表面改性医用碳/碳复合材料及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳/碳复合材料具有碳材料固有的优异生物相容性,同时还具有与人体骨十分接近的弹性模量、稳定的化学性质和高强质轻的特点。但是,碳/碳复合材料单独作为硬组织修复和重建材料仍存在不能与骨组织形成化学结合、长期植入生物体内易产生“黑肤效应”和与人体骨组织的颜色差别较大等不足。为了避免因碳/碳复合材料表面碳颗粒剥落造成性能下降,同时提高其生物活性,人们采用多种技术手段在其表面制备生物活性涂层。羟基磷灰石(HA)因其具有优异的骨组织相容性和生物活性而被广泛用于制备人工骨材料的表面生物活性涂层。
     本文针对医用碳/碳作为骨组织重建和修复材料使用中存在的生物惰性、与自体骨色差较大、表面碳颗粒易脱落等不足,利用等离子体喷涂、表面仿生活化、反应烧结和射频等离子体辅助化学气相沉积(RF-FECVD)等技术在碳/碳复合材料表面制备了HA、SiC和类金刚石碳(DLC)等多种生物涂层,开展了制备工艺参数优化、涂层组织结构和性能表征。同时,按照临床应用的要求,对碳/碳复合材料的成分、显微结构、硬度、摩擦学性能和生物相容性进行了检测和分析。在此基础上开发出新型C/C+HA涂层复合材料种植体。通过体内种植和体外模拟实验,并对照粘胶基碳/碳复合材料的骨内植入实验结果,利用组织病理学和X射线透视等手段,评价了HA涂层对碳/碳复合材料的生物活性改善情况和植入材料与其周围生物组织的界面结合机理。
     研究表明,采用的碳/碳复合材料所含杂质经过检测均符合植入材料的要求,具有与人体骨接近的表面显微硬度。2400℃×2h的石墨化处理不仅提高了材料的石墨化程度,而且可明显降低碳/碳复合材料中的主要杂质元素含量。力学性能测试发现,碳/碳复合材料具有典型的复合材料应变率效应,其中的增强碳纤维具有阻止裂纹萌生和扩展的作用,克服了传统单质碳材料作为生物医用材料应用时脆性大的不足,提高了使用安全性。粘胶基碳/碳复合材料具有较低的摩擦系数。作为骨替换和修复材料与生物组织组成摩擦副时,该材料因微动磨损造成的表面碳颗粒脱落现象可能较轻。该材料具有多孔的表面结构,有利于细胞在材料表面形成直接黏附、增殖和分化,进而获得高密度的新生骨组织矿化结构和较高的界面结合强度。胫骨缺损的粘胶基碳/碳复合材料髓内固定动物实验表明,实验动物愈后恢复良好,骨缺损区骨组织改建基本完成。免疫组化分析未见因材料毒性引发的排异反应,从而在生物分子水平上证实了该材料具有的良好组织相容性,是一种具有较高临床应用价值的骨缺损修复材料。
     通过等离子体喷涂HA涂层剪切实验和对热处理前、后的HA涂层表面形貌、相组成和断口形貌分析发现,经700℃×10min热处理后,HA涂层的残余应力和微观结构的非均匀性得以改善。涂层的结晶度、纯度以及涂层/基体的界面结合强度均有所提高。但HA涂层与碳/碳复合材料界面元素扩散不明显,两者界面结合仍是以物理嵌合方式为主。因而可以认为,碳/碳复合材料的粗糙度、多孔表面形态是影响与HA涂层结合的主要因素。
     对碳/碳复合材料表面等离子体喷涂HA涂层的体内外生物学性能研究发现,HA涂层在体液环境中存在α-TCP、TTCP以及HA非晶相溶解和新生矿化HA的形核并长大。该过程不仅优化了HA涂层结构,而且涂层降解产物可为新生骨组织的形成提供适宜的生理环境,具有良好的引导新骨形成的作用。实验动物国内植入实验中,通过对照纯碳/碳复合材料表面组织改建情况可知,HA涂层不仅减轻了碳颗粒脱离对周围组织的染黑,而且改变了生物惰性材料表面软组织内化成骨的组织改建模式。骨细胞通过在HA涂层降解形成的Ca、P元素富集区内分化和增殖获得新生骨组织与涂层的直接界面结合。
     对碳/碳复合材料进行的表面仿生活化处理中,通过浓硝酸预氧化处理可将碳/碳复合材料表面少量氢键转化为羟基等含氧官能团。随后,在37℃恒温模拟体液浸泡条件下,新生类骨HA分子结构中的羟基可与预氧化处理获得的碳/碳复合材料表面羟基发生缩聚反应,从而形成化学键合,以“桥连”的界面结合方式获得较高的界面结合强度,改善了碳/碳复合材料的表面生物活性。通过Si粉包覆和反应烧结在碳/碳复合材料表面改性,获得了预期的SiC改性层,有利于减轻碳/碳复合材料表面碳颗粒的脱落现象,为开展SiC作为医用碳/碳复合材料的防护层或生物过渡层研究做了初步探索。
     对采用RF-PECVD方法制备的DLC薄膜进行组织结构和性能表征发现,碳源气体种类是影响DLC薄膜材料品质的关键。随着沉积时间的延长,薄膜组成颗粒不断长大,薄膜表面粗糙度随之提高。在CH4与Ar流量比1:20,射频电压1700V,电流0.45A,沉积时间2h条件下,可获得厚度均匀、具有较高sp3碳原子含量与表面硬度、较好的表面疏水性、较低的表面摩擦系数和优良综合机械性能的DLC薄膜。在抛光的PAN基碳/碳复合材料表面制备DLC薄膜的实验结果表明:DLC薄膜在碳/碳复合材料表面形成时,存在依附材料中原有热解碳非均匀形核和真空等离子体条件下的均匀形核两种成膜机制。获得的DLC薄膜显微形貌受碳/碳复合材料的表面结构影响较大。由于DLC自身结构致密,其在减轻医用碳/碳复合材料表面碳颗粒脱离和作为其他生物活性涂层的过渡层方面将具有潜在的应用价值。
Carbon/carbon composites (C/C) are characterized by excellent biocompatibility, very similar elastic modulus to human bone and fine chemical stability. Also, they possess fine mechanical properties that are suitable for artificial bone. However, as hard tissue restoration and reconstruction materials, these materials have a few drawbacks. Firstly, carbon/carbon composites can not form chemical bond with human bone