镁合金表面可降解聚合物涂层对镁合金耐蚀性规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来镁合金在医疗行业的应用越来越受到人们的关注。良好的力学性能和生物相容性使之可被用作医疗介入材料,但它耐蚀性差、在人体中腐蚀速度过快的特点却严重制约了其发展和应用。
     本文主要研究生物可降解聚合物涂层对WE43镁合金耐蚀性的影响,并优选出最适合作为WE43镁合金可降解防护涂层的聚合物材料。
     研究结果表明:在浸泡初始阶段,无论是何种可降解聚合物涂层均可以提高WE43镁合金在PBS溶液中的耐蚀性。但由于聚合物种类和分子量的差异,涂层防护效果并不相同。PLGA (LA/GA=50/50、80/20)和PDLLA (Mw=20万)在浸泡过程中出现加速WE43镁合金基体腐蚀的现象,而PLGA (LA/GA=70/30)和PDLLA (Mw=40万)则未出现加速现象,因此PLGA70和PDLLA40适合作为WE43镁合金防护涂层材料使用。
     在PLGA70和PDLLA40中加入不同重量的β-TCP,研究β-TCP改性涂层对WE43镁合金耐蚀性的影响。研究发现,β-TCP使聚合物涂层致密性下降,所以浸泡初期β-TCP改性涂层对于镁合金保护性比纯聚合物涂层差。但在整个浸泡过程中,由于β-TCP水解呈碱性减慢聚合物的降解速度,延长了可降解聚合物涂层对镁合金的保护时间。研究得到β-TCP的最佳添加量为5%。
     在PDLLA40和PLGA70中加入不同粒径的HA,以研究不同粒径HA改性涂层对镁合金耐蚀性的影响。研究发现HA颗粒也会破坏涂层的致密性,使可降解聚合物涂层初始防护作用减弱。实验发现,在涂层浸泡过程中纳米HA比微米HA更容易从涂层中脱落,从而使涂层提早失效。所以微米HA更适合做可降解聚合物添加剂。
People have paid more and more attention to the use of magnesium alloy in the medical industry recently. Because of good mechanical properties and biocompatibility, it is used as medical intervention materials. But it corrodes so quickly in human bodies for its inferior corrosion resistance, the development and application of magnesium alloy is seriously restricted.
     The influence on the corrosion resistance of WE43 magnesium alloy by the biodegradable polymer coating is mainly concerned in this paper and the optimal protective coating of degradable polymers for WE43 magnesium alloy is selected.
     Results show that the corrosion resistance of WE43 magnesium alloy in PBS solution can be improved by all biodegradable polymer coating at the preliminary stage of soaking, but different characteristics and molecular weights of polymers also lead to different protective effect of coating. When soaked in PBS solution, the corrosion of WE43 magnesium alloy was accelerated by PLGA(LA/GA=50/50、80/20)and PDLLA(Mw=20,000)coatings while PLGA (LA/GA=70/30) and PDLLA (Mw=40,000) coating samples did not show this accelerating phenomenon. So PLGA (LA/GA=70/30) and PDLLA (Mw=40,000) are more suitable as protective coating material for WE43 magnesium alloy.
     Different gravities ofβ-TCP are added into PLGA70 and PDLLA40 to study the influence to the corrosion resistance of WE43 magnesium alloy with theβ-TCP modified coating. The results show thatβ-TCP decreases the compactness of polymer coating, so the protective effect of theβ-TCP modified coating is weaker than the polymer coating at the preliminary stage of soaking. Because of the alkaline hydrolyzing of P-TCP during the whole soaking period, the degradation speed of the polymer can be decreased while the protective time to magnesium alloy by the degradation polymer coating is extended. The optimal content of theβ-TCP is 5%.
     HA with different particle size is added into PLGA70 and PDLLA40 to study the influence of different particle size of HA to the corrosion resistance of WE43 magnesium alloy. The results show that HA can also decrease the compactness of polymer coating and the protective effect of the HA composite coating is weaker than the preliminary stage of soaking. The micron-HA is more suitable as the additive of biodegradable polymer for the nano-HA falls off from the coating more easily during the soaking period which can lead to the failure of coating in advance.
