介孔磷灰石微球和涂层的制备及形成机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷灰石是人体中骨、牙齿等硬组织的主要无机成分,具有优良的生物相容性、生物活性、骨传导性、无毒性和非炎性等优点,因此人工合成的磷灰石粉末或者涂层被广泛的应用于骨填充材料和替代材料。最近,研究表明材料的生物活性不仅与材料的化学组成有关,还与材料的孔径、孔容、孔结构等显微结构有关。生物材料的介孔结构能促进细胞黏附、生物代谢物的吸收,控制材料的再吸收速度使其与骨组织修复速度相匹配。本文提出了化学浸泡法、类乳液法、电泳沉积-化学浸泡法,并制备了介孔磷灰石微球和涂层。采用XRD、FTIR、SEM、TEM、XPS、BET、TG-DSC等分析手段表征了介孔磷灰石微球和涂层的形貌、物相、介孔结构和体外磷灰石形成活性,探讨了介孔磷灰石微球和涂层的形成机理。
     热力学计算表明贝壳粉末和碳酸钙粉末经磷酸缓冲溶液(PBS溶液)处理后在低温下能够转化成磷酸钙盐。磷灰石在热力学上比其它磷酸钙盐更稳定,但是转化产物受PBS溶液的pH值控制。如果溶液pH值保持在6.0或者6.4,则转化产物为磷酸八钙(OCP)和磷酸氢钙(DCPD),如果溶液pH值保持在7.4或者8.0,则转化产物为磷灰石。磷灰石的形成机理是溶解-沉淀反应,即贝壳粉末和碳酸钙粉末浸泡到PBS溶液后,小颗粒率先溶解,游离出的钙离子与溶液中磷酸根离子反应生成磷灰石并沉积在大颗粒表面。提高磷灰石转化率的方法包括减少粒径、延长反应时间和增大PBS溶液浓度等。
     碳酸钠溶液与含贝壳有机质的氯化钙溶液通过沉淀反应制备了碳酸钙微球。采用化学浸泡法和类乳液法将碳酸钙微球转化成低结晶度的缺钙型介孔磷灰石微球。磷灰石晶格中的部分PO_4~(3-)离子被CO_3~(2-)离子和HPO_4~(2-)离子取代。采用化学浸泡制备的介孔磷灰石微球的形貌不规则,粒径分布不均匀,其吸附-脱附等温线为IV型,含有H_3型迟滞环,对应的BJH孔径分布曲线为单峰结构,峰位置位于3.9 nm。在Na_2HPO_4/十六烷基三甲基溴化铵(CTAB)/环己烷/正丁醇乳液体系中,采用类乳液法制备了单分散的介孔磷灰石微球,粒径约5μm,其吸附-脱附等温线也为IV型,含有H_3型迟滞环,对应的BJH孔径分布曲线为双峰结构,峰位置位于3.9 nm和9.0 nm。延长反应时间和提高反应温度会导致孔径为9.0 nm的介孔消失。磷灰石微球的介孔结构形成原因取决于磷灰石纳米粒子的堆积,通过直接或者以CTAB胶束为模板堆积形成孔径分别为3.9 nm和9.0 nm的介孔。
     采用电泳沉积-化学浸泡两步法制备了介孔磷灰石涂层,即首先将贝壳粉末或者碳酸钙粉末电泳沉积到Ti6Al4V基体表面形成贝壳涂层或碳酸钙涂层,然后经PBS溶液处理转化成介孔磷灰石涂层。贝壳涂层或者碳酸钙涂层在PBS溶液中浸泡1天后转化成具有片状形貌的介孔磷灰石涂层,孔径分布在3.9 nm。当浸泡时间延长到9天,涂层形貌由片状转化成海绵状,而且介孔结构部分消失。Ti6Al4V基体经H_3PO4/HF溶液处理后,表面形成一层无定形的TiO_x,同时吸附少量的PO_4~(3-)离子。在贝壳涂层转化成磷灰石涂层过程中,TiO_x和PO_4~(3-)离子能够促进磷灰石的形成,导致TiO_x氧化层中存在Ca、P、Ti的梯度分布。模拟体液(SBF)浸泡实验表明:介孔磷灰石涂层由于低Ca/P比、介孔结构和贝壳有机质,因此浸泡到SBF溶液后涂层表面能够快速沉积上一层磷灰石。
     采用电泳沉积-化学浸泡两步法制备了磁性介孔磷灰石涂层,即首先将CaCO_3/Fe_3O_4粉末电泳沉积到Ti6Al4V基体表面形成CaCO_3/Fe_3O_4涂层,然后经PBS溶液处理转化成磁性介孔磷灰石涂层。将CaCO_3/Fe_3O_4涂层浸泡到PBS溶液后,片状磷灰石沉积在CaCO_3/Fe_3O_4颗粒表面。Fe_3O_4纳米粒子能够加速碳酸钙转化成磷灰石,磁性碳酸钙涂层在PBS溶液中浸泡1天后残留的碳酸钙只有9.1%,低于无磁性碳酸钙涂层的41.0%。磁性介孔磷灰石涂层的孔径为3.9 nm,即使浸泡时间延长到9天介孔不消失。SBF浸泡实验表明Fe_3O_4纳米粒子能够提高磷灰石涂层的体外磷灰石形成活性。
Apatite is a major inorganic component of the hard tissues of human being, and the corresponding synthetic apatite particles and coatings have been used respectively as bone cavity filling materials and artificial bone graft substitutes because of their biocompatibility, bioactivity, osteoconductivity, nontoxicity, and noninflammatory. Recently, the studies have shown that the bone-forming bioactivity of biomaterials is associated not only with their chemical composition, but also with their microstructures, such as pore size, pore volume and pore structure. Mesoporous structure of biomaterials can promote cell adhesion, adsorption of biologic metabolites, and resorbability at controlled rates to match that of tissue repair. In this work, we proposed chemical immersion method, emulsion-like method, and electrophoretic depositon-chemical immersion method, which were used to prepare mesoporous apatite microspheres and coatings. The morphologies, phases, mesoporous structure and formation mechanism of meosporous apatite microspheres and coatings were studied by means of XRD, FTIR, SEM, TEM, XPS, BET, and TG-DSC
     Thermodynamic calculation has shown that nacre powders and calcium carbonate powders can be converted to calcium phosphate phases at low temperatures after soaking in phosphate buffer solutions (PBS). Although apatite crystals are stabler thermodynamically than other calcium phosphate phases, the conversion products are determined by the pH values of PBS. If the pH value of PBS is kept at 6.0 or 6.4, nacre powders or calcium carbonate powders are converted mainly to octacalcium phosphate (OCP) or dicalcium phosphate dehydrate (DCPD). If the pH value of PBS is kept at 7.4 or 8.0, the main products are apatite. The formation mechanism of apatite is dissolution-precipitaion reaction. After soaking nacre powders and calcium carbonate powders in PBS, calcium ions are dissolved firstly from the smaller particles, react with PO43? ions to form apatite crystals, and precipitate them on the large particle surfaces. Decreasing particle size, prolonging reaction time, and increasing the concentrations of PBS can improve the conversion percentages of apatite.
