星载信号处理平台单粒子效应检测与加固技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星技术在国民经济和以信息化为特征的新军事变革中发挥着越来越突出的作用。随着技术的发展,卫星平台和载荷对诸如FPGA、DSP等超大规模集成电路的依赖性越来越强。作为空间电子仪器设备的关键信号处理器件,FPGA和DSP自开始应用以来,单粒子效应就备受关注。器件的集成度越高,单粒子效应的影响就越显著,单粒子效应故障检测与加固设计已经成为空间电子仪器设计必须慎重考虑的问题。
     本文以星载测控/通信信号处理平台的研制为背景,以提高FPGA和DSP的抗单粒子效应能力为研究目标,研究了FPGA和DSP的单粒子效应故障分析模型与故障特性、单粒子效应故障检测与加固设计方法和基于单粒子效应故障特性的故障注入验证技术。主要研究内容如下:
     (1)根据FPGA和DSP单粒子效应故障的特点,建立了单粒子效应故障分析模型,提出了单粒子效应故障在FPGA和DSP中的伴随特性,为FPGA和DSP的单粒子效应研究提供了一个新的途径;针对FPGA和DSP位置不可访问故障的注入问题,以伴随特性为依据,研究了FPGA和DSP位置不可访问故障的模型修正方法和注入过程,提高了单粒子效应故障注入的故障覆盖度和访问深度;
     (2)针对FPGA单粒子效应故障的检测与加固设计问题,根据单粒子效应故障的伴随特性,从布局布线的角度提出了基于“逻辑探针”的FPGA单粒子效应故障间接检测方法,降低了单粒子效应故障检测带来的资源与性能的损失;分析了FPGA配置存储器单粒子翻转引起的多个功能模块同时故障(SEU-MBE)的发生条件,提出了解决SEU-MBE问题的区域约束法和布线修正算法,提高了FPGA布线资源对单粒子效应故障的容错能力;
     (3)针对DSP程序和数据存储区单粒子效应引起的程序执行流程紊乱问题,提出了基于缩短关键变量生存周期的三倍冗余设计、程序模块跳转区间监测和状态脉冲监测等方法,在提高DSP单粒子效应故障检测与容错性能的同时,减少了存储资源的消耗;
     (4)针对非宇航级FPGA和DSP在空间仪器工程中的应用问题,提出了星载信号处理平台的金字塔形体系结构,研究了FPGA与DSP的高效动态重构技术,使FPGA和DSP的单粒子效应可靠度分别从0.63078和0.95336提高到0.99045和0.99901(工作时间为24小时,重构间隔为0.5小时),为非宇航级器件在空间仪器中的应用提供了一个解决方案。
     实验结果显示:FPGA单粒子效应故障检测与加固设计方法能够在资源使用增加15%、速度性能降低10%的情况下,实现99.2%的单粒子效应检错概率和99.6%的单粒子效应容错概率;DSP单粒子效应故障检测与加固设计方法能够在程序存储量增加18%、执行时间增加15%的条件下,实现97.4%的单粒子效应检错概率和86.0%的单粒子效应容错概率;结合金字塔形结构与高效动态重构技术,星载信号处理平台中FPGA和DSP的单粒子效应综合检错概率和综合容错概率分别达到了98.9%和96.1%。
     本文提出的设计方案与相关研究结论已经在多个型号的卫星信号处理平台中得到了应用。
Satellite technology plays a growing important role in national economy and revolution in military affairs, which is characteristic of informationization. And with the development of technology, satellite platform or payload relies deeply on very large scale integrated circuit (VLSIC), such as field programmable gate array (FPGA) and digital signal processor (DSP). As the key problem in signal processing platform degign, FPGA and DSP's single event effect (SEE) has been widely concerned ever since its first application in space electronic instrument. With the growth of integrated circuit's scale, high energy particles affect more severely on digital devices. Thus SEE error detection and mitigation techniques should be payed more attention in space electronic instrument design.
     The research is based on the design of spaceborne TT-C (telemetry, tracking and command) and communication signal processing platform, and aims at improving FPGA and DSP's anti-SEE ability in space environment. Problems such as FPGA and DSP's analytical SEE error model and error characteristic, SEE error detection and mitigation techniques, fault injection-based verification method of SEE hardened design are studied in the thesis. And the main content can be summarized as follow.
     (1) Based on FPGA and DSP's SEE error characteristic, the thesis proposes a novel analytical SEE error model for FPGA and DSP, and then studies the concomitant characteristic of SEE error, which is a new characteristic in error coupling and propagation. According to the fault injection problem of location-inaccessible errors of FPGA and DSP, a modified SEE fault model is proposed on the basis of SEE error's concomitant characteristic, which can improve the fault coverage and accessible depth of SEE fault injection model. The modified SEE error model gives a new point of view of SEE study for very large scale integration (VLSI) circuit.
     (2) Based on SEE error's concomitant characteristic, a novel indirect error detection method is proposed from the aspect of FPGA's place and routing strategy,which is named logic probe (LP) and aimed to decrease the losses in resource and performance. Configuration memory's single event upset (SEU) can induce FPGA's multi-block error (SEU-MBE). The thesis analyzes the condition by which SEU-MBE happens and gives two solutions to SEU-MBE, Area Constrain Method (ACM) and Incremental Routing Algorithm (IRA). The proposed approaches show a remarkable increase of SEE immunity for FPGA's routing resource.
     (3) According to program run flow's disturbance which is induced by the SEU of DSP's PM (program memory) or DM (data memory), the thesis proposes a life-shorten triple modular redundance (LS-TMR) method, a basic block jumping bound monitoring method (JBMM) and a state pulse monitoring method, which can reduce the upset rate of DSP's key variables and the memory consumption of error detection design.
     (4) On the basis of SEE error detection and mitigation techniques of FPGA and DSP, a pyramid-like monitoring architecture for spaceborne signal processing platform (SSPP) is proposed. The pyramid-like monitoring architecture together with the high efficiency dynamic reconfiguration technique provide a possibility of applying non-radiation hardened FPGA or DSP in space electronic instrument. With the monitoring architecture, FPGA and DSP's anti-SEE reliability increase from 0.63078 and 0.95336 to 0.99045 and 0.99901, when the work period is 24 hours and reconfiguration interval is 0.5 hour.
     Experimental results show that FPGA's error detection rate is 99.2% and error tolerance rate is 99.6% under the condition of 15% resource increase and 10% speed decrease. Also for DSP, error detection rate is 97.4% and error tolerance rate is 86.0% under the condition of 18% PM increase and 15% run time increase. With the pyramid-like monitoring architecture and the high efficiency dynamic reconfiguration technique, overall error detection and tolerance rate of FPGA and DSP in SSPP can reach to 98.9% and 96.1%.
     Most of the techniques and conclusions proposed in the thesis have been applied in several satellite spaceborne signal processing platform.
引文
[1]Kayali Sammy.Space Radiation Effects on Microelectronics,NASA Radiation Effect Group Report,2002.
    [2]空间粒子及其粒子辐射环境,清华大学教育网,http://jwc.qztc.edu.cn/software /07/08/006/01/00001/bjjc/bjjc02_03a.htm,2002.
    [3]王同权.高能质子辐射效应研究,国防科技大学工学博士学位论文,2003.
    [4]H.C.Koons,J.E.Mazur,R.S.Selesbick and J.B.Blake.The Impact of the Space Environment on Space System,American Defence Report(20000509112),1999.
    [5]王长河.单粒子效应对卫星空间运行可靠性影响,半导体情报,1998,35(1):1-8.
    [6]Joseph J Fabula,Austin Lesea,Carl Carmichael and Saar Drimer.The NSEU Response of Static Latch Based FPGAs,in Military and Aerospace Applications of Programmable Devices and Technologies Conference(MAPLD),Washington DC,USA:NASA Office of Logic Design,2003.
    [7]Svensson Christer.Cosmic Radiation at Aircraft Altitudes(neutrons) Influences on the Single Event Upset SEU Sensitivity for Low-Voltage Electronic Devices,American Defence Report,1998.
    [8]F.Irom,F.F.Farmanesh.Frequency Dependence of Single-Event Upset in Advanced Commercial PowerPC Microprocessors,IEEE Transactions on Nuclear Science,2004,51(6Ⅱ):3505-3509.
    [9]R.A.Reed,M.A.Carts.Heavy Ion and Proton-Induced Single Event Multiple upset,IEEE Transactions on Nuclear Science,1997,44(6):2224-2229.
    [10]张庆祥,杨兆铭.星用大容量静念存储器多位翻转试验研究,中国空间科学技术,2001,25(5):40-46.
    [11]O.Musseau,F.Gardic and P.Rocke.Analysis of Multiple Bits Upsets(MBU) in a CMOS SRAM,IEEE Transactions on Nuclear Science,1996,43(6):2879-2888.
    [12]M.Ceschia,M.Violante and M.S.Reorda.Identification and Classification of Single-Event Up Sets in the Configuration Memory of SRAM-based FPGAs,IEEE Transactions on Nuclear Science,200,50(6-1):2088-2094.
    [13]F.L.Kastensmidt,L.Sterpone and L.Carro.On the Optimal Design of Triple Modular Redundancy Logic for SRAM-based FPGAs,in Proceedings of Design,Automation and Test in Europe,2005,Vol.2:1290-1295.
    [14]J.Wallmark,S.Marcus.Minimum Size and Maximum Packing Density of Nonredundant Semiconductor Device,in Proceedings of IRE,1962,Vol.50:286-298.
    [15]D.Binder,E.Smith and A.Holman.Satellite Anomalies from Galactic Cosmic Ray,IEEE Transactions on Nuclear Science,1975,22(6):2675-2680.
    [16]F.B.Mclean,T.R.Oldham.Charge Funneling in n-and p-type si Substrates,IEEE Transactions on Nuclear Science,1982,29(6):2018-2023.
    [17]J.R.Hauser,S.E.Diehl-Nagle and A.R.Knudson.Ion Track Shunt Effects in Multi-Junction Structures,IEEE Transactions on Nuclear Science,1985,32(6):4115-4121.
    [18]A.B.Campbell,A.R.Knudson and P.Shapiro.Charge Collection in Test Structures,IEEE Transactions on Nuclear Science,1983,30(6):4486-4492.
    [19]J.A.Zoutendyk,H.R.Schwartz and L.R.Nevill.Lateral Charge Transport from Heavy-Ion Tracks in Integrated Circuit Chips,IEEE Transactions on Nuclear Science,1988,35(6 pt 1):1644-1647.
    [20]J.S.Fu,H.T.Weaver and R.Koga.Comparison of 2D Memory SEU Transport Simulation with Experiments,IEEE Transactions on Nuclear Science,1985,32(6):4145-4149.
    [21]M.Varadharajaperumal,G.F.Niu and R.Krithivasan.3D Simulation of Heavy-Ion Induced Charge Collection in SiGeHBTs,IEEE Transactions on Nuclear Science,2003,50(6-1):2191-2198.
    [22]R.Koga,W.A.Kolasinski.Heavy Ion-Induced Single Event Upsets of Microcircuits:a Summary of the Aerospace Corporation Test Data,IEEE Transactions on Nuclear Science,1984,31(6):1190-1195.
    [23]Paretzke,G.Herwig.On Primary Damage and Secondary Electron Damage in Heavy Ion Tracks in Plastics,Radiation Effects,1977,Vol.34:3-8.
    [24]路秀琴,符长波,张新等.重离子单粒子效应实验研究,核技术,2003,26(04):271-274.
    [25]张庆祥,侯明东,甄红楼等.利用HIRFL加速的重离子获得半导体器件的σ-LET曲线,科学通报,2002,47(5):342-344.
    [26]H.S.Virk.Heavy Ion Radiation Damage Annealing in Track Recording Insulators and Single Activation Energy Model,Nuclear Instruments & Methods in Physics Research,Section B:Beam Interactions with Materials and Atoms,1992,65(1-4):456.
    [27]X.Belredon,J.P.David and D.Lewis.Heavy Ion-Induced Charge Collection Mechanisms in CMOS Active Pixel Sensor,IEEE Transactions on Nuclear Science,2002,49(6-1):2836-2843.
    [28]R.Koga,K.Crawford and P.Yu.Heavy Ion and Proton SEE Characterization of COTS 0.22μm Field Programmable Gate Arrays,2005 IEEE Radiation Effects Data Workshop(IEEE Cat.No.05TH8835),2005:57-64.
    [29]刘杰,侯明东,张庆祥等.高能质子引起器件单粒子效应的研究方法,原子核物理评论,2002,19(04):411-415.
    [30]贺朝会,陈晓华,李国政.高能质子单粒子翻转效应的模拟计算,计算物理,2002,19(04):367-371.
    [31]C.S.Guenzer,E.A.Wolicki and R.G.Allas.Single Event Upset of Dynamic RAMs by Neutrons and Protons.IEEE Transactions on Nuclear Science,1979,26(6):5048-5052.
    [32]A.Akkerman,J.Barak and J.Levinson.Modeling of Proton Induced SEUs,Radiation Physics and Chemistry,1996,48(1):11-22.
    [33]Pete Truscott,Fan Lei,Clive S.Dyer and et al.Assessment of Neutron- and Proton-Induced Nuclear Interaction and Ionization Models in Geant4 for Simulating Single Event Effects,IEEE Transactions on Nuclear Science,2004,51(6):3369-3374.
    [34]D.Emfietzoglou,H.Paganetti,G.Papamichael,et al.Monte Carlo Calculation of Nanoscale Dosimetric Distributions of MeV Proton Tracks with Secondary Electron Transport,in Proceedings of the Sixth International Symposium on Swift Heavy Ions in Matter(SHIM 2005),Elsevier,Amsterdam,Netherlands,2006.
    [35]侯明东,甄红楼,张庆祥等.重离子在半导体器件中引起的单粒子效应,原子核物理评论,2000,17(3):165-170.
    [36]A.S.Kobayashi,A.L.Sternberg,L.W.Massengill,et al.Spatial and Temporal Characteristics of Energy Deposition by Protons and Alpha Particles in Silicon,IEEE Transactions on Nuclear Science,2004,51(6):3312-3317.
    [37]Z.Chunxiang,D.E.Dunn and R.Katz.Radial Distribution of Dose and Cross-Sections for the Inactivation of Dry Enzymes and Viruses,Radiation Protection Dosimetry,1985,Vol.13:215-218.
    [38]T.Colladant,L.A.Hoir,J.E.Sauvestre,et al.Monte-Carlo Simulations of Ion Track in Silicon and Influence of its Spatial Distribution on Single Event Effects,Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,2006,245(2):464-474.
    [39]M.P.R.Waligorski,R.N.Hamm and R.Katz.The Radial Distribution of Dose around the Path of a Heavy Ion in Liquid Water.Nucl.Tracks Radiat.Meas,1986,11(6):309-319.
    [40]Katz Robert and Huang Guo- Rong.Track 'core' Effects in Heavy Ion Radiolysis,Radiation Physics and Chemistry,1989,33(4):345-349.
    [41]F.A.Cucinotta,J.W.Wilson,R.Katz,et al.Track Structure and Radiation Transport Model for Space Radiobiology Studies,Advances in Space Research,1996,18(12):183-194.
    [42]Katz Robert,C.A.Francis,C.X.Zhang,The Calculation of Radial Dose from Heavy Ions:Predictions of Biological Action Cross Sections,Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 1996, 107(1-4): 287-291.
    [43] Katz Robert. Particle Tracks in Diverse Media, Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms,1989,40(2): 1271-1274.
    [44] R.C.Martin, N.M.Ghoniem Y.Song, et al. The Size Effect of Ion Charge Tracks on Single Event Multiple-Bit Upset, IEEE Transactions on Nuclear Science,1987, 34(6): 1305-1309.
    [45] A.Akkerman, J.Barak and D.Emfietzoglou. Ion and Electron Track-Structure and Its Effects in Silicon: Model and Calculations, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms,2005,227(3): 319-336.
    [46] R.N.Hamm, J.E.Turner, H.A.Wright, et al. Heavy-Ion Track Structure Silicon,IEEE Transactions on Nuclear Science, 1979, 26(6): 4892-4895.
    [47] J.W.Howard, Jr. and R.C.Block, W.J.Stapor, et al. A Novel Approach for Measuring the Radial Distribution of Charge in a Heavy-Ion Track. IEEE Transactions on Nuclear Science, 1994, 41(6): 2077-2084.
    [48] Furukawa Katsutoshi, Ohno Shin- Ichi, Namba Hideki, et al. Radial Dose Distribution around a Heavy Ion's Path, Radiation Physics and Chemistry, 1997,49(6): 641-644.
    [49] J.M.Benedetto, P.H.Eaton, D.G.Mavis, et al. Variation of Digital SET Pulse Widths and the Implications for Single Event Hardening of Advanced CMOS Processes, IEEE Transactions on Nuclear Science, 2005, 52(6): 2114-2119.
    [50] 赖祖武.抗辐射电子学:辐射效应及加固原理.北京:国防工业出版社,1998.
    
