基于电磁场理论的分段电极电场传感器的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本文中主要利用基于电磁理论的分析方法研究光波导分段电极电场传感器系统中的分段电极结构对其传感特性的影响。通过比较不同的电极分析方法,得出了在分析分段电极结构对传感特性的影响时,采用数值计算方法最为合适。在本文中详细研究了用时域有限差分法和矩量法分析分段电极的电磁特性时需要考虑的问题及解决方法。利用有限积分方法得出了分段电极的不同结构对该传感器系统的传感特性的影响。其中分段电极结构的z方向的间隔在大于其中光波导宽度的范围内取值越小越好,y方向的间隔取值在10μm~70μm的范围内越大越好,边电极宽度与中间电极宽度的取值为:当边电极宽度一定时,中间电极宽度越接近边电极的宽度越好;当中间电极宽度一定时,边电极的宽度越大越好。分段电极总长度及分段电极的分段数两者需要由待测电场的频率响应带宽和灵敏度要求来综合考虑取值。
     对己制作完成的光波导分段电极电场传感器的进行实际测试,利用其测试结果与仿真结果对比分析,修正了之前分段电极结构的数值仿真中的误差以及验证了仿真模型的可靠性,并以此得出了仿真结果与实际测量结果之间的关系,通过该关系可以更加精确的指导设计满足不同频率响应带宽与灵敏度要求的光波导分段电极式电场传感器中的分段电极结构。并且新设计了两种比较有代表性的分段电极电场传感器中的电极结构。一种是可以工作在高频段5GHz~12GHz范围的电场检测中,当电场频率为9.5GHz时的电场传感器的灵敏度预计可达25mV/m;另一种是工作在低频0~3GHz范围的电场检测中,当电场频率为1.6GHz时的电磁传感器灵敏度预计可达3 mV/m。
The structure of electric field sensor with segmented electrodes has been introduced by the operation principle of the optical waveguide electric field sensor and been uesed numerical analysis to analyse.And then the sensitivity and the frequency response are analyzed detailedly. The simulated results show that we can improve the structure to raise the characteristics of electric field sensor with segmented electrodes. The interval in the z direction of segmented electrodes is the smaller the better, and the interval in the y direction of segmented electrodes in the range of 10μm ~ 70μm is the bigger the better, The relation of the middle and the side of the electrode width is that when the width of side electrode is invariablenes, the width of the middle electrode is the closer to the width of the side electrode is the better; when the middle electrode’s width is invariablenes, the width of the side electrode is the more the better. To definite the value of the total length and the number of segmented electrodes is need to take the frequency response bandwidth and sensitivity into account.
     Some fabricated optical electric field sensors with segment electrode were used to test the sensitivity, the frequency response and the linearity dynamic range. The test results and simulation results is compared to amend the the simulation results, so we can design the structure of segmented electrodes more precise to meet the different frequency response bandwidth and sensitivity. In this paper ,I have designed two more representative of the segmented electrodes. The one is able to work in the high-frequency range of 5GHz~12GHz, when the electric field frequency is 9.5GHz,the electric field sensitivity of the sensor is expected to reach 25mV / m; the other one is able to work in the low frequency range of 0 ~ 3GHz, when the electric field frequency is 1.6GHz ,the electric field sensitivity is expected to reach 3 mV / m.
引文
[1] Willams T.产品设计EMC技术.北京:电子工业出版社, 2001:28~34.
    [2]刘胜涛,尹宜柱.对信息技术设备电磁兼容技术的分析.电子质量, 2004(4): 36~37.
    [3]裴强.基于MEMS技术的微型电场传感器设计及实验研究:硕士学位论文,中国科学院研究生院, 2003:3~7.
    [4] Ja-yon K, Chel-hwi R, Yong-mo C. A possible application of the non-uniform electric field measurement using Pockels effect in GIS. Plasma Science, 2003. ICOPS 2003. IEEE Conference Record-Abstracts. The 30th International Conference on. 2003, 150.
    [5]刘健.基于球型电场探头的空间电场光电测量系统的研制:硕士学位论文,西安交通大学, 2002:8~9.
    [6]向天明.场强测量与场强仪.无线电工程, 2002, 32 (6): 59~60.
    [7] G Hygte and J F Nye, Measuring microwave field directly with an optically modulted scatterer, Meas. Sci. Technol. 1990. vol. 1, pp. 703-709,
    [8] Lee K W, Park S H, Lim K J. Design and application of electric-field sensor for measuing PD signals in high voltage equipment. Properties and Application of Dielectric Material, 2003. Proceeding of the 7th International Conference on. , 2003, 828~8302.
    [9] Ceclja F, Balachandan W. Electrooptic sensor for near-field measurement. Instrumentation and Measurement, IEEE Transaction on, 1999, 48 (2): 650~653.
    [10] Jaeger N A, Rahmatian F. Integrated optics Pockels cell high-voltage sensor. Power Delivery, IEEE Transaction on, 1995, 10(1): 127~134.
    [11] Passrd M, Barthod C, Fortin M. Design and optimization of a low-frequency electric field sensor sing Pockels effect. Instrumentation and Measurement, IEEE Transaction on, 2001, 50(5): 1053~1058.
    [12] Rodriguez-asmoza J. Electro-optic E-field sensor using an optical coherence modulator. Microwave and Millimeter Wave Technology, 2002. Proceedings. ICMMT 2002. 2002 3rd International Conference on. 2002, 990~993.