tissue due to their bioinert property. Secondly, the surface of unprocessed carbon/carbon is hydrophobic, so if it is put into the human body for a long time, the nomadic carbon will flow with the body fluid. Thirdly, the color difference between C/C and human bone is obvious. In order to avoid the decline of the mechanical properties due to the shedding of the surface carbon particles and enhance the bioactivity, people have prepared several biomedical coatings on C/C in different ways. Among these coatings, hydroxyapatite (HA) coatings have been broadly used as bioactive ones on artificial bone materials for their excellent biocompatibility and bioactivity. In the present work, HA, SiC, Diamond like carbon (DLC) coatings were prepared on the materials by means of plasma spraying, surface biomimetic activation, reaction sintering and radio frequency plasma enhanced chemical vapor deposition technologies. The technical parameters optimization of coating preparation, structure and property characterization of the coating were carried out. Meanwhile, according to the demand of clinic application, the constituent, microstructure, hardness, triological behaviors and biological behaviors of C/C were studied. By plasma spraying HA coatings on C/C, C/C+HA coated composite implants were developed and the biological behaviors were studied both in vivo and in vitro. By means of observation of histological sections and radioscopy, the biocompatibility of implant and their interface bonding mechanism with the surrounding tissues were evaluated.
     The results revealed that the impurity contents of C/C could meet the standard of artificial bone materials. What's more, the 2400℃×2h graphitizing heat treatment could significantly reduce the main impurities in C/C and this material had similar microhardness to human bone. The mechanical properties testing results indicated that C/C have strain rate sensitivity and the reinforced fibers have remarkable effects in arresting propagating cracks and plasticizing. They could satisfy the mechanical demands of bone-repairing materials. The viscose based carbon/carbon composites have low friction coefficient. When they make up the friction pairs in vivo, the carbon particle desquamation might be less. The porous surface structure of scaffold material is beneficial to the direct adhesion, proliferation and differentiation of cells. The animal experiment of viscose based C/C applied in bone defection intramedullary fixation revealed that the bone defect areas were reconstructed by new bone trabecula. Immunohistochemical observations revealed that the implants had good tissue compatibility.
