域光网络,人民邮电出版社2003年1月,pp131-pp140
    [6] Barrie P. Keyworth, ROADM Subsystems & Technologies,OFC'2005 OWB5
    [7] Hongyue Zhu, Biswanath Mukherjee, Online Connection Provisioning in Metro Optical WDM Netwroks Using Reconfigurable OADMs, IEEE Journal of Lightwave Technology, Vol23 No.10 October 2005, pp2893-2901
    [8] C. R. Giles and M. Spector, "The wavelength add/drop multiplexer for lightwave communication networks," Bell Labs Tech. J., vol. 4, no. 1, pp. 207-229, Jan.-Mar. 1999
    [9] ITU-T G.707, G.780, G.783, G.784, G.957, G.958, G.774系列协议
    [10] 韦乐平 光同步数字传送网 人民邮电出版社 1998年12月 pp9
    [11] 李健,王加莹,张杰,顾畹仪.自适应光网络的研究[J].电信科学,2006,(05)
    [12] 王加莹,赵继军,刘赛.自适应光传送网(英文)[J]光通信技术,2005,(07).
    [13] 张劲松,陶智勇,韵湘,光波分复用系统 北京邮电大学出版社 2002年6月pp14
    [14] Walter Goralski Optical Network & WDM人民邮电出版社2003年1月1日 pp25
    [15] S.V.卡塔洛颇罗斯 密集波分复用技术导论 人民邮电出版社2001年9月1日 pp23
    [16] Tsuritani, T Edagawa, Akiba. "Ultra-long-haul 40-Gbit/s-based DWDM transmission using optically prefiltered CS-RZ signals". IEEE Journal on Selected Topics in Quantum Electronics, v 10, n 2, March/April, 2004, p 403-411
    [17] Wallace, A. F. (AT&T). "Ultra long-haul DWDM: Network economics". Conference on Optical Fiber Communication, Technical Digest Series, v 54, n 2, 2001,pp11-12
    [18] Li Guangcheng, Qiao Yang. "Enhanced metro MSTP and its applications". Proceedings of SPIE-The International Society for Optical Engineering, v 5626, n PART 2, Network Architectures, Management, and Applications Ⅱ, 2005, p 738-747
    [19] Rohde, Harald (Siemens AG, Corporate Technology, Information and Communication, CT IC ONT). "Modern PON architectures". Proceedings of SPIE-The International Society for Optical Engineering, v 6022 Ⅰ, Network Architectures, Management, and Applications Ⅲ, 2005, p 60220N
    [20] Lee, Chang-Hee, Lee Sang-Mook, Choi Ki-Man."WDM-PON: A next generation access network" Proceedings of SPIE-The International Society for Optical Engineering, v 6353 I, Optical Transmission, Switching, and Subsystems Ⅳ, 2006, p 63531P
    [21] Jajszczyk, Andrzej. "The ASON approach to the control plane for optical networks". Proceedings of 2004 6th International Conference on Transparent Optical Networks, v1, Proceedings of 2004 6th International Conference on Transparent Optical Networks, 2004, p 87-90
    [22] ECI Telecom Ltd. XDM-High-density, data-aware optical transmission platforms for metro-edge, metro and metro-regional core. http://www.ecitele.com
    [23] Tropic Networks. Intelligent Reconfigurable Optics with Wavelength Tracker power-ed ROADM. http://www.tropicnetworks.com
    [24] Sycamore Networks. Building Service-Flexible, Cost-Efficient Optical Networks-Modularity and Intelligence Add Value http://www.sycamorenet.com
    [25] Mintera. Enabling Technologies for 40 Gb/s Long Haul DWDM Transport, NFOEC 2001. http://www.mintera.com
    [26] Xtera Communications. Simplifying Network Operation with Wide Reach DWDM http://www.xtera.com
    [27] Corvis. Optically optimized carrier networks, http://www.corvisequipment.com
    [28] FlexLight Networks. GPON-The Next Big Thing in Optical Access Networks. http://www.flexlight-networks.com
    [1] Anna Tzanakaki, Ioannis Zacharopoulos, et al, Broadband Building Blocks, IEEE Circuits & Magazine March/April 2004, pp32-37
    [2] 纪越峰,冯建和,徐大雄,光分插复用器的设计原则和功能实现 高技术通讯 2003年7月,pp16-20
    [3] 徐荣,龚倩,张光海,城域光网络,人民邮电出版社2003年1月,pp131-pp140
    [4] Pankaj Risbood, Carl Nuzman, Nachi Nithi, Sanjay Patel, ROADM Enabled Optimization in WDM Rings OFC'2005 OWG1
    [5] Valerio Viscardi and Gianpaolo Barozzi, Asymmetric Reconfigurable OADMs for next generation Metro-DWDM networks, OFC'2004 TuH3
    [6] Barrie P. Keyworth, ROADM Subsystems & Technologies,OFC'2005 OWB5
    [7] Hongyue Zhu, Biswanath Mukherjee, Online Connection Provisioning in Metro Optical WDM Netwroks Using Reconfigurable OADMs, IEEE Journal of Lightwave Technology, Vol23 No.10 October 2005, pp2893-2901
    [8] 黄照祥,张阳安等,可重构光分插复用器(ROADM)的技术实现与性能评估,光通信技术2004年12期,pp4-9
    [9] C. R. Giles and M. Spector, "The wavelength add/drop multiplexer for lightwave communication networks," Bell Labs Tech. J., vol. 4, no. 1, pp. 207-229, Jan.-Mar. 1999.