     Calcium carbonate microspheres were prepared by mixing Na2CO3 solution and CaCl_2 solution with nacre organic materials. Both chemical immersion method and emulsion-like method were used to convert cacium carbonate microspheres to mesoporous apatite microspheres with low crystalinity. The PO_4~(3-) ions in apatite lattice are substituted partially by CO_3~(2-) and HPO42- ions. The mesoporous apatite microspheres obtained by chemical immersion method have irregular shape, and the nitrogen adsorption-desorption isotherms are identified as type IV isotherms with type H_3 hysteresis loops. The mesoporous structure is unimodal with the pore size of 3.9 nm. However, the mesoporous apatite microspheres converted from calcium carbonate microspheres in a cetyltrimethylammonium bromide (CTAB)/Na2HPO4 solution/cyclohexane/n- butanol emulsion system are monodispersed with the particle size of ~5μm. The mesoprous structure is bimodal with the pore size of 3.9 nm and 9.0 nm. With increasing the reaction time and improving the temperature, the bigger mesopores begin to disappear. The formation mechanism of mesopores with the pore size of 3.9 nm is attributed to the aggregation of nanoparticles, and that of 9.0 nm is attributed to the CTAB micelles served as templates.
     Mesoporous apatite coatings were fabricated by electrophoretic depositon- chemical immersion method. This method consists of a two-stage application route: the deposition of nacre powders or CaCO3 powders on Ti6Al4V substrates by electrophoresis, and the conversion of nacre coatings or CaCO3 coatings to apatite coating by treatment with PBS. After soaking nacre coatings or CaCO3 coatings in PBS for 1 day, plate-like apatite coatings with mesoporous structure are formed. The pore sizes are distributed around 3.9 nm. After soaking for 9 days, the plate-like structure is turned into a sponge-like structure, and the mesopores partially disappear. A TiO_x layer and PO_4~(3-) ions appear on the Ti6Al4V substrate surfaces by pretreatment with a H_3PO4/HF solution. The TiO_x and PO_4~(3-) ions can induce the formation of apatite crystals, resulting in a composition gradient in the TiO_x layer. Simulated body fluid (SBF) immersion tests reveal that the calcium deficiencies in apatite lattice, the mesoporous structure, and nacre organic materials can improve the in vitro apatite forming ability of the mesoporous apatite coatings.
     Magnetic mesoporous apatite coatings were fabricated by electrophoretic deposition of CaCO_3/Fe_3O_4 particles on Ti6Al4V substrates followed by treatment with PBS at 37°C. After soaking CaCO_3/Fe_3O_4 coatings in PBS, apatite nucleates heterogeneously on the surfaces of CaCO_3/Fe_3O_4 particles and forms a plate-like structure. Fe_3O_4 increases the velocity of nucleus formation of apatite. After soaking for 1 day, the percentage of unreacted calcium carbonate is 9.1%, lower than the 41.0% for apatite coatings without magnetism. The pore size of mesopores is distributed around 3.9 nm, and the mesopores do not disappear after treatment with PBS for 9 days. SBF immersion tests reveal that Fe_3O_4 improves the in vitro apatite forming ability of biocoatings.
引文
1奚廷斐.生物材料进展(一).生物医学工程与临床, 2004, 8(3):184~189
    2俞耀庭,张兴栋.生物医用材料.天津大学出版社, 2000:1
    3阮建明,邹俭鹏,黄伯云.生物材料学.科学出版社, 2004:1~2
    4 E. Hayek, J. Lechleitner, W. B?hler. Hydrothermalsynthese von hydroxylapatit. Angewandte Chemie. 1955, 67(12): 326
    5 D. M. Roy, S. K. Linnehan. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature. 1974,247: 220~222
    6 R. T. Chiroff, E. W. White, J. N. Weber, D.M. Roy. Tissue ingrowth of replamineform implants. Journal of Biomedical Materials Research. 1975, 9(4): 29~45
    7 L. L. Hench. Bioceramics. Journal of the American Ceramic Society. 1998,81 (7): 1705~1728
    8 W. Suchanek, M. Yoshimura. Processing and properties of hydroxyapatite-based Biomaterials for use as hard tissue replacement implants. Journal of Materials Research. 1998,13 (1): 94~117
    9 J. D. Hartgerink, E. Beniash, S. I. Stupp. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001, 294 (5547): 1684~1688
    10 P. S. Boone, M. C. Zimmerman, E. Gutteling, C. K. Lee, N. Langrana, J. R. Parsons. Bone attachment to hydroxyapatite coated polymers. Journal of Biomedical Materials Research. 1989,23(2): 183~199
    11 C. A. van Blitterswijk, S. C. Hesseling, J. J. Grote, H. K. Koerten, K. de Groot. Biocompatibility of hydroxyapatite ceramic. A study of retrieved human middle ear implants. Journal of Biomedical Materials Research. 1990, 24(4): 433~453
    12 A. S. Posner. Structure of bone apatite surfaces. Journal of Biomedical Materials Research. 1983, 19(3): 241~250
    13 K.S.W. Sing. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry.1982,54: 2201~2218