    [51] A.Makihara, M.Midorikawa, T.Yamaguchi, et al. Hardness-by-Design Aapproach for 0.15μm Fully Depleted CMOS/SOI Digital Logic Devices with Enhanced SEU/SET Immunity, IEEE Transactions on Nuclear Science, 2005,52(6): 2524-2530.
    [52] P.Lestrat, C.Terrier, F.Estreme, et al. SOI 68T020 Heavy Ions Evaluation, IEEE Transactions on Nuclear Science, 1994,41(6.1): 2240-2243.
    [53] T.Colladant, V.Ferlet-Cavrois, O.Musseau, et al. Charge Collection Studies of SOI Diodes, IEEE Transactions on Nuclear Science, 2002,49(3.3): 1372-1376.
    [54] C.Brothers, R.Pugh, P.Duggan, et al. Total-Dose and SEU Characterization of 0.25μm CMOS/SOI Integrated Circuit Memory Technologies, IEEE Transactions on Nuclear Science, 1997, 44(6): 2134-2139.
    [55] P.O.Pouliquen, M.N.Martin. Latch-Up Detection and Cancellation in CMOS VLSI Circuits, American Defense Report, Air Force Research Laboratory, 2000.
    [56] A.Ghazanfar, M.B.Tahoori. An Analytical Approach for Soft Error Rate Estimation of SRAM-based FPGAs, in Military and Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD), Washington DC, USA: NASA Office of Logic Design, 2004.
    