    [10] Michael Vasilyev, etc. "Transparent Ultra-Long-Haul DWDM Networks With "Broadcast-and-Select" OADM/OXC Architecture", JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 11, NOVEMBER 2003, pp.2661-2669
    [11] Wu Xiaoping, Xie Shuhong, et al, Research on interferometric crosstalk for a novel structure optical Add/Drop multiplexer using Bragg gratings, CLEO'99 ThN4
    [12] An Vu Tran, Wen De Zhong, et al, Compact Optical Add-Drop Multiplexers with Low Homodyne Crosstalk Using a Single Optical Circulator and Fiber Bragg Gratings, OFC'2000 WM39-1 pp326-328
    [13] An Vu Tran, Wen De Zhong, et al, Optical Add-Drop Multiplexers with Low Crosstalk, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 13, NO. 6, JUNE 2001, pp582-584
    [14] Y. K. Chen, C. J. Hu, et al, Low-Crosstalk and Compact Optical Add-Drop Multiplexer Using a Multiport Circulator and Fiber Bragg Gratings, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.12, NO.10, October 2000, pp1394-1396
    [15] G. Barozzi, M. Lo Papa, et al, Configurable OADM Based on Novel Tunable Bragg Grating, LEOS 2000. 13th Annual Meeting. IEEE, pp549-550 Vol.2
    [16] Andre, Armando, et al, Tunable Transparent and Cost Effective Optical Add-drop Multiplexer based on Fiber Bragg Grating for DWDM Networks, Digest of the LEOS'2001
    [17] Aleksandra Boskovic, Manish Sharma, et al, Broadcast and Select OADM nodes Application and Performance Trade-offs, OFC'2002 TuX2
    [18] Michael Vasilyev, Ioannis Tomkos, et al, "Broadcast and Select" OADM in 80×10.7 Gb/s Ultra-Longhaul Network IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 2, FEBRUARY 2003
    [19] June-Koo Rhee, Ioannis Tomkos, et al, A Broadcast-and-Select OADM Optical Network With Dedicated Optical-Channel Protection, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 1, JANUARY 2003 25
    [20] W..I. Todnsnn, Wavelength-selective switching-architecture and technology overview, OFC'2004 WC3
    [21] J.-K. Rhee, F. Garcla, et al, Variable Passband Optical Add-Drop Multiplexer Using Wavelength Selective Switch, ECOC'2001 Th.L.1.7
    [22] S. Suzuki, A. Himeno, et al, Multichannel optical wavelength selective switch with arrayed-waveguide grating multiplexer, IEEE ELECTRONICS LEITERS 23rd JUNE 1994 Vol. 30 No. 13
    [23] Senichi Suzuki, Akira Himeno, Integrated Multichannel Optical Wavelength Selective Switches Incorporating an Arrayed-Waveguide Grating Multiplexer and Thermooptic Switches, IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 16, NO. 4, APRIL 1998
    [24] Gregory N. Nielson', Dilan Seneviratnet, et al, MEMS based wavelength selective optical switching for integrated photonic circuits, CLEO'2004
    [25] Dan M. Marom, David T. Neilson', et al, Effect of mirror curvature in MEMS micro-mirror based wavelength-selective switches, IEEE, LEOS'2003, Volume 1, 27-28 Oct. 2003 Page(s):305-306 vol.1
    [26] Jui-che Tsai, Sophia Huang, et al, Open-Loop Operation of MEMS-Based 1×N Wavelength-Selective Switch With Long-Term Stability and Repeatability, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 16, NO. 4, APRIL 2004
    [27] R. H. Qu, H. Zhao, et al, Configurable Wavelength-Selective Switch Based on Fiber Grating and Fiber Loop Mirror, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 12, NO. 10, OCTOBER 2000
    [28] J. Lacey, "Optical cross-connect and add/drop multiplexers: technologies and applications", (Tutorial), WT1, OFC2002
    [29] 归律,黄照祥,张秋生,李玲,黄永清,任晓敏.”ASON中光性能监测模块的设计与实现”[J].光通信技术,2006,(03)
    [30] Lv Gui, Yangan Zhang, Ling Li, Xiaomin Ren, Yongqing Huang, Wenjuan Wang. "A new method to implement Dynamic Power Equalization in ASON". AOPC2006, v 6353 Ⅱ, Optical Transmission, Switching, and Subsystems Ⅳ, 2006, pp 63-66
    [31] Unlu M. S., Strite S., "Resonant Cavity Enhance Photonic Device", J. Appl. Phys., Vol.78, pp.607-639, 1995.