    14 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli. J. S. Beck. Orderedmesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992, 359: 710~712
    15 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society. 1992, 114: 10834~10843
    16 X. Wang, R. Liu, M. M. Waje, Z. Chen, Y. Yan, K. N. Bozhilov, P. Feng. Sulfonated ordered mesoporous carbon as a stable and highly active protonic acid catalyst. Chemistry of Materials. 2007, 19: 2395~2397
    17 C. M. Crudden, M. Sateesh, R. Lewis. Mercaptopropyl-modified mesoporous silica: A remarkable support for the preparation of a reusable, heterogeneous palladium catalyst for coupling reactions. Journal of the American Chemical Society. 2005, 127:10045~10050
    18 L. Zhou, X. Liu, Y. Sun, J. Li, Y. Zhou. Methane Sorption in Ordered Mesoporous silica SBA-15 in the presence of water. Journal of Physical Chemistry B. 2005, 109: 22710~22714
    19 T. A. Ostomel, Q. Shi, C. K. Tsung, H. Liang, G. D. Stucky. Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity. Small. 2006, 2: 1261~1265
    20 G. De, R. K?hn, G. Xomeritakis, C. J. Brinker. Nanocrystalline mesoporous palladium activated tin oxide thin films as room-temperature hydrogen gas sensors. Chemical Communications. 2007, 1840~1842
    21 S. Y. Choi, M. Mamak, G. von Freymann, N. Chopra, G. A. Ozin. Mesoporous brag stack color tunable sensors. Nano Letters. 2006, 6: 2456~2461
    22 M. Vallet-Regí, F. Balas, D. Arcos. Mesoporous materials for drug delivery. Angewandte Chemie-International Edition. 2007, 46: 7548~7558
    23 I. I. Slowing, B. G. Trewyn, S. Giri, V. S. Y. Lin. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Advanced Functional Materials. 2007, 17: 1225~1236
    24 Q. H. Shi, J. F. Wang, J. P. Zhang, J. Fan, G. D. Stucky. Rapid-setting, mesoporous, bioactive glass cements that induce accelerated in vitro apatiteformation. Advanced Materials. 2006, 18(8):1038~1042
    25 P. Sepulveda, J. R. Jones, L. L. Hench. Bioactive sol-gel foams for tissue repair. Journal of Biomedical Materials Research. 2002,59(2):340~348
    26 J. Yao, W. Tjandra, Y. Z. Chen, K. C. Tam, J. Ma, B. Soh. Hydroxyapatite nanostructure material derived using cationic surfactant as a template. Journal of Materials Chemistry. 2003,13:3053~3057
    27 S. M. Schmidt, J. McDonald, E. T. Pineda, A. M. Verwilst, Y. Chen, R. Josephs, A. E. Ostafin. Surfactant based assembly of mesoporous patterned calcium phosphate micron-sized rods. Microporous & Mesoporous Materials. 2006,94:330~338
    28 Y. F. Zhao, J. Ma. Triblock co-polymer templating synthesis of mesostructured hydroxyapatite. Microporous & Mesoporous Materials. 2005,87:110~117
    29刘超.模板法制备长程有序层状羟基磷灰石及其海藻酸盐基复合微球的研究.天津大学博士学位论文. 2004:7~8
    30 X. Yan, C. Yu, X. Zhou, J. Tang, D. Zhao. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angewandte Chemie-International Edition. 2004,43(44):5980~5984
    31 W. Xia, J. Chang. Well-ordered mesoporous bioactive glasses (MBG): A promising bioactive drug delivery system. Journal of Controlled Release. 2006,110: 522~530
    32崔福斋,冯庆玲.生物材料学.清华大学出版社, 2004: 210~218
    33 X. X. Yan, X. H. Huang, C. Z. Yu, H. X. Deng, Y. Wang, Z. D. Zhang, S. Z. Qiaoc, G. Q. Lu, D. Y. Zhao. The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials. 2006, 27(18):3396~3403
    34 S. Y. Ni, J. Chang, L. Chou. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. Journal of Biomedical Materials Research Part A. 2006,76A(1):196~205
    35 Y. K. Jun, W. H. Kim, O. K. Kweon, S. H. Hong. The fabrication and biochemical evaluation of alumina reinforced calcium phosphate porous implants. Biomaterials. 2003,24 (21):3731~3739
    36 L. L. Hench. Sol-gel materials for bioceramic applications. Current Opinion in Colloid & Interfaces Science. 1997, 2:604~610
    37 N. Okii, S. Nishimura, K. Kurisu, Y. Takeshima, T. Uozumi. In vivo histological changes occurring in hydroxyapatite cranial reconstruction-Case report. Neurologia Medico-Chirurgica. 2001, 41:100~104
    38 T. Peltola, M. Jokinen, H. Rahiala, E. Levanen, J. B. Rosenholm, I. Kangasniemi, A. Yli-Urpo. Calcium phosphate formation on porous sol-gel-derived SiO2 and CaO-P2O5-SiO2 substrates in vitro. Journal of Biomedical Materials Research. 1999, 44(1):12~21
    39 I. Izquierdo-Barbo, D. Arcos, Y. Sakamoto, O. Terasaki, A. Lopez-Noriega, M. Vallet-Regi. High-performance mesoporous bioceramics mimicking bone mineralization. Chemistry of Materials. 2008, 20: 3191~3198
    40 D. Jagadeesan, C. Deepak, K. Siva, M. S. Inamdar, M. Eswaramoorthy. Carbon spheres assisted synthesis of porous bioactive glass containing hydroxycarbonate apatite nanocrystals: a material with high in vitro bioactivity. Journal of Physical Chemistry C. 2008, 112(19):7379~7384
