脉冲MIG焊电弧调节机理与控制优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对脉冲MIG焊电源在峰值阶段恒流+基值阶段恒流(I-I)控制方式下存在电弧自调节能力差的问题,展开对脉冲MIG焊电弧调节机理、脉频调制(PFM)电弧控制方法和均匀调节电弧控制方法研究。
     通过对目前国内外脉冲MIG焊电弧控制方面研究成果分析,发现在脉冲MIG焊电弧控制领域中存在着电弧调节机理的基础理论不完善,从电弧调节机理层面对各种弧长控制方法的原理和性能分析比较缺失,尤其是对不同种类焊丝在脉冲MIG焊电弧控制中所表现出的差异性研究极少。
     因此,本文首先推导并建立了熔化极焊丝干伸长在电弧热和电阻热共同作用下的温度场数学模型,通过对温度场分析,可以得出电阻热和电弧热对不同种类焊丝的熔化作用差异,进而根据焊丝物理特性和熔化特性,将其划分为阻性焊丝和非阻性焊丝两大类,分别对这两类焊丝在脉冲MIG焊各种条件下的电弧调节机理进行分析研究。
     在考虑干伸长电阻热对阻性焊丝熔化速度的影响下,利用弧长数学模型和原有的阻性焊丝熔化特性,从理论上推导出新的阻性焊丝熔化特性及相应的等熔化速度曲线,并且,通过试验验证了新的阻性焊丝等熔化速度曲线的正确性。
     根据新的阻性焊丝熔化特性,通过对恒流脉冲MIG焊在等速送丝条件下的电弧调节机理分析,得出新的论点:对于阻性焊丝在等速送丝条件下适合采用恒流脉冲MIG焊电源,该焊接方法的电弧自我调节能力强,焊接过程易于稳定。
     根据新的阻性焊丝熔化特性,从电弧调节机理上进行了证明,阻性焊丝在导电嘴到工件距离(CTWD)发生改变时,采用PFM电弧调节方法无法将焊接电压调整回初始值,并且电弧工作点会在初始值附近进行小幅振荡;在均匀调节弧压控制下,当CTWD发生改变时,虽然可以将焊接电压调节回初始值,但同时引起焊丝熔化速度的变化,以及弧长的相反方向变化,通过电弧的阶跃试验逐一验证了这些问题。
     针对不同的工艺要求和应用场合,设计了两种不同的脉冲MIG焊电源硬件实施方案。一种是MCU(微控制单元)+硬件驱动的方案,该方案系统响应速度快,性能稳定;另一种是ARM+DSP(数字信号处理器)集成控制方案,该方案性能先进但可靠性还有待提高。
     针对阻性焊丝在电弧控制中存在的问题,提出了基于亚射流过渡的区间弧压控制方法,并在本试验平台上进行实现,通过试验验证了该优化控制方案的可行性,对电弧控制中存在的问题可以进行改善,同时,该方法也适用于非阻性焊丝脉冲MIG焊弧压控制,使电弧调节更加平稳。
     在基于亚射流过渡的区间弧压控制方法实施中,采用了带有死区的双模数字PID控制方法,在起弧初始阶段和稳定燃弧阶段分别采用两套PID控制参数分别进行控制,以满足不同阶段电弧调节特性的需要。
     针对均匀调节系统在采用区间弧压控制方法时会对系统稳定性带来不良影响这一问题,提出了自适应模糊PID控制方法,并通过MATLAB仿真验证了采用自适应模糊PID控制方法可以有效解决这一问题。
     利用设计的阶跃装置对钢焊丝和铝焊丝分别进行无弧压控制、均匀调节弧压控制方式和PFM弧压控制方式下的电弧阶跃试验,对试验结果进行了对比分析,逐一验证了各章节中提出的论点。
Because of the weak arc auto-adjusting capacity of Pulsed-MIG Welding in peak phase constant current + base phase constant current (I-I) control, the arc adjusting principles of Pulsed-MIG Welding, PFM arc control method and uniform adjusting arc control method are researched in this paper.