    [57] M.Renovell, J.M.Portal, J.Figueras, et al. SRAM-based FPGA's: Testing the Interconnect/Logic Interface, in Proceedings of the 7th Asian Test Symposium,Singapore, Singapore: IEEE Comp Soc, Los Alamitos, CA, USA, Dec 2-4, 1998.
    
    [58] M.Rebaudengo, M.Sonza Reorda and M.Violante. A New Functional Fault Model for FPGA Application-Oriented Testing, in Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'02), 2002.
    
    [59] C.A.Kenneth. Modeling Single-Event Transients in Complex Digital Systems, Doctor Degree Thesis of Naval Postgraduate School, 2002.
    
    [60] G.M.Swift, Xilinx Single Event Effects 1st Consortium Report—Virtex-II Static SEU Characterization, NASA/JPL, Xilinx, 2004.
    
    [61] G.M.Swift, F.Irom, F.F.Farmanesh, et al. Single-Event Upset in Commercial Silicon-on-Insulator PowerPC Microprocessors, IEEE Transactions on Nuclear Science, 2002, 49 1(6): 3148-3155.
    
    [62] S.Rezgui, G.M.Swift, R.Velazco, et al Validation of an SEU Simulation Technique for a Complex Processor: PowerPC7400, IEEE Transactions on Nuclear Science, 2002,49(6-1): 3156-3162.
    
    [63] D.M.Hiemstra, B.Miladinovic and F.Chayab. Single Event Upset Characterization of the SMJ320C6701 Digital Signal Processor Using Proton Irradiation,IEEE Radiation Effects Data Workshop (IEEE Cat. No. 05TH8835), 2005:42-45.
    
    [64] C.Poivey, O.Notebaert, P.Garnier, et al. Proton SEU Test of MC68020,MC68882, TMS320C25 on the ARIANE5 Launcher On Board Computer (OBC) and Inertial Reference System (SRI), in Proceedings of 3rd European Conference on Radiation and Its Effects on Components and Systems, Arcachon, France:IEEE, Piscataway, NJ, USA, Sep 18-22, 1995.
    
    [65] S.H.Crain, W.R.Crain, K.B.Crawford, et al. Single Event Effects Test Results for the 80C186 and 80C286 Microprocessors and the SMJ320C30 and SMJ320C40 Digital Signal Processors, in Proceedings of the 1998 IEEE Radiation Effects Data Workshop, NSREC 1998, Newport Beach, CA, USA: IEEE, Piscataway, NJ,USA,Jul 24, 1998.
    
    [66] W.L. Bendel, E.L.Petersen. Proton Upsets in Orbit, IEEE Transactions on Nuclear Science, 1983, 30(6): 4481-4485.
    