    41 T. P. Xiu, Q. Liu, J. C. Wang. Novel mesoporous CaO-B2O3-SiO2 glasses with in vitro bioactivity. Chemistry Letters. 2007, 36(6): 730~731
    42 I. Izquierdo-Barba, L. Ruiz-González, J. C. Doadrio, J. M. González-Calbet, M. Vallet-Regí. Tissue regeneration: A new property of mesoporous materials. Solid State Sciences. 2005, 7(8): 983~989
    43 J. Andersson, S. Areva, B. Spliethoff, M. Linden. Sol-gel synthesis of a multifunctional, hierarchically porous silica/apatite composite. Biomaterials. 2005,26(34): 6827~6835
    44 M. Vallet-Regi. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry-A European Journal. 2006,12(23): 5934~5943
    45 J. Andersson, E. Johannessen, S. Areva, N. Baccile, T. Azais, M. Linden. Physical properties and in vitro bioactivity of hierarchical porous silica-HAP composites. Journal of Materials Chemistry. 2007, 17(5): 463~468
    46 M. Vallet-Regi, F. Balas, D. Arcos. Mesoporous materials for drug delivery. Angewandte Chemie-International Edition. 2007,46(40): 7548~7558
    47 Y. F. Zhao, S. C. J. Loo, Y. Z. Chen, F. Y. C. Boey, J. Ma. In situ SAXRD study of sol-gel induced well-ordered mesoporous bioglasses for drug delivery Journal of Biomedical Materials Research Part A. 2008, 85A(4):1032~1042
    48 P. Yang, Z. Quan, C. Li, X. Kang, H. Lian, J. Lin. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials. 2008, 29(32): 4341~4347
    49 S. Padilla, S. Sanchez-Salcedo, M. Vallet-Regi. Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering. Journal of Biomedical Materials Research Part A. 2007,81A (1): 224~232
    50 G. B. Wei, Q. M. Jin, W. V. Giannobile, P. X. Ma. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials. 2007,28 (12): 2087~2096
    51 C. Vitale-Brovarone, E. Verné, L. Robiglio, P. Appendino, F. Bassi, G. Martinasso, G. Muzio, R. Canuto. Development of glass-ceramic scaffolds for bone tissue engineering: Characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomaterialia. 2007,3 (2):199~208
    52陈永楠,马楚凡,赵康.孔结构不同的两种多孔羟基磷灰石陶瓷的性能比较研究.硅酸盐通报. 2006, 1: 66~68,80
    53 T. Mygind, M. Stiehler, A. Baatrup, H. Li, X. Zoua, A. Flyvbjerg, M. Kassem, C. Bunger. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials. 2007, 28 (6): 1036~1047
    54 P. Ylinen, M. Raekallio, R. Taurio, K. Vihtonen, S. Vainionpaa, E. K. Partio, P. Tormala, P. Rokkanen. Coralline hydroxyapatite reinforced with polylactide fibres in lumbar interbody implantation. Journal of Materials Science-Materials in Medicine. 2005, 16 (4): 325~331
    55 Y. Xu, D. Z. Wang, L. Yang, H. G. Tang. Hydrothermal conversion of coral into hydroxyapatite. Materials Characterization. 2001,47 (2): 83~87
    56 M. A. Araiza, J. Gómez-Morales, R. R. Clemente, V. M. Casta?o. Conversion of the echinoderm Mellita eduardobarrosoi calcite skeleton into porous hydroxyapatite by treatment with phosphated boiling solutions. Journal of Materials Synthesis and Processing. 1999,7 (4): 211~219
    57 B. Ben-Nissan, A. Milev, R. Vago. Morphology of sol-gel derived nano-coated coralline hydroxyapatite. Biomaterials. 2004,25 (20): 4971~4975
    58 B. Ben-Nissan, A. Milev, D. Green, M. Cinway, R. Vago, W. R. Walsh.Mechanical properties and characterisation of sol-gel coated coralline hydroxyapatite. Key Engineering Materials, 2002,218-2: 379~382
    59 C. Klein, K. de Groot, W. Chen, Y. Li, X. Zhang. Osseous Substance Formation Induced in Porous Calcium-phosphate Ceramics in Soft-tissues. Biomaterials. 1994,15(1): 31~34
    60 X. Miao, Y. Hu, J. Liu, A. P. Wong. Porous calcium phosphate ceramics prepared by coating polyurethane foams with calcium phosphate cements. Materials Letters. 2004,58 (3-4): 397~402
    61姚秀敏,谭寿洪,江东亮.孔径可控的多孔羟基磷灰石的制备工艺研究.功能材料与器件学报. 2000,6(2) :153~156
    62 D. M. Liu. Fabrication and characterization of porous hydroxyapatite granules. Biomaterials. 1996, 17(20):1955~1957
    63赵俊亮,付涛,徐可为.有机泡沫浸渍法制备多孔羟基磷灰石复相陶瓷.中国陶瓷. 2003, 39 (1): 4~7
    64 T. Kokubo, H. M. Kim, M. Kawashita. Novel bioactive materials with different mechanical properties. Biomaterials. 2003,24 (13): 2161~2175
    65 M. Wei, A. J. Ruys, B. K. Milthorpe, C. C. Sorrell. Solution ripening of hydroxyapatite nanoparticles: Effects on electrophoretic deposition. Journal of Biomedical Materials Research. 1999,45 (1): 11~19
    66 X. Nie, A. Leyland, A. Matthews. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surface & Coatings Technology. 2000,125 (1-3): 407~414
    67 Y. C. Tsui, C. Doyle, T. W. Clyne. Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels. Biomaterials. 1998,19 (22): 2015~2029
    68 L. M. Sun, C. C. Berndt, K. A. Gross, A. Kucuk. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. Journal of Biomedical Materials Research. 2001,58(5): 570~592