    [32] Liu Kai, Huang Yongqing, Ren Xiaomin, "Theory and Experiments of a Three-Cavity Wavelength-Selective Photodetector", Applied Optics, Vol.39, No.24, pp.4263-4269, 2000
    [33] Huang Hui, Huang Yongqing, Ren Xiao, "Ultra-Narrow Spectral Linewidth Photodetector Based on Taper Cavity", Electronics Letters, Vol. 39, No: 1, pp. 113-114, 2003
    [34] Hui Huang, Zhang Ruikang, Wang Qi, etc., "Wavelength-Selective Photodetector with Integrated Vertical Taper Structure", Optical Fiber Communication Conference (OFC) 2002, California USA, pp. 714-715, Mar. 2002
    [35] 黄永清,黄辉,王兴妍,王琦,崇英哲,任晓敏.“用于光波分复用系统的高性能解复用接收器件”.中国有色金属学报.Vol.14,No.s1,pp.409-414.2005.5
    [1] 黄章勇 光纤通信用光电子器件和组件 北京邮电大学出版社 2001年7月
    [2] 杨宁,漆启年,“密集波分复用系统中级联EDFA光信噪比分析”,光通信技术,2002年第2期,pp147-151
    [3] 杨祥林等.光放大器及其应用.北京:电子工业出版社,2000.6.
    [4] Chitica, N. et al. Monolithic unbiased tunable filter with 10-nm bandwidth for optical data interconnects in the 1550-nm band. Photonics Technology Letters, IEEE. Volume 11, Issue 5, May 1999 Page(s):584-586
    [5] Ngo, N. Q.; Le Nguyen Birth. Novel realization of monotonic Butterworth-type lowpass, highpass, and bandpass optical filters using phase-modulated fiber-optic interferometers and ring resonatorsLightwave technology,1994.5
    [6] Khrais, N. N.; Elrefaie, A. F.; Wagner, R. E. Performance degradations of WDM systems due to laser and optical filter misalignments.Electronics letters.Volume 31
    [7] Santec, OTF-610 High Speed Optical Tunable Filter. http://www.santec.com
    [8] A. Afonso, J. L.de Bougrenetde la Tocnaye, M. Barge. "Dynamic Gainand Channel Equalizersor WavelengthBlockerUsing FreeSpace:Common Elementsand Differences" Journal Of Lightwave Technology, Vol. 24, No. 3, March 2006. pp1534-1542
    [9] Lightconnect, 100GHz Dynamic Channel Equalizer (DCE) Specification. http://www.lightconnect.com
    [10] Lightconnect, Dynamic Gain Equalizer Communication Protocol Firmware Revision 7.0. http://www.lightconnect.com
    [11] 顾畹仪等.全光通信网.北京:北京邮电大学出版社,1999
    [12] 阳辉,杨知行,范崇澄,“波分复用系统中功率代价的测试”,高技术通信,1999年3月,pp7-10
    [13] 孙学军等.DWDM传输系统原理与测试.北京:人民邮电出版社,2000.11.