     The shear tests, phase composition analysis and fracture morphology observation results showed that the 700℃×10min post heat treatment could effectively increase crystallization and purity of the coatings. Through observation and analysis by electron microprobe and scanning electron microscopy, it is concluded that the bond strength of the plasma-sprayed HA coatings on C/C is mainly determined by the interface structure and can be further improved by the post heat treatment. Meanwhile, the implantation in vivo was carried out in hybrid goats. The histological observation revealed that the osteoplaque gradually grew on the surface of the HA coatings directly and the pure C/C surface was covered by the fibrous tissues. No inflammation symptoms were detected in the bone tissue around the implants. When as-sprayed HA coatings were immerged in simulated body fluid, it began to dissolute and the nuclearation as well as the growth of the new phases occurred. This process will provide an environment that is rich of Ca and P and benefit the osteoblast growth on the coatings.
     In the process of surface biomimetic activation treatment of C/C, concentrated nitric acid pre-oxidation treatment could change the few hydrogen bonds into oxygen-containing functional groups (such as hydroxyl group) on the surface of C/C. When the samples were immerged into the simulated body fluid at 37℃, hydroxyl group polycondensations occurred between the newborn in HA molecule and carbon/carbon composites. In this way, the high bonding strength of newborn HA and C/C was obtained by chemical bond bridging and the bioactivity of C/C was improved. At the same time, SiC modified film was prepared by Si reaction sintered on C/C. This film could lighten the carbon particle desquamation and be suitable as the protective and bonding film for biomedical C/C.
     Structure and property characterizations of the RF-PECVD prepared DLC film indicated that the type of carbon source gas is the key element to the quality of DLC film. With the deposition time prolonging, the particles that compose the film are growing up, surface roughness of the film is increasing. Under the condition that the flow ratio of CH4 and Ar is 1:20, the RF voltage is 17000V, the electric current is 0.45A and the diposition time lasts for 2h, the DLC film have high content of sp3 carbon atom, uniform thickness, good surface hydrophobic property and low surface friction coefficient. The study of DLC film prepared on the polished PAN based C/C revealed that there were two DLC Film-forming mechanisms. First, the non-homogeneous nucleation of DLC occurred on the pyrolytic carbon that composed C/C. Second, the homogeneous nucleation of DLC occurred in vacuum plasma environment. The surface morphology of C/C greatly influence to the microstructure of DLC film. Due to the dense structure of DLC film, it can be used as transition layer for the top bioactive layer on C/C.
引文
1. Larry L. Hench. Third-generation biomedical materials [J]. Science,2002,295(8): 1014-1017.
    2.俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社.2000.
    3.石恩东,李传平,侯训凯.从骨折的机械固定到生物学固定[J].交通医学,2007,21(1):30-31.
    4. Witte F. Kaese V., Haferkamp H., et al. Biodegradable magnesium-hydroxyapatite metal matrix composites [J]. Biomaterials,2007,28(13):2163-2174.
    5. Buly R. L. Titanium wear debris in failed cemented total hip arthroplasty [J]. Journal of Arthroplasty,1992,7(3):315-323.
    6. Larry L. Hench. Bioceramics:From Concept to Clinic [J]. Journal of American Ceramic Society,1991,74(7):1487-1510.
    7. Larry L. Hench. Bioceramics [J]. Journal of American Ceramic Society,1998, 81(7):1705-1728.
    8. M.E. Roy, L.A. Whiteside, B. J. Katerberg, et al. Phase transformation, roughness, and microhardness of artificially aged yttria-and magnesia-stabilized zirconia femoral heads [J]. Journal of Biomedical Materials Research A:2007,83A: 1096-1102.
    9. S. Chowdhury, Yogesh k. Vohra, Jack E. Lemons, et al. Accelerating aging of Zirconia Femoral head implants:Change of surface structure and mechanical properties [J]. Journal of Biomedical Materials Research Part B,2007,81B: 486-492.
    10. http://www.halfbakery.com/idea/carbon_20fiber_20dental_20implants.
    I1. http://tornierdx.com/aboutus/press_release_19may06_CMI_FDA_Approval.php.
    12. D.H.R. Jenkins, I.W. Forster, B. Mckibbin, et al. Induction of tendon and ligament formation by carbon implants [J]. The Journal of Bone and Joint Surgery,1977,59B (1):53-57.
    13. Yu. S. Virgil'ev, I. P. Kalyagina. Carbon-carbon composite materials [J]. Inorganic Materials,2004, (40):33-49.
    14. Ning Cao, Musen Li, et al. Biomedical coatings prepared on carbon/carbon composites [J]. Science and Engineering of Composite Materials,2007, 14(3):241-249.