    69赵铭,郑启新,郭晓东,全大萍,郝杰,王运涛.可降解生物材料聚乳酸-羟基乙酸仿生矿化的实验研究.中国生物医学工程学报. 2005,24(2): 145~149
    70肖秀峰.水热电化学沉积羟基磷灰石涂层的工艺、结构和性能研究.燕山大学博士论文. 2005:11~13
    71 T. V. Kovalchuk, H. Sfihi, A. S. Korchev, A. S. Kovalenko, V. G. Il’in,? V. N. Zaitsev, J. Fraissard. Synthesis, structure, and acidic properties of MCM-41 functionalized with phosphate and titanium phosphate groups. Journal of Physical Chemistry B. 2005, 109: 13948~13956
    72 C. Z. Chen, Q. Dong, H. J. Yu, X. B. Wang, D. G. Wang. Microstructure of porous TiO2 coating on pure Ti by micro-arc oxidation. Advanced Engineering Materials. 2006,8(8): 754~759
    73 Y. J. Wang, K. H. Nan, X. F. Chen, C. Y. Ning, L. Y. Wang, N. R. Zhao. Characterization of bioactive ceramic coatings prepared on titanium implants by micro-arc oxidation. Rare Metals. 2006,25 (1): 84~89
    74 S. H. Oh, R. R. Fin?nes, C. Daraio, L. H. Chen, S. Jin. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials. 2005,26 (24): 4938~4943
    75 B. S. Ng, I. Annergren, A. M. Soutar, K.A. Khor. Characterisation of a duplex TiO2/CaP coating on Ti6Al4V for hard tissue replacement. Biomaterials. 2005,26: 1087~1095
    76 F. Li , Q. L. Feng, F. Z. Cui , H. D. Li, H. Schubert. A simple biomimetic method for calcium phosphate coating. Surface & Coatings Technology. 2002,154: 88~93
    77 B. Zhao, H. Hu, S. K. Mandal, R. C. Haddon. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chemistry of Materials. 2005,17(12): 3235~3241
    78张敏,崔俊锋,尹玉姬,姚康德.磷酸化壳聚糖膜的仿生复合修饰.高等学校化学学报. 2005,26(3): 550~553
    79项艳凡,王迎军,邓飞龙.钛表面仿生矿化及其对成骨细胞行为的影响.材料科学与工程学报. 2005,23(2):239~243
    80 M. Ogiso. Adhesive improvement of the mechanical properties of a dense HA-cemented Ti dental implant. Journal of Biomedical Materials Research. 1996, 30(1):109~116
    81王迎军,宁成云,赵子衷,李尚周,刘正义,卢国辉. HA生物活性陶瓷涂层的爆炸喷涂与等离子喷涂.华南理工大学学报(自然科学版). 1998, 26(7):124~128
    82郭面焕,沙世军,徐庆鸿,姚滨南,费勤勇. TiO2添加剂对等离子喷涂生物涂层HAP结合强度的影响.焊接学报. 2000,21(4):17~20
    83 K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, A. Agarwal. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials. 2007,28 (4): 618~624
    84 S. W. Ha, A. Gisep, J. Mayer, E. Wintermantel, H. Gruner, M. Wieland. Topographical characterization and microstructural interface analysis of vacuum-plasma-sprayed titanium and hydroxyapatite coatings on carbon fibre-reinforced poly(etheretherketone). Journal of Materials Science- Materials in Medicine. 1997,8 (12): 891~896
    85隋金玲,李木森,吕宇鹏,王峰.粉末粒度对碳/碳基体上羟基磷灰石涂层的影响.机械工程材料. 2005,29(2):21~23,26
    86付涛,张玉梅,憨勇,徐可为.等离子喷涂/水热合成HA涂层的制备和模拟体液及体内实验.材料科学与工程. 2001,19(2)22~25
    87蔡建平,李波.等离子喷涂羟基磷灰石涂层的结合强度.材料保护. 2000, 33(9): 35~38
    88吕宇鹏,李士同,朱瑞富,李木森,雷廷权.等离子喷涂羟基磷灰石涂层的晶化及其结构特征.无机化学学报. 2002,18(8):844~848
    89 K. A. Thomas, J. F. Kay, S. D. Cook, M. Jarcho. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. Journal of Biomedical Materials Research. 2004, 21:1395~1414
    90 R. Hu, C. J. Lin, H. Y. Shi. A novel ordered nano hydroxyapatite coating electrochemically deposited on titanium substrate. Journal of Biomedical Materials Research Part A. 2007, 80A (3): 687~692
    91 D. Stojanovic, B. Jokic, Dj. Veljovic, R. Petrovic, P. S. Uskokovic, Dj. Janackovic. Bioactive glass-apatite composite coating for titanium implant synthesized by electrophoretic deposition. Journal of the European Ceramic Society. 2007,27(2-3): 1595~1599
    92 M. A. Lopez-Heredia, P. Weiss, P. Layrolle. An electrodeposition method of calcium phosphate coatings on titanium alloy. Journal of Materials Science-Materials in Medicine. 2007,18 (2): 381~390
    93 J. W. Wang, A. van Apeldoorn, K. de Groot. Electrolytic deposition of calcium phosphate/chitosan coating on titanium alloy: Growth kinetics and influence of current density, acetic acid, and chitosan. Journal of Biomedical Materials Research Part A. 2006, 76A (3): 503~511
    94 N. Dumelié, H. Benhayoune, C. Rousse-Bertrand, S. Bouthors, A. Perchet, L. Wortham, J. Douglade, D. Laurent-Maquin, G. Balossier. Characterization of electrodeposited calcium phosphate coatings by complementary scanning electron microscopy and scanning-transmission electron microscopy associated to X-ray microanalysis. Thin Solid Films. 2005,492(1-2): 131~139
    95黄立业,李浩,付涛,徐可为. HA涂层的电结晶-水热合成及其附着性与结构稳定性探讨.稀有金属材料与工程. 1999,28(3):140~143
    96张建民,林昌健,冯祖德,田昭武.电沉积磷酸钙生物活性陶瓷.物理化学学报. 1998, 14(8):698~703
    97 A. Kar, K. S. Raja, M. Misra. Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surface & Coatings Technology. 2006,201 (6): 3723~3731
    98黄立业,徐可为.纳米针状羟基磷灰石涂层的制备及其性能的研究.硅酸盐学报, 1999, 27(3):351~356
    99庄燕燕,胡仁,时海燕,胡皓冰,郭明,林昌健.钛表面电化学刻蚀及HAP/Ti复合生物材料的研究.厦门大学学报(自然科学版). 2005, 44(2): 230~233
    100 H. Tsuchiya, J. M. Macak, L. Muller, J. Kunze, F. Muller, P. Greil, S. Virtanen, P. Schmuki. Hydroxyapatite growth on anodic TiO2 nanotubes. Journal of Biomedical Materials Research Part A. 2006,77A (3): 534~541