引文
[1]姚素娟,张英,褚丙武等.镁及镁合金的应用与研究有色金属,2005,1:26-30
    [2]李龙川,高家诚,王勇.医用镁合金的腐蚀行为与表面改性.材料导报,2003,17(10):29-32
    [3]C. M Serre, M. Papillard, P. Chavassieux, et al. Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human oxteblasts. Journal of Biomedical Materials Research,1998,42(4):626-633
    [4]Kuwahara H, Al-abdullat Y, Mazaki N, et al. Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank's solution. Materials Transactions,2001,42(7):1317-1321
    [5]胡庆福.镁化合物生产应用.北京:化学工业出版社,2004,547
    [6]Nils-Erik L. Saris, Eero Mervaala, Heikki Karppanen, et al. Magnesium:An update on physiological, clinical and analytical aspects. Clinica Chimica Acta,2000,294(1):1-26
    [7]刘振东,范清宇.应力遮挡效应—寻找丢失的钥匙.中华创伤骨科杂质,2002,4(1):62-65
    [8]Lambotte, Bull. Mem. Soc. Nat. Chir.1932,28:1325-1334
    [9]McBride E D. Absorbable metal in bone surgery. J Am Med Assoc 1938,111:2464-2466
    [10]Denkena B, Witte F, Podolsky C, et al. Degradable implants made of magnesium alloys. In:Proc of 5th Euspen international Conference. Montpellier, France,2005
    [11]Witte F, Crostackl H A, Nellesenl J, et al. Characterization of degradable magnesium alloys as orthopaedic implant material by synchrotron-radiation-based microtomogragra-phy.http://www.hasylab.desy.de/science/annual_report/2001_report/par tl/contrib/47/546.pdf
    [12]Dyugulu O, Kaya R A, Oktay G, et al. Investigation on the potential of magnesium alloy AZ31 as bone implant. Materials Science Forum,2007,546-549:421-424.
    [13]张广道,黄晶晶,杨柯等.动物体内植入镁合金的早期实验研究.金属学报,2007,43(11):1186-1190
    [14]高家诚,李龙川,王勇等.表面改性纯镁的细胞毒性和溶血率.稀有金属材料与工程,2005,34(6)903-906
    [15]杨志勇,樊庆福,顾德秀.生物材料与人工器官(二).上海生物医学工程,2006,26(1):35-39
    [16]Wen C E, Yamada Y, Shimojima K, et al. Porous bioresorbable magnesium as bone substitute. Materials Science Forum,2003,419-422:1001-1006
    [17]沈剑,凤仪,王松林等.多孔生物镁的制备及表面改性.中国机械工程,2007,18(10):1230-1235
    [18]沈剑,凤仪,王松林等.多孔生物镁的制备与力学性能研究.金属功能材料,2006,13(3):9-13
    [19]申祥,倪中华.生物可降解镁合金支架的扩张性能.东南大学学报,2008,38(1):49-53
    [20]Heublein B, Lohde L, Kaese V, et al. Biocorrosion of magnesium alloys:a new principle in cardiovascular implant technology? Heart,2003,89(6):651-656
    [21]Waksman R, Pakala R, Kuchulakanti P K, et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheterization and Cardiovascular Interntions,2006,68(4):607-617
    [22]Mario C D, Griffiths H, Goktekin O, et al. Drug-elu-ting bioabsorbable magnesium stent. Journal of interventional Cardiology,2004,17 (6):391-396
    [23]Raimund Erbel, Carlo Di Mario, Jozef Bartunek, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents:a prospective, non-randomised munlticentre trial. Lancet,2007,369 (9576):1869-1875
    [24]Zartner p, Cesnjevar R, Singer H, et al. First Successful Implantation of a Biodegradable Metal Stent Into the Left Pulmonary Artery of a Preterm Baby. Catheterization and Cardiovascular Interventions,2005,66:590-594
    [25]Peeters P, Bosiers M, Verbrist J, et al. Preliminary results after application of absorbable mental stents in patients with critical limb ischemia. Journal of Endovascular Therapy,2005,12(1):1-5
    [26]王勇,高家诚,张艳等.纯镁在模拟体液中的腐蚀机理.中国有色金属学报,2007,17(12):1981-1986.