    [13] Tajima K, Kobayashi R, Kuwabara N. Experimental evaluation of broadband isotropic electric field sensor using three Mach-Zehnder interferometers. Electronic Letters, 1998, 34(11): 1130~1132.
    [14] Zhang F, Chen F, Feng L. The research on the electric field sensor with no electrode in x-cut LiNbO3. Communications, Circuits and Systems and West Sino Expositions, IEEE 2002 International Conference on. , 2002, 1775~17782.
    [15] Th.Meier, K. Kostrzcewa, B. Schüppert and K. Petermann. Electro-optical E-field with Optimized Electrode Structure. Electronics Letters, 1992, Vol 28, No 14: 1327~1329.
    [16] Thomas Meier, Carsten Kostrzewa, K.Petermann, and B.Schüppert. Integrated Optical E-Field Probes with Segmented Modulator Electrodes. IEEE J. Lightwave Technol., 1994,Vol 12, No 8: 1497~1503.
    [17] T. Miyakawa, Y. Tokano and et al. Development of a Practical Optical Electric Field Sensor in GHz Range. Proc. EMC Zurich’99, 1999, 551~554.
    [18] David H, Naghski, Joseph T.Boyd, Howard E.Jackson, S.Sriram, Stuart A Kingsley, J.Latess. An Integrated Photonic Mach-Zehnder Interferometer with No Electrode for Sensing Electric Fields. J Lightwave Technol., 1994, Vol.6, No.12: 1092~1098.
    [19] Photonic Electric Field Sensor System. http://www.srico.com/testdata/200-04.pdf
    [20]汤小泓,王顺华,孙守瑶,蔡伯荣.集成光学M-Z电磁场传感器的研究.激光杂志, 1991, Vol.12: 4~6.
    [21]李玉善,马少杰,于涛,李永光.检测汽车点火系的Ti扩散LiNbO3光波导电场传感器.高技术通讯, 1995, Vol.1: 38 ~ 41.
    [22]马少杰,李玉善.集成光波导电磁场传感器.光机电信息, 2001, Vol.6: 25~28.
    [23]蓝信钜.激光技术.北京:科学出版社, 2000.
    [24]卢亚雄,杨亚培,陈淑芬.激光束传输与变换技术.成都:电子科技大学出版社, 1999.
    [25]陈福深.集成电光调制理论与技术.北京:国防工业出版社, 1995.
    [26] Alferness R C. Waveguide Electrooptic Modulators. Microwave Theory and Techniques, IEEE Transactions on, 1982, 82(8): 1121~1137.
    [27] Jaeger N A, Young L. High-voltage sensor employing an integrated optics Mach-Zehnder interferometer in conjunction with a capacitive divider. Journal of Lightwave Technology, 1989, 7(2): 229~235.
    [28] Gerd Keiser.Optical Fiber Communication , (李玉权译).北京:电子工业出版社,2002.290~293.
    [29] Thomas Meier, Carsten Kostrzewa, K.Petermann, and B.Schüppert. Integrated Optical E-Field Probes with Segmented Modulator Electrodes. IEEE J. Lightwave Technol., 1994,Vol 12, No 8: 1497~1503.
    [30]黄章勇.光纤通信用光电子器件和组件.北京:北京邮电大学出版社, 2001.
    [31] K. S. Yee. Numerieal Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Transaetions on Antennas and Propagation.1966, 14: 302-307.
    [32] R.G.Houyoumjian. Asymptotic high-frequency methods,IEEE Proc,Aug 1965,Vol.53, 864-876.
    [33] Dardenne X,Craeye, C. Method of Moments Simulation of Infinitely Periodic Struetures Combining Metal with Connected Dielectric Objects. IEEE Transaetions on Antennas and Propagation. 2008, 56(8): 2372-2380.
    [34]盛剑霓.工程电磁场数值分析.西安:西安交通大学出版社,1991.
    [35] A. D.库克著.程耿东等译.有限元分析的概念和应用.北京:北京科学出版社, 1998.2
    [36]王长清,祝西里.电磁场中的时域有限差分法.北京:北京大学出版社, 1994.
    [37]葛德彪,闰玉波.电磁场时域有限差分方法.西安:西安电子科技大学出版社, 2002.
    [38]高庆本,时域有限差分法FDTD Method.北京:国防工业出版社, 1995.
    [39] Skinner Neal Gregory. FDTD studies of frequency seleetive surfaces. The University of Texas at Dallas, 2006
    [40]葛德彪,石守元,朱之伟.一种新的FDTD入射场设置方法.微波学报.1995, 11(3):187-190
    [41] Sarkar T K. An integral equation approach to the analysis of finite microstrip antenna: volume/surface formulation. IEEE Transactions On Antenna and Propagation, 1990, 38(3): 305-312.
    [42] Roger F. Harrington. IEEE Antennas and Propagation Society. Field Computation by Moment Methods. Johnwiley and Sons Inc, 1993.
    [43] S.M.Rao, D.Wilton and A.W.Glisson,“Electromagnetic scattering by surfaces of arbitrary shape”, IEEE Trans.Antennas Propagat. May 1982 vol.30, pp.409-418.
    [44] Palais J C.光纤通信.北京:电子工业出版社, 2005, 288~312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700