    101刘芳,刘咏,周科朝,黄伯云.电沉积-水热合成法制备的生物陶瓷涂层与基体界面结合强度的研究.稀有金属材料与工程. 2004,33(1):83~86
    102 X. Pang, I. Zhitomirsky. Electrodeposition of composite hydroxyapatite- chitosan films. Materials Chemistry and Physics. 2005,94 (2-3): 245~251
    103 R. Hu, H. B. Hu, C. J. Lin. Preparation and characterization for a co-deposited hybrid coating of calcium phosphate/chitosan on Ti alloy surface. Chemical Journal of Chinese Universities-Chinese. 2002,23 (11): 2142~2146
    104 L. Besra, M. Liu. A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science. 2007,52 (1): 1~61
    105黄紫洋,刘榕芳,肖秀峰.电泳沉积羟基磷灰石生物陶瓷涂层的研究进展.硅酸盐学报, 2003, 31(6): 591~597
    106 M. Hechtl, K. F. Renk, C. Reimann, O. Waldmann. Preparation of (Tl,Pb)-1223 multilayer tapes by use of an electrophoretic technique. Superconductor Science & Technology. 1998,11 (2): 227~230
    107 R. Fischer, E. Fischer, D. De Portu, E. Roncari. Preparation of ceramic micro-laminate by electrophoresis in aqueous system. Journal of Materials Science Letter. 1995;14(1):25~27
    108 C. You, D. L. Jiang, S. H. Tan. SiC/TiC laminated structure shaped by electrophoretic deposition. Ceramics International. 2004,30:813~815
    109 R. C. Bailey, K. J. Stevenson, J. T. Hupp. Assembly of micropatterned colloidal gold thin film via microtransfer molding and electrophoretic deposition. Advanced Materials. 2002,12(24):1930~1934
    110 B. Ferrari, I. Santacruz, M. I. Nieto, R. Moreno. Thermogelation of Al2O3/Y-TZP films produced by electrophoretic co-deposition. Journal of the European Ceramic Society. 2004,24:3073~3080
    111 P. Mondragon-Cortez, G. Vargas-Gutierrez. Selective deposition of hydroxyapatite nanoparticles by electrophoretic deposition. Advanced Engineering Materials. 2003,5(11):812~815
    112 A. Stoch, A. Brozek, G. Kmita, J. Stoch, W. Jastrzebski, A. Rakowska. Electrophoretic coating of hydroxyapatite on titanium implants. Journal of Molecular Structure. 2001,596: 191~200
    113 L. A. de Sena, M. C. de Andrade, A. M. Rossi, G. de Almeida Soares. Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing. Journal of Biomedical Materials Research. 2002,60(1): 1~7
    114 I. Mobasherpour, M. Soulati Heshajin, A. Kazemzadeh, M. Zakeri. Synthesis of nanocrystalline hydroxyapatite by using precipitation method. Journal of Alloys and Compounds. 2007,430 (1-2): 330~333
    115 I. Bogdanoviciene, A. Beganskiene, K. Tonsuaadu, J. Glaser, H. J. Meyer, A.Kareiva. Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol-gel processing. Materials Research Bulletin. 2006, 41 (9): 1754~1762
    116 X. Y. Guo, P. Xiao. Effects of solvents on properties of nanocrystalline hydroxyapatite produced from hydrothermal process. Journal of the European Ceramic Society. 2006,26 (15): 3383~3391
    117黄紫洋,刘榕芳,钟惠妹,简秋兰.分散介质对电泳沉积生物陶瓷涂层的影响.福建师范大学学报(自然科学版). 2004,20(1):55~58
    118 P. Sarkar, D. De, H. Rho. Synthesis and microstructural manipulation of ceramics by electrophoretic deposition. Journal of Materials Science. 2004,39:819~23
    119陈菲,林昌健,王周成.钛基表面纳米羟基磷灰石涂层的电泳沉积.电化学. 2005,11(1):67~71
    120马楚凡,李冬梅,李贺军,蒋百灵,李佐臣,王立新.微弧氧化和电泳沉积复合制备羟基磷灰石/TiO2复合涂层及其生物学特性.硅酸盐学报. 2005, 33(3):323~329
    121焦玉恒,陈晓明.溶液中钙离子对玻璃颗粒电泳沉积的影响.硅酸盐学报, 2004, 32(7):832~836
    122 C. Wang, J. Ma, W. Cheng, R.F. Zhang. Thick hydroxyapatite coatings by electrophoretic deposition. Materials Letters. 2002,57: 99~105
    123 K. Yamashita, E. Yonehara, X. Ding, M. Nagai, T. Umegaki, M. Matsuda. Electrophoretic coating of multilayered apatite composite on alumina ceramics. Journal of Biomedical Materials Research. 1998, 43 (1): 46~53
    124 R. N. Basu, C. A. Randall, M. J. Mayo. Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition. Journal of the American Ceramic Society. 2001,84(1):33~40
    125 A. F. Lemos, J. H. G. Rocha, S. S. F. Quaresma, S. Kannan, F. N. Oktar, S. Agathopoulos, J. M. F. Ferreira. Hydroxyapatite nano-powders produced hydrothermally from nacreous material. Journal of the European Ceramic Society. 2006,26 (16): 3639~3646
    126 M. Ni, B. D. Ratner. Nacre surface transformation to hydroxyapatite in a phosphate buffer solution. Biomaterials. 2003,24 (23): 4323~4331
    127 G. Atlan, O. Delattre, S. Berland, A. LeFaou, G. Nabias, D. Cot, E. Lopez.Interface between bone and nacre implants in sheep. Biomaterials. 1999,20 (11): 1017~1022
    128 C. M. Zaremba, D. E. Morse, S. Mann, P. K. Hansma, G. D. Stucky. Aragonite-hydroxyapatite conversion in gastropod (abalone) nacre. Chemistry of Materials. 1998,10 (12): 3813~3824
    129 A. L. McCutcheon, G. S. K. Kannangara, M. A. Wilson, B. Ben-Nissan. Preliminary analysis of pore distributions using NMR in natural coral and hydrothermally prepared hydroxyapatite. Journal of Materials Science. 2004, 39 (18): 5711~5717