    [67] W.J.Stapor, J.P.Meyers, J.B.Langworthy, et al. Two Parameter Bendel Calculations for Predicting Proton Induced Upset, IEEE Transactions on Nuclear Science, 1990, 37(6): 1966-1973.
    [68] P.Calvel, C.Barillot. An Empirical Model for Predicting Proton Induced Upset,IEEE Transactions on Nuclear Science, 1996,43(6): 2827-2832.
    [69] L.D.Edmonds. Proton SEU Cross Sections Derived from Heavy-Ion Test Data,IEEE Transactions on Nuclear Science, 2000,47(5): 1713-1728.
    [70] J.G.Rollins. Estimation of Proton Upset Rates from Heavy Ion Test Data, IEEE Transactions on Nuclear Science, 1990, 37(6): 1961-1965.
    [71] L.E.Petersen. The Relationship of Proton and Heavy Ion Upset Thresholds, IEEE Transactions on Nuclear Science, 1992. 39(6): p. 1600-1604.
    [72] V.V.Miroshin, M.G.Tverskoy. Two Parameter Model for Predicting SEU Rate,IEEE Transactions on Nuclear Science, 1994,41(6): 2085-2092.
    [73] V.V.Miroshin, M.G.Tverskoy. Some Aspects of Application of the Two Parameter SEU Model, IEEE Transactions on Nuclear Science, 1995, 42(6):1809-1813.
    [74] T.Rejimon, S.Bhanja. A Timing-Aware Probabilistic Model for Single Event Upset Analysis, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2006, 14(10): 1130-1139.
    [75] S.Duzellier, R.Ecoffet. Recent Trends in Single Event Effect Ground Testing,IEEE Transactions on Nuclear Science, 1996, 43(2): 671-677.
    [76] S.P.Buchner, D.Wilson and K.Kang, Laser Simulation of Single Event Upsets,IEEE Transactions on Nuclear Science, 1987. 34(6): 1228-1233.
    [77] A. K.Richter, I.Arimura. Simulation of Heavy Charged Particle Tracks Using Focused Laser Beams, IEEE Transactions on Nuclear Science, 1987, 34(6):1234-1239.
    [78] P.P.Shirvani. Fault-Tolerant Computing for Radiation Environments, Technical Report of Center for Reliable Computing, Stanford University, 2001.
    [79] A.S.David, L.D.Gary and J.R.Brad. Megagate ASICs for the Thuraya Satellite Digital Signal processor, in Proceedings of the International Symposium on Quality Electronic Design, Washington, DC, USA: IEEE Computer Society,2002.
    [80] Nozomu Nishinaga, Makoto Takeuchi and Ryutaro Suzuki. Reconfigurable Communication Equipment on SmartSAT-1, in Military and Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD),Washington DC, USA: NASA Office of Logic Design, 2004.
    [81] L.Sterpone, M.Violante and S.Rezgui. An Analysis Based on Fault Injection of Hardening Techniques for SRAM-based FPGAs, IEEE Transactions on Nuclear Science, 2006, 53(4): 2054-2059.
    [82] P.Kenterlis, N.Kranitis, A.Paschalis, et al. A low-cost SEU Fault Emulation Platform for SRAM-based FPGAs, 12th IEEE International On-Line Testing Symposium, 2006: 235-241.
    [83] G.Asadi, S.G.Miremadi, H.R.Zarandi, et al. Fault Injection into SRAM-based FPGAs for the Analysis of SEU Effects, in Proceedings of 2003 IEEE International Conference on Field-Programmable Technology (FPT) (IEEE Cat.No.03EX798), 2003: 428-430.
    [84] F.Lima, C.Carmichael, J.Fabula, et al. A fault Injection Analysis of Virtex FPGA TMR Design Methodology, in 6th European Conference on Radiation and Its Effects on Components and Systems (RADECS) (Cat. No.01TH8605), 2002:275-282.
    [85] M.Alderighi, D.S.Angelo, M.Mancini, et al. A fault Injection Tool for SRAM-based FPGAs, in Proceedings of 9th IEEE International On-Line Testing Symposium (IOLTS 2003), 2003: 129-133.
    [86] T.J.Chakraborty, Chen-Huan Chiang. A Novel Fault Injection Method for System Verification Based on FPGA Boundary Scan Architecture, in Proceedings of International Test Conference 2002 (Cat. No.02CH37382), 2002:923-929.
    [87] R.R.Some, W.S.Kim, G.Khanoyan, et al. A Software-Implemented Fault Injection Methodology for Design and Validation of System Fault Tolerance, in Proceedings of International Conference on Dependable Systems and Networks,2001:501-506.
    [88] D.Gil, J.Gracia, J.C.Baraza, et al. Analysis of the Influence of Processor Hidden Registers on the Accuracy of Fault Injection Techniques, in Proceedings of Ninth IEEE International High-Level Design Validation and Test Workshop (IEEE Cat.No.04EX940), 2004: 173-178.
    [89] P.Bernardi, S.M.Reorda, L.Sterpone, et al. On the Evaluation of SEU Sensitiveness in SRAM-based FPGAs, in Proceedings of 10th IEEE International On-Line Testing Symposium (IOLTS 2004), Madeira Island, Portugal: IEEE Computer Society, Los Alamitos, CA 90720-1314, United States, Jul 12-14 2004.
    [90] A.Benso, P.L.Civera, M.Revaudengo, et al. A Low-Cost Programmable Board for Speeding-Up Fault Injection in Microprocessor-based Systems, in Proceedings of Annual Reliability and Maintainability Symposium (Cat.No.99CH36283), 1999: 171-177.
    [91] M.Alderighi, F.Casini, D.S.Angelo, et al. A Tool for Injecting SEU-like Faults into the Configuration Control Mechanism of Xilinx Virtex FPGAs, in Proceedings of 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2003: 71-78.
    [92] Fit-Florea Alex, Halas Miroslav and Kocan Fatih. Enhancing Reliability of Operational Interconnections in FPGAs, in Proceedings of Design, Automation and Test in Europe Conference and Exhibition, Paris, France: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, United States,Feb16-20, 2004.
    [93] M.B.Tahoori, S.Mitra. Techniques and Algorithms for Fault Grading of FPGA Interconnect Test Configurations, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2004,23(2): 261-272.
    [94] M.Hermann, W.Hoffmann. Fault Modeling and Test Generation for FPGAs, in Proceedings of the 4th International Workshop on Field-Programmable Logic and Applications (FPL'94), Springer-Verlag GmbH & Company KG, Berlin 33,Ger: Prague, Czech Repub, Sep 7-9, 1994.
    [95] M.Renovell, J.M.Portal, J.Figueras, et al. SRAM-based FPGAs: a Fault Model for the Configurable Logic Modules, Field-Programmable Logic and Applications from FPGAs to Computing Paradigm: Lecture Notes in Computer Science, 1998: 139-148,.
    [96] M.Rebaudengo, S.M.Reorda and M.Violante. Analysis of SEU Effects in a Pipelined Processor, in Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW 2002), 2002: 112-116.
    [97] Mishra Prabhat and Dutt Nikil. Functional Coverage Driven Test Generation for Validation of Pipelined Processors, in Design, Automation and Test in Europe,Munich, Germany: Institute of Electrical and Electronics Engineers Inc.,Piscataway, NJ 08855-1331, United States, Mar 7-11, 2005.
    [98] H.D.Schmitz. Enhanced Tools for Minimizing Single Event Upset Effects, in Military and Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD), Washington DC, USA: NASA Office of Logic Design, 1999.
    [99] R.Katz, R.Barto, P.McKerracher, et al. SEU Hardening of Field Programmable Gate Arrays (Fpgas) for Space Applications and Device Characterization, IEEE Transactions on Nuclear Science, 1994. 41(6): 2179-2186.
    [100] J.Wang, R.Katz, I.Kleyner, et al. Total Dose and RT Annealing Effects on Startup Current Transient in Antifuse FPGA, in Fifth European Conference on Radiation and Its Effects on Components and Systems (RADECS 99), (Cat.No.99TH8471), 2000: 274-278.
    [101] J.J.Wang, W.Wong, S.Wolday, et al. Single Event Upset and Hardening in 0.15μm Antifuse-based Field Programmable Gate Array, IEEE Transactions on Nuclear Science, 2003, 50(6-1): 2158-2166.
    [102] A.Parreira, J.P.Teixeira, A.Pantelimon, et al. Fault Simulation Using Partially Reconfigurable Hardware. Field-Programmable Logic and Applications. in 13th International Conference of FPL (Lecture Notes in Comput. Sci. Vol.2778), 2003:839-848.
    
    [103] Gokhale Maya, Graham Paul, Johnson Eric, et al. Dynamic Reconfiguration for Management of Radiation-Induced Faults in FPGAs, in Proceedings of 18th International Parallel and Distributed Processing Symposium (IPDPS 2004),Santa Fe, NM, United States: IEEE Computer Society, Los Alamitos;Massey University, Palmerston, CA 90720-1314, United States; New Zealand, Apr 26-30 2004.
    
    [104] Xilinx Inc.. Two Flows for Partial Reconfiguration:Module Based or Difference Based, Application Note, XAPP290 (v1.2), 2004.
    
    [105] Lev Kirischian, Vadim Geurkov, Irina Terterian, et al. Multilevel Radiation Protection of Partially Reconfigurable Field Programmable Gate Array Devices,Journal of Spacecraft and Rockets, 2006,43(3): 523-530.
    