     Through analysis of the research of Pulsed-MIG Welding arc control in domestic and abroad, the imperfect of arc adjusting basic principles in Pulsed-MIG Welding is discovered. There are few analysis on the principles and performance of all sorts of arc control method from the view of arc adjusting principles. Especially, the diversity research on Pulsed-MIG Welding arc control of different wires is in extremely deficiency.
     Therefore, temperature field mathematical model of consumable electrode Through-the-Wire under both arc thermal and resistive thermal effect is firstly deduced and established. Through the analysis on temperature field, the melting diversity of different wires under the resistive thermal and arc thermal effects can be found out. Further, according to the physical characteristics and melting characteristics of wires, wires can be divided into two kinds, the resistive-wire and the non-resistive wire. Individual analysis on arc adjusting principles of different wires under different conditions are carried out.
     Under the influence on melting speed of resistive welding wire that the Elongation heat of the resistance brings , using arc length mathematical model and the nature pre-arcing characteristics of resistive welding wire , pre-arcing characteristics of new resistive welding wire and corresponding curve of the constant speed melting can be devised theoretically. And through experiment , the validity of the constant speed melting curve is confirmed .According to the pre-arcing characteristics of the new resistive welding wire ,it is concluded that the new thesis by analyzing the arc regulating mechanism of Constant current pulse MIG welding at the same speed. It is described in the thesis that it is proper to use Constant current pulse MIG welding power when the feed speed of welding wire is constant , the arc of this welding can be adjusted by itself which can provide a more stable welding process.
     According to the pre-arcing characteristics of the new resistive welding wire, the theory of arc adjustment proves that when the distance between contact tub and the workpiece varies, welding voltage can not be adjusted to the original value by using the PFM arc adjustment method. In addition, the operating point of the arc will oscillate slightly nearby the original value; Step experiments of arc verify that when the CTWD varies, welding voltage can be adjusted to the original value by uniformly adjusting the arc voltage. But melting rate of the welding wire will be changed and the variation direction of arc length is opposite at the same time.
     Two deferent designs of the control core,“MCU + hardware driver”and“DSP integrated control”, are designed for different applications. The former design has fast response and stable performance, while the latter design is advanced but astable.
     The method that base on section arc voltage control of meso-spray transfer is proposed aiming at the problems that exist in the control of resistive wire, and is accomplished in the experiment platform we set, This experiment proves that the optimal control method is feasibility and get a better result in arc control, it also can be applied to non-resistive wire pulsed MIG welding arc voltage control and make arc adjustment more stable.
     The control method of double-mode digital PID with deadbeat is used in the application of method based on sub-shot stream section arc voltage control of meso-spray transfer, Different PID control parameters is selected in the stage of arcing and the stage of arc burning to meet the needs of different characteristics at different stage of arc adjustment
     Adaptive fuzzy PID control method is proposed aiming at the problem of adverse effects to system stability in uniform conditioning system using section arc voltage control, and use MATLAB simulation to prove that the adaptive fuzzy PID control method can effectively solve this problem.
     With the use of step equipment that design, do the arc step experiments with non-arc voltage control, uniform conditioning arc voltage control and PFM arc voltage control in the condition of using steel welding wires and the condition of using aluminum welding wires, The results of experiments were analyzed and compared, which one by one proved the arguments that each chapter proposed.