    130 M. Sivakumar, T. S. S. Kumar, K. L. Shantha, K. P. Rao. Development of hydroxyapatite derived from Indian coral. Biomaterials. 1996,17 (17): 1709~1714
    131 T. M. Coelho, E. S. Nogueira, W. R. Weinand, W. M. Lima, A. Steimacher, A. N. Medina, M. L. Baesso, A. C. Bento. Thermal properties of natural nanostructured hydroxyapatite extracted from fish bone waste. Journal of Applied Physics. 2007,101 (8): 084701
    132 J. H. G. Rocha, A. F. Lemos, S. Kannan, S. Agathopoulos, J. M. F. Ferreira. Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Journal of Materials Chemistry. 2005,15(47): 5007~5011
    133 S. Kannan, J. H. G. Rocha, S. Agathopoulos, J. M. F. Ferreira. Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. ACTA Biomaterialia. 2007,3 (2): 243~249
    134 J. H. G. Rocha, A. F. Lemos, S. Agathopoulos, S. Kannan, P. Valerio, J. M. F. Ferreira. Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. Journal of Biomedical Materials Research Part A. 2006, 77A (1): 160~168
    135 J. H. G. Rocha, A. F. Lemos, S. Agathopoulos, P. Valerio, S. Kannan, F. N. Oktar, J. M. F. Ferreira. Scaffolds for bone restoration from cuttlefish. Bone. 2005, 37 (6): 850~857
    136 M. Lamghari, M. J. Almeida, S. Berland, H. Huet, A. Laurent, C. Milet, E. Lopez. Stimulation of bone marrow cells and bone formation by nacre: In vivo and in vitro studies. Bone. 1999,25 (2): 91S~94S
    137 H. H. Liao, H. Mutvei, M. Sjostrom, L. Hammarstrom, J. G. Li. Tissueresponses to natural aragonite (Margaritifera shell) implants in vivo. Biomaterials. 2000,21 (5): 457~468
    138 A. C. Tas, F. Aldinger. Formation of apatitic calcium phosphates in a Na-K-phosphate solution of pH 7.4. Journal of Materials Science-Materials in Medicine. 2005,16 (2): 167~174
    139 H. R. R. Ramay, M. Zhang. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials. 2004, 25 (21): 5171~5180
    140 X. Y. Guo, J. E. Gough, P. Xiao, J. Liu, Z. J. Shen. Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. Journal of Biomedical Materials Research Part A. 2007,82A (4): 1022~1032
    141 W. Chen, S. Oh, A. P. Ong, N. Oh, Y. Liu, H. S. Courtney, M. Appleford, J. L. Ong. Antibacterial and osteogenic properties hydroxyapatite coatings produced using of silver-containing a sol gel process. Journal of Biomedical Materials Research Part A. 2007,82A (4): 899~906
    142 X. F. Xiao, R. F. Liu, Y. Z. Zheng. Hydrothermal-electrochemical codeposited hydoxyapatite/yttria-stabilized zirconia composite coating. Journal of Materials Science. 2006, 41 (11): 3417~3424
    143 F. A. Muller, L. Muller, D. Caillard, E. Conforto. Preferred growth orientation of biomimetic apatite crystals. Journal of Crystal Growth. 2007, 304 (2): 464~471
    144蔡如星,黄惟灏.浙江动物志-软体动物.浙江科学技术出版社, 1991:236~237
    145张刚生,谢先德.贝壳珍珠层微结构及成因理论.矿物岩石, 2000, 20(1): 11~16
    146 M. Yoshimura, P. Sujaridworakun, F. Koh, T. Fujiwara, D. Pongkao, A. Ahniyaz. Hydrothermal conversion of calcite crystals to hydroxyapatite. Materials Science & Engineering C. 2004 24 (4): 521~525
    147 S. Koutsopoulos, E. Dalas. The effect of acidic amino acids on hydroxyapatite crystallization. Journal of Crystal Growth. 2000,217 (4): 410~415
    148跳允斌,解涛,高英敏.物理化学手册.上海科学技术出版社, 1985:752~753
    149 P. Koutsoukos, Z. Amjad, M. B. Tomson, G. H. Nancollas. Crystallization of calcium phosphates a constant composition study. Journal of the American Chemical Society. 1980,102(5):1553~1557
    150 X. Lu, Y. Leng. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials. 2005, 26:1097~1108
    151 H. Elfil, H. Roques. Prediction of the limit of the metastable zone in the“CaCO3–CO2–H2O”system. AIChE Journal. 2004,50(8): 1908~1916
    152 A. E. Nielsen. Theory of electrolyte crystal growth-the parabolic rate law. Pure and Applied Chemistry. 1981,53(11): 2025~2039
    153 J. Balmain, B. Hannoyer, E. Lopez. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses of mineral and organic matrix during heating of mother of pearl (nacre) from the shell of the mollusc Pinctada maxima. Journal of Biomedical Materials Research. 1999, 48 (5): 749~754
    154 S. Weiner, W. Traub. Macromolecules in mollusc shells and their functions in biomineralization. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 1984, 304(1121):425~434
    155 R. Murugan, S. Ramakrishna. Crystallographic study of hydroxyapatite bioceramics derived from various sources. Crystal Growth & Design. 2005,5 (1): 111~112
    156 G. H. A. Therese, P. V. Kamath, G. N. Subbanna. Novel electrosynthetic route to calcium phosphate coatings. Journal of Materials Chemistry. 1998, 8 (2): 405~408
    157 S. Koutsopoulos. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. Journal of Biomedical Materials Research. 2002,62 (4): 600~612.