    [14] ITU-T Recommendation G.957, 1995
    [15] ITU-T Recommendation G.692, 1998
    [16] ITU-T G.664-2003 Optical safety procedures and requirements for optical transport systems.
    [17] ITU-T G.692-1998 Optical interfaces for multichannel systems with optical amplifiers.
    [18] ITU-T G.694.1-2002 Spectral grids for WDM applications: DWDM frequency grid.
    [19] ITU-T G.874-2001 Management aspects of the optical transport network element.
    [20] ITU-T G.874.1-2002 Optical transport network (OTN): Protocol-neutral management information model for the network element view.
    [21] YDN120-1999光波分复用系统总体技术要求(暂行规定).
    [22] YD/T1060-2000光波分复用系统(WDM)技术要求-32×2.5Gb/s部分.
    [23] YD/T1205-2002城市光传送网——波分复用(WDM)环网技术要求.
    [24] David Mechin, Philippe Grosso, Dominique Bosc. Add-Drop Multiplexer With UV-Written Bragg Gratings and Directional Coupler in SiO2-Si Integrated Waveguides. IEEE Journal of Lightwave Technology.19(9), 2001: 1282~1286.
    [25] R. Gaudino, Daniel J. Blumenthal. Remote Provisioning of a Reconfigurable WDM Multichannel Add/Drop Multiplexer. IEEE Photonics Technology Letters, 11(8), 1999.8: 1060~1062.
    [26] June-Koo Rhee, Ioannis Tomkos, Ming-Jun Li, A Broadcast-and-Select OADM Optical Network With Dedicated Optical-Channel Protection. Journal of Lightwave Technology, 21 (1), 2003.1: 25~31.
    [27] Yikai Su, Chandrasekhar, Roland Ryf, et, al. A Multirate Upgradeable 1.6-Tb/s Hierarchical OADM Network. IEEE Photonics Technology Letters, 16(1), 2004.1: pp317-319.
    [28] Michael Vasilyev, Ioannis Tomkos, June-Koo Rhee, et, al. "Broadcast and Select" OADM in 80×10.7Gb/s Ultra-Longhaul Network. IEEE Photonics Technology Letters, 15(2), 2003.2: pp332~334.
    [29] Aleksandra Boskovic, Manish Sharma, Neo Antoniades, et, al. Broadcast and select OADM nodes application and performance trade-offs. OFC2002, TuX2
    [30] J. B. D. Soole, R. Pafchek, C. Narayanan, et, al. DWDM Performance of a Packaged Reconfigurable Optical Add-Drop Multiplexer Subsystem Supporting Modular Systems Growth. IEEE Photonics Technology Letters, 15(11), 2003.11: pp1600~1602.
    [1] 张民潘勇徐荣.《宽带城域网》北京:北京邮电大学出版社.2003.6
    [2] 曹蓟光吴英桦编著《多业务传送平台(MSTP)技术与应用》.人民邮电出版社 2003.11
    [3] ITU-T X.86E thernetO verLAPS, 2001.2
    [4] ITU-T X.85/Y.1321, IP over SDH using LAPS
    [5] ANSI T1 X1,5 Generic Framing Procedure(GFP) Draft Revision 4, 2001.6
    [6] IETF RFC-1661, The Point to Point Protocol, 1994.7
    [7] IETF RFC-1662, PPP in HDLC-like Framing W.Simpson, 1994.7
    [8] IETF RFC-2615, PPP over SONET/SDH, 1994.7
    [9] YD/T 1061-2000同步数字体系(SDH)上传送IP的LAPS技术要求
    [10] ITU-T X.85/Y.1321, IP over SDH using LAPS
    [11] ANSI T1 X1,5 Generic Framing Procedure(GFP) Draft Revision 4, 2001.6
    [12] Enrique Hernandez-Valencia. Generic Framing Procedure (GFP)for NG-SONET/SDH: An Overview. Lucent Technologies.July11 2002
    [13] 李莉,韩大海,张杰.“GFP和LAPS协议在EoS应用中的传输性能比较”.光通信技术2005.03,pp17-20
    [14] 韦乐平李英颧编著.(SDH及其新应用》人民邮电出版社,2001.9
    [15] 张继军烽火通信.(SDH的虚容器(VC)级联研究》China通信网
    [16] 蔡顺 芝黎红长.SDH/SONET虚拟级联技术.广西通信技术.2001(12):pp13-15
    [17] ITU-TG 7042/Y1 305.L inkC apacityA djustmentS cheme(LCAS)for Virtiual Concatenated. OCT 2001.