    [106] Baloch Sajid, Arslan Tughrul and Stoica Adrian. An Efficient Technique for Preventing Single Event Disruptions in Synchronous and Reconfigurable Architectures, in 1 st NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2006), Istanbul, Turkey: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, Jun 15-18, 2006.
    
    [107] S.Baloch, T.Arslan and A.Stoica. Design of a Novel Soft Error Mitigation Technique for Reconfigurable Architectures, in IEEE Aerospace Conference (IEEE Cat. No. 05TH8853C), Mar 4-11, 2006: 1-9.
    
    [108] S.Baloch, T.Arslan and A.Stoica. Design of a Single Event Upset (SEU) Mitigation Technique for Programmable Devices, in Proceedings of the 2006 7th International Symposium on Quality Electronic Design, 2006: 330-345.
    
    [109] Tiwari Anurag and A.Tomko Karen. Enhanced Reliability of Finite-State Machines in FPGA through Efficient Fault Detection and Correction. IEEE Transactions on Reliability, 2005, 54(3): 459-467.
    
    [110] M.Nicolaidis. Design for Soft Error Mitigation. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 405-418.
    
    [111] V.Srinivasan, J.W. Farquharson, W.H.Robinson and B.L.Bhuva. Evaluation of Error Detection Strategies for an FPGA-based Self-Checking Arithmetic and Logic Unit, in Military and Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD), Washington DC, USA: NASA Office of Logic Design, 2005.
    