    15. M. Niinomi. Mechanical properties of biomedical titanium alloys. Materials Science and Engineering A,1998,243:231-236.
    16. M. Long, H.J. Rack. Titanium alloys in total joint replacement-a materials science perspective [J]. Biomaterials,1998,19:1621-1639.
    17.隋金玲.碳/碳复合材料表面等离子体喷涂HA涂层的制备工艺及相关机理研究[D].山东大学.济南.2004:6.
    18. D. Adams, D. F. Williams, J. Hill. Carbon fiber-reinforced carbon as a potential implant material [J]. Journal of Biomedical Materials Research,1978.12(1):35-42.
    19. V. Pesakova, K. Smetanajr, K. Balik, et al. Biological and biochemical properties of the carbon composite and polyethylene implant materials [J]. Journal of Materials Science:Materials in Medicine,2003,14:531-537.
    20. M. Levandowsk, J. Lomender, A. Gorecki, M. Kowals. Fixation of carbon fiber-reinforced carbon composite implanted into bone [J]. Journal of Materials Science:Materials in Medicine,1997,8:485-488.
    21. Noriyuki Tamai, Akira Myoui, Tetsuya Tomita, et al. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo [J]. Journal of Biomedical Materials Research,2002,59(1):110-117.
    22. W.W. Lu, F. Zhao, K. D. K. Lukm et al. Controllable porosity hydroxyapatite ceramics as spine cage:fabrication and properties evaluation [J]. Journal of Materials Science:Materials in Medicine,2003,14:1039-1046.
    23. Malgorzata Lewandowska-Szumiel, Janusz Komender, Jan Chlopek. Interaction between carbon composites and bone after intrabone implantation [J]. Journal of Biomeical Materials Research (Applied Biomaterials),1999,48:289-296.
    24. ONG J L, APPL EFORD M, OH S, et al. The characterization and development of bioactive hydroxyapatite coatings [J]. Journal of the Minerals, Metal and Materials Society,2006,58 (7):67-69.
    25. E. Goyenvalle, N. J. M. Guyen, E. Aguado, et al. Bilayered calcium phosphate coating to promote osseointegration of a femoral stem prosthesis [J]. Journal of Materials Science:Materials in Medicine,2003, (14):219-227.
    26. Jordan D.R., Brownstein S., Dorey A.. Fibrovascularization of porous polyethylene (Medpor) orbital implant in a rabbit model [J]. Ophthalmic Plastic and Reconstructive Surgery,2004,20(2):136-143.
    27. A. Merolli, M. Bosetti, L. Giannotta, A. W. Lioyd, et al. In vivo assessment of the osteo -integrative potential of phosphatidylserine-based coatings [J]. Journal of Materials Science:Materials in Medicine,2006, (17):789-794.
    28. Raynaud S, Champion E, Bernache-Assollant D. Calcium phosphate apatites with variable Ca/P atomic ratio Ⅱ. Calcination and sintering [J]. Biomaterials,2002,23: 1073-1080.
    29. Sunny M C, Ramseh P, Varma H K. Microstructured microspheres of hydroxyapatite bioceramic[J]. J. Mat. Sci.:Mat. Med.,2002,13:623-632.
    30. Deepak K. Pattanayak, Rajalaxmi Dash, R.C. Prasad, B.T. Rao, T.R. Rama Mohan. Synthesis and sintered properties evaluation of calcium phosphate ceramics [J]. Mat. Sci. Eng. C,2007,27:684-690.
    31. Patel N, Gibson I R, Ke S, Best S M, Bonfield W. Calcining influence on the powder propertie s of hydroxyapatite[J]. J. Mat. Sci.:Mat. Med.,2001,12:181-188.
    32. YASUSHI Suetsugu, JUNZO Tanaka. Crystal growth and structure analysis of twin-free mono- clinic hydroxyapatite [J]. Journal of Materials Science:Materials in medicine,2002,13:767-772.
    33. Samar J. Kalita, Abhilasha Bhardwaj, Himesh A. Bhatt. Nanocrystalline calcium phosphate ceramics in biomedical engineering [J]. Materials Science and Engineering C,2007,27(3):441-449
    34. Jin Ling Sui, Mu Sen Li, et al. Plasma-sprayed hydroxyapatite coatings on carbon/carbon composites [J]. Surface and Coatings Technology,2004,176: 188-192.