    [18] 韩翼.烽火通信《LCAS技术》.光纤在线
    [19] Fredrik Olsson and Jim Shupenis EOS and POS White Paper, Agilent, 2001.8
    [20] Mimi Dannhardt Ethemet Over Sonet Technology White Paper, PMC, 2002.2
    [1] Yagi M, et al. Field trial of GMPLS-based 40-Gbit/s wavelength path protection by photonic crossconnect with automatic chromatic dispersion compensation. OFC 2004,WH3
    [2] Benjamin D, et al. Optical services over the intelligent optical network. IEEE Communications Magazine, 2001,39(9), pp73~78
    [3] Martini B, et al. A novel service oriented framework for automaticallyswitched transport network. In:The 2005 9th IFIP/IEEE InternationalSymposium on Integrated Network Management,2005, pp295~308
    [4] http://adaptivewan.financetech.com
    [5] http://www.nortel.com/solutions/intelligent_optical/index.hml
    [6] 李健,王加莹,张杰,顾畹仪.“自适应光网络的研究”。电信科学,2006年第5期,pp53-57
    [7] http://www.ntt.co.jp/news/news99e/9909/990921.html
    [8] Robbins DJ, et al. Ahigh power, broadband tuneable laser module based on a DS-DBR laser with integrated SOA. OFC 2004,TuE3
    [9] 3 Suzuki K, et al. WDM tuneable dispersion compensator with PLC ring resonators. OFC 2004,WK3
    [10] 程保,张惠.高速光通信系统中的色散及其补偿技术.邮电设计技术,第5期,2003.5:,pp29-34.
    [11] 王敬华,张国平,李刚等.高速光纤通信中的偏振模色散补偿技术.江汉大学学报(自然科学版),31(4),2003.12,pp 29-31.
    [12] J. M. Kahn, Ho Keang-Po. Advanced modulation and signal processing techniques for 40Gb/s optical transmission systems.
    [13] R Hui, S. Zhang, B. Zhu, et, al. Advanced Optical Modulation Formats and Their Comparison in Fiber-Optic Systems.
    [14] Jack H. Winters, Richard D. Gitlin. Electrical signal processing techniques in long-haul fiber-optic systems. IEEE Transactions on communications, 38(9), 1990, pp1439-1453.
    [15] K. Azadet, Erich F. Haratsch, Kim Helen, et, al. Equalization and FEC Techniques for Optical Transceivers. IEEE Journal of Solid-State Circuits, 37(3), 2002.3, pp317-327.
    [16] 张进坡,李兴明.光传输系统中的super-FEC技术.光通信技术,第9期,2003.9:pp11-14.
    [17] Daniel J. Blumenthal. Performance Monitoring in Photonic Transport Networks. Business Briefing: Global Photonics Applications &Technology, pp 98-104.
    [18] D.C. Kilper, R. Bach, D.J. Blumenthal, et, al. Optical Performance Monitoring. IEEE Journal of Lightwave Technology, 22(1), 2004.1, pp294-304.
    [19] ITU-T G.8080/Y.1304, Architecture for the automatically switched optical network (ASON), 2001.11.
    [20] Greg Bernstein, Bala Rajagopalan, Debanjan Saha. Optical Network Control: Architecture, Protocols, and Standards. Addison Wesley, 2003.
    [21] Mari W. Maeda. Management and Control of Transparent Optical Networks. IEEE Journal on Selected Areas in Communications, 16 (7), 1998.9, pp1008-1023.
    [22] RFC3945, Generalized Multi-Protocol Label Switching (GMPLS) Architecture. http://www.ietf.org
    [23] 黄永清,黄辉,王兴妍,王琦,崇英哲,任晓敏.“用于光波分复用系统的高性能解复用接收器件”.中国有色金属学报.Vol.14,No.s1,pp.409-414.2005.5
    [24] 黄辉,张瑞康,黄永清,任晓敏.“新型解复用接收器件的理论分析及实验研究”.半导体光电.Vol.22,No.5,pp.338-342.2001.10
    [25] 马声泉,“高速光纤通信ITU-T规范与系统设计”,北京:北京邮电大学出版社,2002
    [26] YD/T1205-2002城市光传送网——波分复用(WDM)环网技术要求.
    [27] ITU Draft G.ats. Physical characteristics of future adaptive transport system, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700