    [27]张津,章宗和.镁合金及应用.北京:化学工业出版社,2004,224
    [28]姚芳莲,刘畅,孟继红等.降解可控乳酸类聚合物.高分子通报,2003,3:47-56
    [29]Hakkarainen M, Albertsson A C, Karlsson S. Weight losses and molecular weight changes corr elated with the evolution of Hydroxyacids in simulated in vivo degradation of homo-and copolymers of PLA and PGA. Polymer Degradation and Stability,1996,52,(3): 283
    [30]Zhu K J, Hendren R W, Jensen K, et al. Synthesis, Properties, and Biodegradation of Poly(1-3-trimethylene carbonate). Macromolecules,1991,24(8):1736-1740
    [31]T Alfrey J R., E F Gurnee,W G Lloyd. Diffusion in glassy polymers. Journal of Polymer Science Part C,1966,12:124
    [32]王华林,盛敏刚,史铁钧等.PLA及PLA复合材料降解性能研究进展.高分子材料科学与工程,2004,20(6):20-23
    [33]Scott G. Green' polymers. Polymer Degradation and Stability,2000,68 (1):1-7
    [34]全大萍,廖凯荣,罗丙红,卢泽俭.聚DL-乳酸/磷酸盐复合多孔支架材料的制备及降解性能.生物医学工程学杂志,2004,21(2):174-177
    [35]K. Mader, B. Gallez*, K. J. Liu and H. M. Swartz. Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy. Biomaterials,1996,17(4):457-461
    [36]H. Younes, P. R. Nataf b, D. Cohn. Biodegradable Pela Block Copolymers:In Vitro Degradation and Tissue Reaction. Artificial Cells, Blood Substitutes, and Biotechnology, 1988,16(4):705-719
    [37]D.H.Lewis. Controlled release of bioactive agents from lactide/glycolide Polymers. In: Chasin M, Lange R. Editors. Biodegradable Polymer as drug delivery systems. New York:Marcel Dekker,1990,1.
    [38]Holland S. J., Tighe B. J., Gould P. L. Polymers for biodegradable medical devices.1. The potential of polyesters as controlled macromolecular release systems. Journal of Controlled Release,1986,4(3):155-180
    [39]Yoon Sung Nam, Tae Gwan Park. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials, 1999,20(19):1783-1790
    [40]Hirotsu T, Ketelaars A A, Nakayama K. Biodegradation of poly(-caprolactone)-polycarbonate blend sheets. Polymer Degradation and Stability,2000,68(3),311-316
    [41]杜锡光,陈莉,梁奇志等.羟基乙酸均聚物PGA的合成及表征.东北师大学报,2003,35(3):119-124
    [42]张颂培,王锡臣.生物降解性医用高分子材料-聚乳酸.化工新型材料,1995,23(8):9-11
    [43]Yolles S, Eldridge J E, Woodland J R. Polymer News,1970,1 (4):9.
    [44]Beek L R, Cowsar D R, Lewis D H, et al. A new long-acting injectable microcapsule system for the administration of progesterone.Fertility and Sterility,1979,31 (5):545-551
    [45]赵燕超,刘学波,葛均波等.新型可降解血管涂层支架的制备及其生物相容性的研究.中国生物医学工程学报,2008,27(3):438-442
    [46]Albert, Maartenvander, Roelf S, et al. Surgical Treatment of Fracture-Dislocations of the Ankle Joint with Biodegradable Implants:A Prospective Randomized Study. Trauma, 1993,34(1):82-84
    [47]胡韶楠,顾玉东.可吸收聚合材料髓内针在手外科的应用.中华手外科杂志,1995,(3):179
    [48]顾小华,印心奇.可吸收内固定物在关节内骨折的应用.骨与关节损伤杂 志,1997,12(6):348
    [49]赵莉,何晨光,高永娟等.PLGA的不同组成对支架材料性能的影响研究.中国生物工程杂志,2008,28(5):22-28
    [50]黄福龙,戴红莲,方园等HA/PDLLA复合材料制备及其降解性能研究.无机材料学报,2007,22(2):333-338
    [51]Srack R S, Califf R M, Phillips H R, et al. Interventional cardiac catheterization at Duke Medical Center. Am J Cardiol.1988,62(suppl F):3F-24F
    [52]Susawa T, Shiraki K, Shimizu Y. Biodegradable intra coronary stents in adult dogs. J Am Coll Cardiol,1993,21:483A.