    35. Yu Peng Lv, Mu Sen Li, Shi Tong Li, et al. Plasma-sprayed hydroxyapatite+titania composite bond coat for hydroxyapatite coating on titanium substrate [J]. Biomaterials,2004,25:4393-4403.
    36. Hao Wang, Noam Eliaz, Zhou Xiang, et al. Early bone apposition in vivo onplasma-sprayed and electrochemically deposited hydroxyaptite coatings on titanium alloy [J]. Biomaterials,2006,27:4192-4203.
    37. Morrancho R, Ghommidh J, Constant G. New hydroxyapatite coatings obtained bychemical spray process and their biological behavior [J]. Materials Science monographs,1983,17:97.
    38. Li Ling Yan, Y Leng, Lu Tao Weng. Characterization of chemical inhomogeneity in plasma-sprayed hydroxyapatite coatings [J]. Biomaterials,2003,24(15):2585-2592.
    39.隋金玲.碳/碳复合材料表面等离子体喷涂HA涂层的制备工艺及相关机理研究[D].山东大学博士学位论文,2004:17.
    40. Tao Fu, Yong Han, Ke-Wei Xu, Jin-Yong Li, Zhong-Xiao Song. Induction of calcium phosphate on IBED-TiOx-coated carbon-carbon composite [J]. Materials Letters, 2002,57:77-81.
    41. Tao Fu, Li-Ping He, Yong Han, Ke-Wei Xu, Yiu-Wing Mai. Induction of bonelike apatite on carbon-carbon composite by sodium silicate [J]. Materials Letters,2003, 57:3500-3503
    42. Shihong Li, Zhongguang Zheng, Qing Liu Joost R. de Wijin, Klaas de Groot. Collagen/apatite coating on 3-dimensional carbon/carbon composite [J]. Journal of Biomedical Material Research,1998,40:520-529.
    43. Blazewicz M., Slosarczyk A., Chlopek J., Szaraniec B. Carbon-phosphate composites for bone surgery [J]. Tenth International Conference on Biomedical Engineering, Singapore,2000.
    44.腾伟.米乃元,李彦,郑岳华.碳纤维增强碳及其与羟基磷灰石复合种植体骨界面[J].中山医科大学学报,1999,20(1):42-44.
    45.郑岳华,腾伟,曲炳仪,米乃元.CCH种植体界面成骨作用研究[J].生物医用工程学杂志,1999,16(增刊):14-16.
    46.熊信桕,李贺军,黄剑锋,等.碳/碳复合材料表面声电沉积/碱热处理复合工艺制备羟基磷灰石生物活性涂层研究 [J].稀有金属材料与工程,2005,34(9):1489-1492.
    47.熊信柏,李贺军,黄剑锋,等.声作用功率对炭/炭复合材料表面磷酸钙生物活性陶瓷涂层的影响[J].新型炭材料,2004,19(1):33-37.
    48.马楚凡,熊信柏,李贺军,等.CVI C/C复合材料及其表面HA涂层成骨细胞体外响应行为对比研究[J].稀有金属材料与工程,2004,33(12):1274-1277.
    49. Stoch A, Brozeka A, Blazewicz S, et al. FTIR study of electrochemical deposited hydroxyapatite coatings on carbon materials [J]. Journal of Molecular Structure, 2003,289:657-653.
    50.付涛,憨勇,宋忠孝,等.碳/碳复合材料表面诱导沉积生理磷灰石层[J].无机材料学报,2002,17(1):189-192.
    51.熊信柏,李贺军,黄剑锋,等.医用碳材料对骨组织的响应及其生物活化改性[J].稀有金属材料与工程,2005,34(4):515-520.
    52.朱广燕,黄剑锋,吴建鹏,等.碳/碳复合材料表面羟基磷灰石生物涂层的研究进展[J].稀有金属材料与工程,2007,36(suppl.2):749-753.
    53. H.B. Hu, C.J. Lin, R.Hu, Y. Leng. A Study on Hybrid Bioceramic Coatings of HA/Poly (Vinyl Acetate) Co-deposited Electrochemically on Ti-6A1-4V Alloy Surface [J]. Materials Science and Engineering C,2002,20(1-2):209-214.
    54.王芳,吴霞琴,盛春,等.乙醇对电沉积磷酸钙盐涂层的影响[J].上海师范大学学报(自然科学版),2003,32(2):52-56.
    55. Y. Chen, Y.Q. Zhang, T. H. Zhang, et al. Carbon nanotube reinforced hydroxyapatite composite coatings produced through laser surface alloying [J]. Carbon,2006, 44(1):37-45.