    [112] N.Rollins, M.J.Wirthlin, M.Caffrey, et al. Reliability of Programmable Input/Output Pins in the Presence of Configuration Upsets, in Military and Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD), Washington DC, USA: NASA Office of Logic Design, 2002.
    [113] Mathew Napier, Jason Moore, Kurt Lanes and Sana Rezgui. Single Event Effect (SEE) Analysis, Test, Mitigation & Implimentation of the Xilinx Virtex-11 Input Output Block (IOB), in Military and Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD), Washington DC, USA: NASA Office of Logic Design, 2004.
    [114] P.Graham, M.Caffrey, D.E.Johnson, et al. SEU Mitigation for Half-Latches in Xilinx Virtex FPGAs, IEEE Transactions on Nuclear Science, 2003, 50(6-1):2139-2146.
    [115] R.E. Syam, Chandrasekhar Vikram, M.Sashikanth, et al. Detecting SEU-Caused Routing Errors in SRAM-based FPGAs, in 18th International Conference on VLSI Design: Power Aware Design of VLSI Systems, Kolkata, India: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, Jan 3-7, 2005.
    [116] M.Bellato, P.Bernardi, D.Bortolato, et al. Evaluating the Effects of SEUs Affecting the Configuration Memory of an SRAM-based FPGA, in Proceedings of Design, Automation and Test in Europe Conference and Exhibition, Paris,France: Institute of Electrical and Electronics Engineers Computer Society,Piscataway, United States, Feb 16-20, 2004.
    [117] L.Sterpone, M.Violante, A New Analytical Approach to Estimate the Effects of SEUs in TMR Architectures Implemented through SRAM-based FPGAs, IEEE Transactions on Nuclear Science, 2005, 52(6-1): 2217-2223.
    [118] L.Sterpone, M.Violante, Analysis of the Robustness of the TMR Architecture in SRAM-based FPGAs, IEEE Transactions on Nuclear Science, 2005, 52(5-2):1545-1549.
    [119] L.Sterpone, M.Violante. A Design Flow for Protecting FPGA-based Systems against Single Event Upsets, in 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT 2005), Monterey, CA, United States:Institute of Electrical and Electronics Engineers Inc., New York, NY 10016-5997,United States, Oct 3-5 2005.
    [120] L.Sterpone, M.Violante. Dependability Evaluation of Transient Fault Effects in Reconfigurable Compute Fabric Devices, 12th IEEE International On-Line Testing Symposium, 2006: 189-190.
    [121] L.Sterpone, M.Violante. A New Reliability-Oriented Place and Route Algorithm for SRAM-based FPGAs, IEEE Transactions on Computers, 2006, 55(6):732-744.
    [122] A. K.Somani, K.S.Trivedi. A Cache Error Propagation Model, in Proceedings of Pacific Rim International Symposium on Fault-Tolerant Systems (Cat. No.97TB100202), 1997: 15-21.
    [123] M.Rebaudengo, M.S.Reorda and M.Violante, An Accurate Analysis of the Effects of Soft Errors in the Instruction and Data Caches of a Pipelined Microprocessor, in Proceedings of Design, Automation and Test in Europe Conference and Exhibition, 2003: 602-607.
    [124] F.Faure, R.Velazco, M.Violante, et al. Impact of Data Cache Memory on the Single Event Upset-Induced Error Rate of Microprocessors, IEEE Transactions on Nuclear Science, 2003, 50(6-1): 2101-2106.
    [125] V.Sridharan, H.Asadi, M.B.Tahoori, et al. Reducing Data Cache Susceptibility to Soft Errors, IEEE Transactions on Dependable and Secure Computing, 2006,3(4): 353-364.
    [126] G.M.Swift, F.F.Farmanesh, S.M.Guertin, et al. Single-Event Upset in the PowerPC750 Microprocessor, IEEE Transactions on Nuclear Science, 2001,48(6-1): 1822-1827.
    [127] Sosnowski Janusz. Software-based Self-Testing of Microprocessors, Journal of Systems Architecture, 2006, 52(5): 257-271.
    [128] O.Goloubeva, M.Rebaudengo, M.Sonza Reorda, et al. Soft-error Detection Using Control Flow Assertions, in Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems(DFT'03), 2003:581-588.
    [129] Chen Yung-Yuan. Concurrent Detection of Control Flow Errors by Hybrid Signature Monitoring, IEEE Transactions on Computers, 2005, 54(10):1298-1313.
    [130] Rajabzadeh Amir, Miremadi Seyed Ghassem, CFCET: a Hardware-based Control Flow Checking Technique in COTS Processors Using Execution Tracing,Microelectronics Reliability, 2006,46(5-6): 959-972.
    [131] S.E.Groening. Application of Fault-Tolerant Computing for Spacecraft Using Commercial-Off-The-Shelf Microprocessors, Master Degree Thesis of Naval Postgraduate School, 2000.
    [132] M.Pignol. DMT and DT2: Two Fault-Tolerant Architectures Developed by CNES for COTS-based Spacecraft Supercomputers, 12th IEEE International On-Line Testing Symposium, 2006: 203-212.
    [133] Visvanathan Subramanian, Joseph G Tront, Charles W Bostian and Scott F Midkiff. A Configurable Architecture for High-Speed Communication Systems.in Military and Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD), Washington DC, USA: NASA Office of Logic Design, 2002.
    [134] F.H.Robert, K.Somervill and J.Williams. An Architecture for Reconfigurable Computing in Space,in Military and Aerospace Applications of Programmable Devices and Technologies Conference(MAPLD),Washington DC,USA:NASA Office of Logic Design,2005.
    [135]Benso Alfredo,Martinetto Stefano,Prinetto Paolo,et al.SEU Injection Tool to Evaluate DSP-based Architectures for Space Applications.in 2000 International Conference on Computer Design,Austin,TX,USA:Institute of Electrical and Electronics Engineers Inc.,Piscataway,NJ,USA,Sep 17-20,2000.
    [136]J.Beahan,L.Edmonds,R.D.Ferraro,et al.Detailed Radiation Fault Modeling of the Remote Exploration and Experimentation(REE) first generation tested architecture,in 2000 IEEE Aerospace Conference,Big Sky,MT,Mar 18-25,2000.
    [137]REE-Project-Manager,Remote Exploration and Experimentation(REE) Project,NASA,2000.
    [138]贺朝会,耿斌,王燕萍等.静态随机存取存储器重离子单粒子翻转效应实验研究,核电子学与探测技术,2002,22(02):97-100.
    [139]郭红霞,陈雨生,周辉等.静态随机存储器单粒子翻转效应的二维数值模拟,原子能科学技术,2003,37(06):508-512.
    [140]周彦平,杨生胜,张英.星载微机软件抗SEU加固概念研究,第四届卫星抗辐射加固技术学术交流文集,1999.
    [141]曹洲,杨世宇,达道安.功率MOSFET单粒子烧毁测试技术研究,真空与低温,2004,10(01):21-25.
    [142]李志常,李淑媛,刘建成等.MOSTET器件单粒子烧毁效应(SEB)截面测量,中国原子能科学研究院年报,2002:47.
    [143]李志常,李淑媛,刘建成等.MOSFET功率管器件单粒子烧毁效应(SEB)截面测量,原子能科学技术,2004,38(05):395-398.
    [144]唐本奇,王燕萍.功率MOS器件单粒子栅穿效应的等效电路模拟方法,计算物理,2000,17(1):77-81.
    [145]唐本奇,王燕萍,耿斌等.功率MOS、IGBT单粒子烧毁、栅穿效应模拟实验研究,核电子学与探测技术,2001,21(5):344-347.
    [146]贺朝会,耿斌,李永宏等.大规模集成电路单粒子闭锁辐射效应测试系统,核电子学与探测技术,2005,25(06):724-728.
    [147]李国政,王普,梁春湖.单粒子效应模拟实验研究,原子能科学技术,1997,31(3):258-263.
    [148]王丽君,孙辉先,陈小敏.IDT7164在40Ar束流中的单粒子效应,原子能科学技,1997,31(3):264-266.
    [149]陈微,戴葵,刘芳.可靠性微处理器设计关键技术研究,华中科技大学学报(自然科学版),2005,33(z1):111-113.
    [150]张庆祥,杨兆铭.微处理器80C86及其外围芯片协合效应实验研究,原子核物理评论,2002,19(1):70-72.
    [151]王燕萍,唐本奇,李国政等.~(252)Cf源模拟空间单粒子效应辐照在线测量系统和应用,核技术,2002,25(4):247-252.
    [152]唐本奇,王燕萍.用~(252)Cf裂片源研究单粒子烧毁和栅穿效应的方法,原子能科学技术,2000,34(4):339-343.
    [153]张庆祥,杨兆铭,李志常等.静态存储器同一字节多位翻转实验研究,原子能科学技术,2001,35(6):485-489.
    [154]贺朝会,杨海亮,耿斌等.静态随机存取存储器质子单粒子效应实验研究,核电子学与探测技术,2000,20(4):253-257.
    [155]贺朝会,耿斌,陈晓华等.浮栅ROM器件的质子辐射效应实验研究,空间科学学报,2002,22(2):184-192.
    [156]王同权,戴宏毅.宇宙高能质子致单粒子翻转率的计算,国防科技大学学报,2002,24(2):11-13.
    [157]杨海亮,李国政,姜景和等.质子和中子的单粒子效应等效性实验研究,核电子学与探测技术,2002,22(2):151-161+116.
    [158]张庆祥,侯明东,刘杰.用重离子实验数据推算质子翻转截面和轨道翻转率,原子核物理评论,2003,20(1):66-69.
    [159]贺朝会,陈晓华,李囤政.FLASH ROM 28F256和29C256的14MeV中子辐照实验研究,核电子学与探测技术,2000,20(2):115-119.
    [160]贺朝会,陈晓华,刘恩科等.EEPROM 28C64和28C256的14MeV中子辐照特性,微电子学,1999,29(4):262-266.
    [161]贺朝会.半导体存储器的单粒子效应研究,西安交通大学博士学位论文,1999.
    [162]李华.中子引起单粒子翻转过程中能量沉积统计分析,原子核物理评论,2006.23(1):46-50.
    [163]Yu Yinlei,Xu Jian,Huang Wei Kang,et al.Diagnosis Method for Interconnects in SRAM based FPGAs,in Proceedings of the 1998 7th Asian Test Symposium,Singapore,Singapore:IEEE Comp Soc,Los Alamitos,CA,USA,Dec 2-4,1998.
    [164]Yu Yinlei,Xu Jian,Huang Wei Kang,et al.Minimizing the Number of Programming Steps for Diagnosis of Interconnect Faults in FPGAs,in Proceedings of the Asian Test Symposium,1999:357-362.
    [165]Huang Wei Kang,F.J.Meyer and Lombardi Fabrizio.Approach for Detecting Multiple Faulty FPGA Logic Blocks,IEEE Transactions on Computers,2000,49(1):48-54.
    [166]Chen Yung-Yuan,Leu Kuen-Long and Yeh Chao-Sung.Fault-tolerant VLIW Processor Design and Error Coverage Analysis,in Intemational Conference on Embedded and Ubiquitous Computing,EUC 2006,Seoul,South Korea:Springer Verlag,Heidelberg,D-69121,Germany,Aug 1-4,2006.
    [167]本文作者(第一作者).Xilinx SRAM型FPGA抗辐射设计技术研究,宇航学报,2007,28(1):123-129.
    [168]本文作者(第一作者).数字信号处理器抗辐射设计技术研究,应用基础与工程科学学报,2006,14(4):572-577.
    [169]本文作者(第一作者).星载软件无线电平台及其单粒子效应研究方法,空间科学学报,2006,26(6):477-482.
    [170]马兴瑞,张永维,白照光.实践五号卫星及其飞行成果,中国航天,1999(11).
    [171]郭红霞.集成电路电离辐射效应数值模拟及X射线剂量增强效应研究,西安电子科技大学博士学位论文,2002.
    [172]林青.SOI器件的物理效应模拟及其抗总剂量辐射加固技术的研究,中国科学院上海微系统与信息技术研究所博士学位论文,2004.
    [173]陆虹.CMOS集成电路的抗单粒子效应加固技术研究,吉林大学硕士学位论文,2003.
    [174]宋哲.SOI工艺抗辐射加固技术,辽宁大学硕士学位论文,2005.
    [175]张正选.MOS器件和集成电路的电离辐射效应研究,西安交通大学博士学位论文,2000.
    [176]向琳.航天计算机故障模式及分布的研究,哈尔滨工业大学硕士学位论文,2000.
    [177]陈光重.皮卫星星载控制处理系统的可靠性研究,中国科学院上海微系统与信息技术研究所硕士学位论文,2004.
    [178]李华旺.航天嵌入式现代小卫星软件容错设计及测试系统研究,中国科学院上海微系统与信息技术研究所博士学位论文,2003.
    [179]武文权.可重构并行小卫星星载计算机体系结构设计,中国科学院上海微系统与信息技术研究所博士学位论文,2004.
    [180]高磊,孙宁.星载可重构计算机硬件验证平台设计,自动化仪表,2006,27(3):48-51.
    [181]Xilinx Inc..Virtex-Ⅱ Platform FPGAs:Complete Data Sheet(DS031,V3.4),2005.
    [182]Michael Caffrey,Paul Graham,Eric Johnson,et al.Single-Event Upsets in SRAM FPGAs,in Military and Aerospace Applications of Programmable Devices and Technologies Conference(MAPLD),Washington DC,USA:NASA Office of Logic Design,2002.
    [183]Paul Graham,Michael Caffrey,Jason Zimmerman,et al.Consequences and Categories of SRAM FPGA Configuration SEUs,in Military and Aerospace Applications of Programmable Devices and Technologies Conference(MAPLD),Washington DC,USA:NASA Office of Logic Design,2003.
    [184]Skutnik Steven Eugene.A Scalable Analytic Model for Single Event Upsets in Radiation-Hardened Field Programmable Gate Arrays in the PHENIX Interaction Region,Master Thesis of Iowa State University,2005.
    [185]TI Inc..TMS320C6000 CPU and Instruction Set,2000.
    [186]F.Faure,R.Velazco and P.Peronnard.Single-Event-Upset-Like Fault Injection:a Comprehensive Framework,IEEE Transactions on Nuclear Science,2005,52(6-1):2205-2209.
    [187]曹建中.半导体材料的辐射效应,北京:科学出版社,1993.
    [188]J.H.Stephen,T.K.Sanderson,D.Mapper,et al.Cosmic Ray Simulation Experiments for the Study of Single Event Upsets and Latch-Up in CMOS Memories,IEEE Transactions on Nuclear Science,1983,30(6):4464-4469.
    [189]P.J.Layton,D.R.Czajkowski,J.C.Marshall,et al.Single Event Latchup Protection of Integrated Circuits,in Proceedings of the 1997 4th European Conference on Radiation and Its Effects on Components and Systems,RADECS'97,Cannes,France:IEEE,Piscataway,NJ,USA,Sep 15-19,1997.
    [190]S.B.Umesh,S.R.Kulkarni,R.Sandhya,et al.High-Energy Heavy Ion Testing of VLSI Devices for Single Event Upsets and Latch Up,Bulletin of Materials Science,2005,28(5):473-476.
    [191]D.McMorrow,S.Buchner,M.Baze,et al.Laser-Induced Latchup Screening and Mitigation in CMOS Devices,IEEE Transactions on Nuclear Science,2006,53(4-1):1819-1824.
    [192]Phil Oldiges,Robert Dennard,Dave Heidel,et al.Theoretical Determination of the Temporal and Spatial Structure of α-Particle Induced Electron-Hole Pair Generation in Silicon,IEEE Transactions on Nuclear Science,2000,47(6):2575-2579.
    [193]M.Murat,A.Akkerman,J.Barak.Spatial Distribution of Electron-Hole Pairs Induced by Electrons and Protons in SiO_2,IEEE Transactions on Nuclear Science,2004,51(6):3211-3218.
    [194]孙峻朝.基于故障注入的容错机制测评技术的研究,哈尔滨工业大学博士学位论文,1999.
    [195]S.R.Lala,P.K.Seward.Fault Injection for Verifying Testability at the VHDL Level,in ITC International Test Conference,2003:131-137.
    [196]M.R.Javaheri,Sedaghat Reza,Kant Leo,et al.Verification and Fault Synthesis Algorithm at Switch-Level,Microprocessors and Microsystems,2006,30(4):199-208.
    [197]R.Leveugle,K.Hadjiat.Multi-Level Fault Injection Experiments Based on VHDL Descriptions:a Case Study,in Proceedings of the Eighth IEEE International On-Line Testing Workshop(IOLTW 2002),2002:107-111.
    [198]R.Desplats,S.Petit,S.Rezgui,et al.Investigation of SEU Sensitivity of Xilinx Virtex Ⅱ FPGA by Pulsed Laser Fault Injections,Microelectronics Reliability,2004,44(9-11):1709-1714.
    [199]Ejlali Alireza,Ghassem Miremadi Seyed.FPGA-based Fault Injection into Switch-Level Models,Microprocessors and Microsystems,2004,28(5-6):317-327.
    [200]R.Sedaghat.Routability Estimation of FPGA-based Fault Injection,Electronics Letters,2005,.41(14):790-792.
    [201]Kab Joo Lee.Fault Sensitivity Analysis of a 32-bit RISC Microprocessor,in 6th International Conference on VLSI and CAD(ICVC '99.),Cat.No.99EX361,1999:529-532.
    [202]P.Civera,L.Macchiarulo,M.Rebaudengo,et al.FPGA-based Fault Injection for Microprocessor Systems,in Proceedings of 10th Asian Test Symposium,2001:304-309.
    [203]李华旺,刘海涛,杨根庆.航天单粒子事件故障注入系统研究,量子电子学报,2002,19(1):57-60.
    [204]彭俊杰,黄庆成,洪炳镕等.一种用于星载系统可靠性评测的软件故障注入工具,宇航学报,2005,26(6):823-827.
    [205]刘宏泰.基于软件实现的故障注入系统设计与仿真,哈尔滨工业大学硕士学位论文,2003.
    [206]王胜文.基于软件的故障注入方法研究,哈尔滨工业大学博士学位论文,2005.
    [207]李国春,鲁远耀,张平等.星载SAR计算机的故障注入测试系统设计,现代雷达,2006,28(9):85-87.
    [208]L.Antoni,R.Leveugle and B.Feher.Using Run-Time Reconfiguration for Fault Injection Applications,IEEE Transactions on Instrumentation and Measurement,2003,52(5):1468-1473.
    [209]J.H.Hohl,K.F.Galloway.Analytical Model for the Single Event Burnout of Power MOSFETs,IEEE Transactions on Nuclear Science,1987,4(6):1275-1280.
    [210] B.Pratt, M.Caffrey, P.Graham, et al. Improving FPGA Design Robustness with Partial TMR, in Proceedings of 2006 IEEE International Reliability Physics Symposium(44th Annual), 2006: 226-232.
    [211] M.Tomczak, B.Swiercz and A.Napieralski. Fault-Tolerant VHDL Descriptions: a Case-Study for SEU-Tolerant Digital Library, in Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments,Wilga, Poland: International Society for Optical Engineering, Bellingham WA,WA 98227-0010, United States , May 29-Jun 4 2006
    [212] C.A.L.Lisboa, L.Carro. Arithmetic Operators Robust to Multiple Simultaneous Upsets, in Proceedings of 19th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'04), 2004.
    [213] L.Anghel, D.Alexandrescu,and M.Nicolaidis. Evaluation of Soft Error Tolerance Technique Based on Time and/or Space Redundancy, in Proceedings of 13rd Symposium on Integrated Circuits and Systems Design(ICSD2000),Manaus,Brazil: IEEE, 2000.
    