    158程传煊.表面物理化学.科学技术文献出版社. 1995:72~75
    159 J. Nyvlt. The Ostwald Rule of Stages. Crystal research and technology. 1995,30 (4): 443~449
    160 J. Fan, J. Lei, C. Yu, B. Tu, D. Zhao. Hard-templating synthesis of a novel rod-like nanoporous calcium phosphate bioceramics and their capacity as antibiotic carriers. Materials Chemistry and Physics. 2007, 103: 489~493
    161 S. Mann. Molecular tectonics in biomineralization and biomimetic materialschemistry. Nature. 1993, 365: 499~505
    162 Z. P. Zhang, D. M. Gao, H. Zhao, C. G. Xie, G. J. Guan, D. P. Wang, S. H. Yu. Biomimetic assembly of polypeptide-stabilized CaCO3 nanoparticles. Journal of Physical Chemistry B. 2006, 110: 8613~8618
    163 C. Li, G. D. Botsaris, D. L. Kaplan. Selective in vitro effect of peptides on calcium carbonate crystallization. Crystal Growth & Design. 2002, 2: 387~393
    164 W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman, V.F. Janas, K.S. TenHuisen. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method. Biomaterials. 2004, 25: 4647~4657
    165 D. Walsh, T. Furuzono, J. Tanaka. Preparation of porous composite implant materials by in situ polymerization of porous apatite containing epsilon-caprolactone or methyl methacrylate. Biomaterials. 2001,22: 1205~1212
    166 R.M. Wilson, S.E.P. Dowker, J.C. Elliott. Rietveld refinements and spectroscopic structural studies of a Na-free carbonate apatite made by hydrolysis of monetite. Biomaterials. 2006, 27: 4682~2692
    167 E. Landi, A. Tampieri, G. Celotti, L. Vichi, M. Sandri. Influence of synthesis and sintering parameters on the characteristics of carbonate apatite. Biomaterials. 2004,25:1763~1770
    168 K.S. Vecchio, X. Zhang, J.B. Massie, M. Wang, C.W. Kim. Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. ACTA Biomaterialia. 2007, 3: 910~918
    169 H. B. Weiser, A. P. Bloxsom. The formation of arsenate Jellies. Journal of Physical Chemistry. 1924,28(1):26~40
    170 H. B. Weiser, W. O. Milligan. Von Weimarn's precipitation theory and the formation of colloidal gold. Journal of Physical Chemistry. 1932, 36(7):1950~1959
    171 H. Wang, C. Z. Chen, D. G. Wang. Development of hydroxyapatite coating prepared by sol-gel technique. Surface Review and Letters. 2006,13 (6): 737~745
    172 A. Sellinger, P. M. Weiss, A. Nguyen, Y. F. Lu, R. A. Assink, W. L. Gong, C.J. Brinker. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature. 1998,394 (6690): 256~260
    173 M. Tanahashi, T. Matsuda. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. Journal of Biomedical Materials Research. 1997, 34(3):305~315
    174 M. Rousseau, E. Lopez, A. Coute, G. Mascarel, D.C. Smith, R. Naslain, X. Bourrat. Multi-scale structure and growth of nacre: a new model for bioceramics. Key Engineering Materials. 2004, 254-256:1009~1012
    175陈晓明,焦玉恒,许传波.电泳沉积制备羟基磷灰石/生物玻璃梯度涂层的研究.材料科学与工程. 2002, 20(4):545~548
    176 R. Wang. Pearl powder bio-coating and patterning by electrophoretic deposition. Journal of Materials Science. 2004,39 (15): 4961~4964
    177 H. M. Kim, F. Miyaji, T. Kokubo, T. Nakamura. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. Journal of Biomedical Materials Research. 1996, 32(3):409~417
    178 T. Kokubo, H. M. Kim, M. Kawashita, T. Nakamura. Bioactive metals: preparation and properties. Journal of Materials Science-Materials in Medicine. 2004,15(2):99~107
    179 R. R. Richardson, J. A. Miller, W. M. Reichera. Polyimides as biomaterials: preliminary biocompatibility testing. Biomaterials. 1993,14 (8) :627~635
    180 T. Kokubo. Bioactive glass ceramic: properties and applications. Biomaterials. 1991, 12:155~163
    181 T. Kokubo, H. Takadama. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006,27 (15): 2907~2915
    182 M. Ogino, F. Ohuchi, L. L. Hench. Compositional dependence of the formation of calcium phosphate films on bioglass. Journal of Biomedical Materials Research. 1980, 14:55~64
    183 M. Corno, C. Busco, B. Civalleri, P. Ugliengo. Periodic ab initio study of structural and vibrational features of hexagonal hydroxyapatite Ca10(PO4)6(OH)2. Physical Chemistry Chemical Physics. 2006,8:2464~2472
    184 A. Nakahira, S. Konishi, F. Nishimura, M. Iwasaka, S. Ueno. Effect of a high magnetic field on the bioactivity of apatite-based biomaterials. Journal Applied Physics. 2003,93:8513~8515
    185 A. Nakahira, H. Murase, H. Yasuda. Effect of application of a high magnetic field on the microstructure of Fe substituted layered double hydroxide clay for a magnetic application. Journal Applied Physics. 2007,101:09N516
    186 W. W. Chen, Y. Kinemuchi, T. Tamura, K. Miwa, K. Watari. Grain-oriented calcium hydroxyapatite ceramic and film prepared by magnetic alignment. Materials Letters. 2007,61:6~9
    187 N. Meenakshi Sundaram, E. K. Girija, M. Ashok, T. K. Anee, R. Vani, R. V. Suganthi, Y. Yokogawa, S. Narayana Kalkura. Crystallisation of hydroxyapatite nanocrystals under magnetic field. Materials Letters. 2006,60:761~765
    188 D. Arcos, R. P. del Real, M. Vallet-Regí. Biphasic materials for bone grating and hyperthermia treatment of cancer. Journal of Biomedical Materials Research Part A. 2003, 65A:71~78
    189 S. C. Wuang, K. G. Neoh, E. T. Kang, D. W. Pack, D. E. Leckband. HER-2-mediated endocytosis of magnetic nanospheres and the implications in cell targeting and particle magnetization. Biomaterials. 2008, 29(14): 2270~2279
    190 B. Samanta, H. Yan, N. O. Fischer, J. Shi, D. J. Jerry, V. M. Rotello. Protein-passivated Fe3O4 nanoparticles: low toxicity and rapid heating for thermal therapy. Journal of Materials Chemistry. 2008,18(11): 1204~1208
    191 P. Drake, H. J. Cho, P. S. Shih, C. H. Kao, K. F. Lee, C. H. Kuo, X. Z. Lin, Y. J. Lin.Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. Journal of Materials Chemistry. 2007, 17(46): 4914~4918
    192 L. Y. Zhang, H. C. Gu, X. M. Wang. Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. Jouranl of Magnetism and Magnetic Materials. 2007, 311(1): 228~233
    193 O. Bretcanu, S. Spriano, E. Verné, M. C?isson, P. Tiberto, P. Allia. The influence of crystallised Fe3O4 on the magnetic properties of coprecipitation- derived ferrimagnetic glass-ceramics. ACTA Biomaterialia. 2005,1 (4): 421~429
    194 B. H. Sobn, R. E. Cohen, G. C. Papaefthymiou. Magnetic properties of iron oxide nanoclusters within microdomains of block copolymers. Journal ofMagnetism and Magnetic Materials. 1998, 182: 216~224
    195 N. Karapinar, E. Hoffmann, H. H. Hahn. Magnetite seeded precipitation of phosphate. Water Research. 2004, 38:3059~3066
    196 H. E. Lundager Madsen. Influence of magnetic field on the precipitation of some inorganic salts. Journal of Crystal Growth. 1995,152:94~100
    197 J. H. Wu, S. P. Ko, H. L. Liu, S. Kim, J. S. Ju, Y. K. Kim. Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties. Materials letters. 2007, 61:3124~3129
    198 M. Dundon, E. Mack. The solubility and surface energy of calcium sulfate. Journal of the American Chemical Society. 1923,45:2479~2485

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700