    56. Y. W. Gu, K. A. Khor, D. Pan, P. Cheang. Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid [J]. Biomaterials,2004,25(6):3177-3185.
    57. Zafer Evis, Robert H. Doremus. Coatings of hydroxyapatite-nanosize alpha alumina composites on Ti-6A1-4V [J]. Materials Letters,2005,59(29-30):3824-3827.
    58.刘榕芳,肖秀峰,林岚云,陈古镛.水热电沉积羟基磷灰石涂层工艺条件的研究[J].高等学校化学学报,2004,25(2):304-308.
    59. C. Liu, Q. Zhao, Y. Liu, S. Wang, E. W. Abel Reduction of bacterial adhesion on modified DLC coatings [J]. Colloids and Surfaces B:Biointerfaces,2008, 61:182-187.
    60.随解和,吴冶,王志学,蔡伟,赵连城.NiTi合金表面类金刚石膜的表面特征和腐蚀行为[J].稀有金属材料与工程,2007,36(2):255-258.
    61. Devlin D, Cowie J, Carroll D. Proceeding of the 1995 ASME international mechanical engineering congress and exposition [M]. ASME, Now York, USA,1995: 84-91.
    62.杨国华.碳素材料[M].北京:中国物资出版社.1999:79-87.
    63. Lucie B, Vladim R. S., Olga K, Vera L.. Polishing and coating carbon fiber-reinforced carbon composites with a carbon-titanium layer enhances adhesionand growth of osteoblast-like MG63 cells and vascular smooth muscle cells in vitro[J]. Journal of Biomedical Materials Research,2001,54:567.
    64. Vladimir Stary, Lucie Bacakova, Jakub Hornik, et al. Bio-compatibility of the surface layer of pyrolytic graphite [J]. Thin Solid Films,2003,433:191-198.
    65. V. Pesakova, Z. Klezl, K. Balik, et al. Biomechanical and biological properties of the implant materials carbon-carbon composite covered with pyrolytic carbon [J]. Journal of Materials Science:Materials in Medicine,2000,11:793-798.
    66. Xiaodong Li, Xinnan Wang, Robert Bondokov, et al. Micro/nanoscale mechanical and tribological characterization of SiC for orthopedic applications [J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2005,72B:353-361.
    67. Aspenberg P, Anttila A, Konttinen YT, et al. Benign response to particles of diamond and SiC:bone chamber studies of new joint replacement coating materials in rabbits [J]. Biomaterials 1996,17:807-812.
    68. Kotzar G, Freas M, Abel P, et al. Evaluation of MEMS materials of construction for implantable medical devices [J]. Biomaterials,2002,23:2737-2750.
    69.熊信柏,李贺军,黄剑锋,等. 生物医用碳/碳复合材料碳化硅涂层的研究[J].西北工业大学学报,2003,21(3):356-359.
    70. Williams D.F. Biocompatibility-performance in the surgical reconstruction of man [J]. Interdisciplinary Science Reviews,1990,15(1):20-33.
    71.孙皎.生物材料和医疗器械的生物学评价[J].中国医疗器械新志,2003,27(1):1-8.
    72.姜华.医疗器械生物学评价现状与趋势[C].2006年天津生物医学工程学术年会,2006:61.
    73.JJG 347-1991,标准肖氏硬度块[S]
    74.JB/T 6624-93,柔性石墨板肖氏硬度测试方法[S]
    75. American Society for Testing Materials. ASTM F1088-04a Standard specification for beta-tricalcium phosphate for surgical implantation [S]. West Conshohocken, American:American Society for Testing Materials,2003.
    76. Tsui, Y.C., Doyle, C., Clyne, T.W. Plasma sprayed hydroxyapatite coatings on titanium substrates Part 2:optimisation of coating properties [J]. Biomaterials, 1998,19:2031-2043.
    77. Tadashi Kokubo, Hiroaki Takadama. How useful is SBF in predicting in vivo bone bioactivity? [J]. Biomaterials,2006,27(15):2907-2915.
    78.李崇俊,马伯信.黏胶丝基碳布增强C/C复合材料研究[J].宇航材料工艺,2007,2:10-16.
    79. Ruddel D E, Maloney M M, Thompson J. Y. Effect of novel filler particles on the mechanical and wear properties of dental composites [J]. Dental Materials,2002, 18(1):72-80.