    [214] Xilinx Inc.. Virtex-II Platform FPGA User Guide (UG002 v2.0), 2005.
    [215] Andres Upegui, Eduardo Sanchez. Evolving Hardware by Dynamically Reconfiguring Xilinx FPGAs, in International Conference on Evolvable Systems (ICES 05), Sitges- Spain, 2005.
    [216] E.Yana Krasteva, Didier Joly, E. de la Torre and Teresa Riesgo. Virtex II Bitstream Manipulation: Application to Reconfiguration Control Sytems, in 16th IEEE International Conference on Field Programmable Logic and Applications,Madrid, Spain, 2006.
    [217] M.Violante, M.Ceschia, R.M.Sonza, et al. Analyzing SEU Effects in SRAM-based FPGAs, in Proceedings of 9th IEEE International On-Line Testing Symposium (IOLTS 2003), 2003: 119-123.
    [218] Kim Suk Joon, Seong Poong Hyun, Lee Jun Seok, et al. A Method for Evaluating Fault Coverage Using Simulated Fault Injection for Digitalized Systems in Nuclear Power Plants, Reliability Engineering & System Safety, 2006, 91(5):614-623.
    [219] J.G.Choi, P.H.Seong. Dependability Estimation of a Digital System with Consideration of Software Masking Effects on Hardware Faults, Reliability Engineering & System Safety, 2001, 71(1): 45-55.
    [220] TI Inc.. TMS320C6000 Peripherals Reference Guide, 2001.
    [221] B.Randell. System Structure for Software Fault Tolerant, IEEE Transactions on Software Engineering, 1975, 1(2): 220-232.
    [222] A.Avizienis. The N-Version Approach to Fault-Tolerant, IEEE Transactions on Software Engineering, 1985,11(12): 1491-1501.
    [223] M.S.Reorda, M.Violante. Emulation-based Analysis of Soft Errors in Deep Sub-Micron Circuits, Springer-Verlag Berlin: Berlin, 2003: 616-626.
    [224] Rezgui Sana, Velazco Raoul, Rodriguez Santiago, et al. New Methodology for Simulation of Soft Errors in Digital Processors, Journal of Spacecraft and Rockets, 2002, 39(4): 495-500.
    [225] B.Nicolescu, R.Velazco. Detecting Soft Errors by a Purely Software Approach:Method, Tools and Experimental Results, in Proceedings of Design, Automation and Test in Europe Conference and Exhibition, 2003: 57-62.
    [226] P.K.Lala, K.C.Yarlagadda. On Self-Checking Software Design, in IEEE Proc.Southeastcon, 1991 Vol(1): 331-335.
    