    [53]Van der Giessen, Willem J, Lincoff A M, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation,1996,94(7):1690-1697
    [54]Lincoff A M, Furst J G, Ellis S G, et al. Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the procine coronary injury model.J Am Coll Cardiol,1997,29:808-807
    [55]Tamai H, Igaki K, Kyo E, et al. Initial and 6-mouth results of biodegradable poly-1-lactic acid coronary stents in humans. Circulation,2000,102(4):399-404
    [56]Subbu Venkatraman, Tan Lay Poh, Tjong Vinalia, et al. Collapse pressure of biodegradable stents. Biomaterials,2003,24(12):2105-2111
    [57]Spector M.Anorganic bovin bone and ceramic analogs of bone mineral as implants to facilitate bone regeneration. Clin Plast Surg 1994,21(3):437-444
    [58]Wake M C, Gerecht P D, Lu L C, et al. Effects of biodegradable polymer particles on rat marrow-derived stromal osteoblasts in vitro. Biomaterials,1998,19(14):1255-1268
    [59]黄晶晶,任伊宾,张炳春等.可降解镁植入材料表面涂层的制备及其性能.中国有色金属学报,2007,17(9):1465-1469
    [60]杨旭,潘复生.镁合金表面有机防腐蚀技术的研究进展.材料保护,2007,40(9):49-52
    [61]Mikos I L, Antonios G. Importance of new processing techniques in tissue engineering. MRS Bull,1996,21:28
    [62]T Niemela. Effect of β-tricalcium phosphate addition on the in vitro degradation of self-reinforced poly-1,d-lactide. Polymer Degradation and Stability,2005,89(3):492-500
    [63]张亮,靳安民,李健等.体外降解实验筛选骨修复材料β-TCP/DLPLA最适比例.中国临床康复,2002,6(20):3016-3017
    [64]全大萍,李世普,袁润章等.聚DL-丙交酯/羟基磷灰石(PDLLA/HA)复合材料-Ⅱ:硅(?)烷偶联剂处理羟基磷灰石表面的作用研究.复合材料学报,2000,17(4):114-118
    [65]赵常利,张绍翔,何慈晖,等.生物医用镁合金表面PLGA涂层的研究动能材料,2008,6(39):987-989
    [66]林海潮,李谋成.涂层下金属的腐蚀过程.腐蚀科学与防护技术,2002,14(3):180-181
    [67]郭尚春.影响聚乙交酯丙交酯降解性能的因素.口腔材料器械杂志,2002,11(4):201-203
    [68]杨丽霞,张三平,林安.有机涂层渗水率及金属界面腐蚀的研究进展.材料保护,2001,34(10):28-30
    [69]高立新,张大全,周国定,李华刚.改性环氧涂层吸水性及耐蚀性研究.中国腐蚀与防护学报,2002,22(1):41-43
    [70]唐智荣,黄虹,饶炬等.聚羟基丙酸乙酸膜的降解.华东理工大学学报,2002,28(4):383-385
    [71]Wu XS. Synthesis and properties of biodegradable lactic/glycolic acid polymer. In:Wise et al. editors. Encyclopedic Handbook of Biomaterials and Bioengineering. New York Marcel Dekker,1995,1015-1054
    [72]G. E. Visscher, R. L. Robin, H. V. Maulding et al. Biodegradation of and tissur reaction to 50:50 poly (DL-lactide-co-glycolide) microcapsules. Journal of Biomedical Materials Research,1985,19(3):349-365
    [73]L.R.Beck,T.R. Tice. Long Acting Steriod Contracption. New York:Raven Press,1983,175-199
    [74]洪华,钱颖,许勇等.低分子量聚乳酸对聚乳酸膜结构及性能的影响.华东理工大学学报,2004,30(5):532-535
    [75]杨立红,韩恩厚,余家康.腐蚀性介质在涂层中的传输行为.腐蚀科学与防护技术,2004,16(5):304-308
    [76]Genevieve Baril, Nadine Pebere. The corrosion of pure magnesium sulphate solutions. corr osion Science,2001,43(3):471-484
    [77]Mark P. Staiger, Alexis M.Pietak, Jerawala Huadmai et al. Magnesium and its alloys as orthopedic biomaterials:Areview. Biomaterials,2006,27(9):1728-1734
    [78]Song G L, Stjohn D, Nairn J, Lit Y. The electrochemical corrosion of pure magnesium in 1 N NaCl.Corr osion Science,1997,39(5):855-875
    [79]Slavcheva E, Petkova G, Andreev P. Inhibition of corr osion of AZ91 magnesium alloy in ethylene glycol solution in presence of chloride anions. Materials and corrosion, 2005,56(2):82-87
    [80]Ambat R, Aung N N, Zhou W.Studies on the influence of chloride ion and pH on the corr osion and electrochemical behavior of AZ91D magnesium alloy. Journal of Applied Electochemistry,2000,30(7):865-874
    [81]陈蕾,闫玉华,万涛等PDLLA/HA/FK506复合神经导管的制备及体外降解性能.武汉理工大学学报,2006,28(11):41-43
    [82]孙启明,胡蕴玉,马兴等.不同成分配比的聚酯/磷酸三钙复合材料体外降解行为观察.中国临床康复,2004,8(8):1436-1439
    [83]孙蕊,张丽芳,杜建等.聚乳酸/β-磷酸三钙多孔复合支架的制备及性能研究.合成化学,2004,12(6):536-539
    [84]陈立庄,高延敏,缪文桦.水在有机涂层中的传输行为.腐蚀科学与防护技术,2005,17(3):178-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700