    80.曹宇,李木森,马泉生等.医用碳/碳复合材料的制备及骨组织相容性研究[J].山东大学学报(工学版),2007,37(1):1-5.
    81.李崇俊,马伯信.黏胶丝基碳布增强C/C复合材料研究[J].宇航材料工艺,2007,2:10-
    82.叶军,徐可为,蔡和平等.微波高温处理的人皮质骨生物力学性质的研[J].中国医学工程学报,2004,23(1):15-20.
    83.侯向辉,陈强,喻春红等.碳/碳复合材料的生物相容性及生物应用[J].功能材料,2000,31(5):460-463.
    84.袁秦鲁,李玉龙,李贺军,等.C/C复合材料压缩破坏的应变效应研究[J].无机材料学报,2007,22(3):311-314.
    85.张亚妮,徐永东,高列义,等.基于酚醛树脂的碳/碳复合材料的高温分解过程的微结构演变[J].复合材料学报,2006,23(1):37-43.
    86.杨桂通.骨力学[M].北京:科学出版社,1989:71-74.
    87.师吕绪,李恒德,周廉.材料科学与工程手册[M].化学工业出版社,2004.
    88.戴冠戎.骨折内固定与应力遮挡效应[J].医用生物力学,2001,15(2):69-71.
    89.陈战,王家序,秦大同.填料对超高分子量聚乙烯工程材料的改性研究[J].农业机械学报,2001,32(6):114-116.
    90. Carpenter D.O. Effects of metals on the nervous system of humans and animals [J]. International Journal of Occupational Medicine & Environmental Health,2001,14 (3):209-2181.
    91.曹宁.等离子喷涂法制备碳/碳复合材料表面HA涂层技术的应用研究[D].山东大学硕士学位论文,2007:24-25.
    92. Maxian SH, Zawadsky JP, Dumn MG, Mechanical and histological evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants [J]. Journal of Biomedical Material Research,1993,27:17-28.
    93. De Bruijn JD, Bovell YP, van Blitterswijk CA. Structural arrangements at the interface between plasma sprayed calcium phosphates and bone [J]. Biomaterials, 1994,15:543-550.
    94.蔡建平,李波.等离子喷涂羟基磷灰石涂层的结合强度[J].材料保护,2000,9(33):35-37
    95. Wang B.C., Lee T M. The shear strength and the failure mode of plasma-sprayed hydroxyapatite coating bone:the effect of coating thickness [J]. Journal of Biomedical Material Research,1993,27(10):1215-27.
    96. Buma P., Gardeniers J. W., Tissue reactions around a hydroxyapatite-coated hip prostheses:case report of a retrieved specimen [J]. Journal of Arthroplasty,1995,10: 389-395.
    97. Chen J Y, Tong W D, Cao Y, Feng J M. Effect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment[J]. Journal of Biomedical Materials Research,1997,34(6):15-20.
    98. Chen YM, Lu YP, Li MS. Surface changes of plasma sprayed hydroxyapatite coatings before and after heat treatment[J]. Surface Engingeering,2006;22:462-467.
    99. Santavirta S, Takagi M, Nordsleten L, Anttila A, Lappalainen R, Konttinen YT. Biocompatibility of silicon carbide in colony formation test in vitro A promising new ceramic THR implant coating material[J]. Arch Orthop Trauma Surg 1998;118:89-91.
    100.Daculsi G., Legeros R. Z., Deudon C. Scanning and transmission electron microscopy and electron probe analysis of the interface between implants and host bone [J]. Scan. Micr.,1990,4:309-314.
    101.Daculsi G., Legeros R. Z., Heughebaert M. Formation of carbonetapatite crystals after implantation of calcium phosphate ceramics [J]. Calcif. Tissue Int. 1990,46:20-27.
    102.Gu Y. W., Khor K. A., Cheangb P. In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid [J]. Biomaterials,2003,24 (9):1603-1611.
    103.陈华,张伯勋,张巨松.柠檬酸化半水硫酸钙作为骨移植替代材料的安全性及生物相容性评价[J].中国临床康复,2005,9(34):56-58.
    104.王放,冯超,周庆海,等.新型可降解生物材料改性PPC生物安全性评价[J].中国公共卫生,2006,22(12):1508-1509.
    105.庞保军,吴铁军.临床化验一本通[M].北京:人民军医出版社,2005,1:25-33.
    106.商徵羽,贾静,陶雷.患者学看化验单[M].北京:煤炭工业出版社,1994:1-7.