    [227] TI Inc.. TMS320C6000 Optimizing Complier User' Guide(SPRU187K), 2002.
    [228] N.Oh, P.P.Shirvani and E.J.McCluskey. Error Detection by Duplicated Instructions in Super-Scalar Processors, IEEE Transactions on Reliability, 2002,51(1): 63-75.
    [229] E.R.Prado, J.P.Prewitt. A High Performance COTS Based Vector Processor for Space, in Proceedings of IEEE Aerospace Conference(Cat. No.00TH8484), 2000:227-33 vol.5.
    [230] D.Strobel, S.Stewart, R.Hillman, et al. A COTS-based Single Board Radiation-Hardened Computer for Space Applications, in Proceedings of European Space Components Conference, ESCCON 2000 (SP-439), 2000:355-360.
    [231] Kimura Shinichi, Yamamoto Hiroshi, Nagai Yasufumi, et al. Single-Event Performance of a COTS Processor, in a Collection of the 22nd AIAA International Communications Satellite Systems Conference and Exhibit,Monterey, CA, United States: American Institute of Aeronautics and Astronautics Inc., Reston, VA 20191, United States, May 9-12 2004.
    [232] R.Koga, K.B.Crawford, S.J.Hansel, et al. Risk of Utilizing SEE Sensitive COTS Digital Signal Processor (DSP) Devices in Space. IEEE Transactions on Nuclear Science, 1996,43(6-1): 2982-2989.
    [233] Behr Peter, Barwald Wolfgang, Briess Klaus, et al. Fault Tolerance and COTS:Next Generation of High Performance Satellite Computers, in Proceedings of DASIA 2003, Prague, Czech Republic: European Space Agency, Jun 2-6,2003.
    [234] D.Ngo and M.Harris. A Reliable Infrastructure Based on COTS Technology for Affordable Space Application, in 2001 IEEE Aerospace Conference, Big Sky,MT,Mar 10-17,2001.
    [235] Actel Inc.. Radiation Performance of Actel Products(Version 9), Actel Corporation, 2004.
    [236] Fukunaga Chikara. Irradiation Tests of ROHM 0.35μm ASIC and Actel Anti-fuse FPGA for the ATLAS Muon Endcap Level-1 Trigger System, in Military and Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD), Washington DC, USA: NASA Office of Logic Design, 2004.
    
    [237] Swift Gary, Katz Richard. Experimental Survey of Heavy Ion Induced Dielectric Rupture in Actel Field Programmable Gate Arrays (FPGAs), IEEE Transactions on Nuclear Science, 1996,43(3-1): 967-972.
    
    [238] D.J.Andrews, E.Schwerer. Probability of Rupture of Multiple Fault Segments,Bulletin of the Seismological Society of America, 2000, 90(6): 1498-1506.
    
    [239] A.Benso, Di Carlo S., Di Natale G., et al. SEU Effect Analysis in a Open-Source Router Via a Distributed Fault Injection Environment, in Proceedings of Design,Automation and Test in Europe (Conference and Exhibition 2001), 2001:219-223.
    
    [240] S.Rezgui, G.M.Swift and A.Lesea. Characterization of Upset-Induced Degradation of Error-Mitigated High-Speed I/O's Using Fault Injection on SRAM Based FPGAs. IEEE Transactions on Nuclear Science, 2006, 53(4):2076-2083.
    
    [241] M.Alderighi, F.Casini, D.S. Angelo, et al. A Fault-Tolerance Strategy for an FPGA-based Multi-Stage Interconnection Network in a Multi-Sensor System for Space Application, in Proceedings of 2001 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2001: 191-199.
    
    [242] S.G.Miremadi, A.Ejlali. Switch Level Fault Emulation, in Proceedings of Field-Programmable Logic and Applications of 13th International Conference (FPL 2003), Lecture Notes in Comput. Sci. Vol.2778, 2003: 849-858.
    
    [243] Peng Junjie, Hong Bingrong, Yuan Chengjun, et al. Study on Software Fault Injection Based on Onboard System, Chinese Journal of Electronics, 2005, 14(3):.434-437.
    
    [244] Peng Jun-Jie, Hong Bing-Rong, Yuan Cheng- Jun. Software-Implemented Fault Injection on Onboard System, Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2004, 36(7): 934-936.
    
    [245] Garvie Miguel and Thompson Adrian. Scrubbing Away Transients and Jiggling around the Permanent: Long Survival of FPGA Systems through Evolutionary Self-Repair, in Proceedings of 10th IEEE International On-Line Testing Symposium (IOLTS 2004), Madeira Island, Portugal: IEEE Computer Society,Los Alamitos, CA 90720-1314, United States, Jul 12-14 2004.
    
    [246] K.Morgan, M.Caffrey, P.Graham, et al. SEU-Induced Persistent Error Propagation in FPGAs, IEEE Transactions on Nuclear Science, 2005, 52(6-1):2438-2445.
    [247]Carl Carmichael,Michael Caffrey,Anthony Salazar.Correcting Single-Event Upsets through Virtex Partial Configuration(XAPP 216 v1.0),Xilinx Inc,2000.
    [248]Candice Yui,Gary Swift and Carl Carmichael.Single Event Upset Susceptibility Testing of the Xilinx Virtex Ⅱ FPGA,in Military and Aerospace Applications of Programmable Devices and Technologies Conference(MAPLD),Washington DC,USA:NASA Office of Logic Design,2002.
    [249]Xilinx Inc..Device Relibility Report(UG116 V2.3),www.xilinx.com,2004.
    [250]TI Inc..Texas Instruments Reliability Data:Reliability Estimator Results,http://focus.ti.com/quality/docs/singlesearchresults.tsp?templateId=5909&naviga tionId=11213&mtbfType=true&searchType=orderableOption&partialSearch=fal se&orderablePartNumber=TMS32C6415EGLZA6E3,2007.
    [251]Actel Inc..Relibility Report(Q1 CY2004),www.actel.com,2004.
    [252]P.T.McDonald,W.J.Stapor and B.G.Henson.PC603E 32-BIT RISC μP Radiation Effects Study,http://radiation-effects.com/pdf/PC603.pdf,1999.
    [253]G.Miremadi,J.Ohlsson,M.Rimen,J.Karlsson.Use of Time,Location and Instruction Signatures for Control Flow Checking,in Proceedings of the DCCA-6 International Conference,IEEE Computer Society Press,1998:201-212.
    [254]杨俊.卫星导航信号精密产生理论与技术研究,国防科学技术大学博士学位论文,2007.
    [255]明德祥.网络仪器及其统一时间支持体系,国防科学技术大学博士学位论文,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700