    107. Evans SL, Gregson PJ. Composite technology in load-bearing orthopaedic implants[J]. Biomaterials 1998; 19:1329-1342.
    108. Nazzal A, Calderon SL, Jupiter JB, Rosenzweig J, Randolph M, Lee S. A histologic analysis of the effects of stainless steel and titanium implants adjacent to tendons: An Experimental Rabbit Study[J]. J Hand Surg 2006;31:1123-1130.
    109. Darimonta GL, Clootsb R, Heinenc E, Seidel L, Legrand R. In vivo behaviour of hydroxyapatite coatings on titanium implants:a quantitative study in the rabbit [J]. Biomaterials2002;23:2569-2575.
    110. Porter AE, Patela N, Skepper JN, Best SM, Bonfield W. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials,2003;24:4609-4620.
    111.肖秀兰,陈志刚.羟基磷灰石涂层制备技术的可行性研究[J].材料导报,2003,17(4):32-34.
    112.朱庆霞,冯青,汪和平.羟基磷灰石涂层的制备及其研究进展[J].中国陶瓷,2008,44(3):34-38.
    113.文潮,金志浩,关锦清,孙德玉,李迅,刘晓新,林英睿,唐仕英,周刚,林俊德.炸药爆轰合成纳米石墨的红外光谱研究[J].高等学校化学学报,2004,25(6):1043-1045.
    114. P. E. Fanning, M. A. Vannice. A drifts study of the formation of surface groups on carbon by oxidation[J]. Carbon,1993,31(5):721-730.
    115.李述文,范如霖.实用有机化学手册[M].上海:上海科学技术出版社,1981:559
    116. X. B. Xiong, X. R. Zeng, C. L. Zou, J. Z. Zhou. Strong bonding strength between HA and (NH4)2S2O8-treated carbon/carbon composite by hydrothermal treatment and induction heating[J]. Acta Biomaterialia,2009,5(5):1785-1790.
    117.曹宁,隋金玲,李木森,等.C/C复合材料表面等离子喷涂HA涂层在SBF中的试验[J].生物骨科材料与临床研究,2005,2(1):5-11.
    118.凌志达.Si-C-O-N系统相稳定性及制备C-SiC纤维和SiC涂层的研究[J].硅酸盐学报,1994,22(3):288-294.
    119.杨玉卫,杨坚,古宏伟,等.类金刚石膜的性能、制备及其应用[J].硅酸盐通报,2008,27(1):119-126.
    120. Won Seok Choi, Kyunghae Kim, Junsin Yi, Byungyou Hong. Diamond-like carbon protective anti-reflection coating for Si solar cell [J]. Materials Letters,2008,62: 577-580.
    121. Langping Wang, Lei Huang, Yuhang Wang, Zhiwen Xie, Xiaofeng Wang. Duplex DLC coating fabricated on the inner surface of a tube using plasma immersion ion implantation and deposition [J]. Diamond and Related Materials,2008,17:43-47.
    122.蔺增,巴德纯,杨乃恒,等.等离子体化学气相沉积类金刚石碳膜的特性及应用[J].真空,2006,43(3):14-17.
    123.祝土富,沈丽如.类金刚石膜的性能、制备与应用(一)[J].真空,2007,44(6):24-29.
    124.李河清,蔡殉,马峰.影响薄膜(涂层)硬度测试的因素[J].材料保护,2001,34(9):45-47.
    125.黄卫东,詹如娟.表面波等离子体沉积类金刚石膜结构的Raman光谱和XPS分析[J].光谱学与光谱分析,2003,23(3):215-415.
    126. Namwoong Paik. Raman and XPS studies of DLC films prepared by a magnetron sputter-type negative ion source [J]. Surface and Coatings Technology,2004, 200:2170-2174.
    127.马天宝,胡元中,王慧.基于原子运动模型的类金刚石薄膜生长机理研究[J].物理学报,2007,56(1):480-486.
    128.王恩哥.薄膜生长中的表面动力学(Ⅰ)[J].物理学进展,2003,23(1):1-61.
    129.王恩哥.薄膜生长中的表面动力学(Ⅱ)[J].物理学进展,2003,23(2):145-191.
    130. Y. Lifshitz, S. R. Kasi, J. W. Rabalasis. Subplantation model for film growth from hyperthermal species:application to diamond [J]. Physical Review Letters,1989, 62(11):1290-1293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700