引文
[1]殷树言.气体保护焊工艺基础[M].北京:机械工业出版社, 2007:192-197
    [2]杨文杰.电弧焊方法及设备[M].哈尔滨:哈尔滨工业大学出版社, 2007:175-177
    [3]P.Drews.Schulle. United States Patent,4-427-875 Jan.24,1980
    [4]Wilson J L, Claussen G E, Jackson C E. The effect of I2R heating on electrode melting rate[J]. Weld. J.,1956, 35:1s-8s
    [5]Lesnewich A. Control of melting rate and metal transfer in gas-shielded metal-arc welding, Part 1 - control of electrode melting rate[J]. Weld. J., 1958, 37:343s-353s
    [6]Waszink J H, Van Den Heuvel. Measurements and calculations of the resistance of the wire extension in arc welding[C]. Int. conf. Arc Physics and Weld Pool Behavior, The Welding Institute, London, Englang, 1979. 227-239
    [7]Palani P K, Murugan N. Modeling and simulation of wire feed rate for steady current and pulsed current gas metal arc welding using 317L flux cored wire[J]. Int. J. Adv. Manuf. Technol., 2007, 34:1111-1119
    [8]傅希圣,李烨,王夏冰.熔化极气体保护焊焊丝伸出长度和电弧弧长的稳定性[J].焊接学报, 1995, 16(2): 100-105
    [9]傅希圣,李烨.焊丝熔化率公式研究[J].焊接学报, 1995, 16(4): 226-232
    [10]Halmoy E. Wire melting rate, droplet temperature, and effective anode melting potential[C]. in Proc. Arc Physics and Weld Pool Behavior Int. Conf., London, U,K., 1979:49-58
    [11]Halmoy E. Electrode Wire Heating in Terms of Welding Parameters[M]. In The Physics of Welding, ed. Lancaster J.F., Oxford:Pergamon Press, 1986. 330-336
    [12]Quinn T P, Madigan R B, Siewert T A. An electrode extension model for gas metal arc welding[J]. Weld. J., 1994, 73:241s-248s
    [13]Huismann G, Hoffmeister H. Sensing metal inert gas process by measuring wire feedrate and current[J]. Science and Technology of Welding & Joining, 1999,4:352-356
    [14]Kim Y S, McEligot D M, Eager T W. Analysis of electrode heat transfer in gas metal arc welding[J]. Weld. J., 1991,70:20s-30s
    [15]Nemchinsky V A. Heat transfer in an electrode during arc welding with a consumable electrode[J]. J. Phys. D: Appl. Phys., 1998,31:730-736
    [16]Nemchinsky V A. The rate of melting of the electrode during arc welding. The influence of discrete removal of the melt[J]. J. Phys. D:Appl. Phys., 1998,31:1565-1569
    [17]Bingul Z, Cook G E. A real-time prediction model of electrode extension for GMAW[J]. IEEE/ASME Transaction on Mechatronics, 2006, 11:47-54
    [18]Modenesi P J, Reis R I. A mode for melting rate phenomena in GMA welding[J]. J. Materials Proc. Tech., 2007, 189:199-205
    [19] Amin M. Synergic pulse MIG welding[J]. Metal Construction, 1981,6.
    [20]Amin, M. Ahmed, N. Synergic control in MIG welding. 1. Parametric relationships for steady DC open arc and short circuiting arc operation[J]. Metal Construction, 1987,19(1):331-340.
    [21] Ueguri, Shigeo et al. European Patent Application. Application N0.81105288.5.
    [22]潘际銮.现代弧焊控制[M].北京:机械工业出版社. 2000:63-99
    [23]韩赞东,都东,吴文楷等.数字化控制IGBT逆变式脉冲MIG焊电源的研究[J].电焊机, 1998, 28(6):11-13
    [24]Ohshima K, Abe M, Kubota T. Effect of power source characteristic on stability of pulsed current transfer-sampled-data control pulsed arc[A]. JWS-I-3
    [25]曾敏,曹彪,黄石生等.脉冲熔化极气体保护焊的模糊控制[J].机械工程学报,2003, 39(11): 113-115.
    [26]吴开源,黄石生,蒙永民.脉冲MIG焊电弧双模模糊控制[J].控制理论与应用,2006, 23(1): 74-78.
    [27]上山智之,仝红军.微机数控电流波形GMA脉冲焊机的控制方法及焊接性能[J].焊接,2000,(5): 33-38.
    [28]柳刚.熔化极气体保护焊熔滴过渡的光谱信息及其检测的研究[D].天津:天津大学,1998
    [29]杨立军,李桓,胡胜钢.光谱控制的逆变脉冲MIG焊电源及控制系统[J].焊接学报,2001,22(1):41-44
    [30]Zhang Y. M.,Liguo E,Walcott B.L. Robust control of pulsed gas metal arc welding[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 2002, 124(2):281-289
    [31]Jesper S Thomen. Feedback linearization based arc length control for gas metal arc welding [C]. 2005 American control conference, 2005.
    [32]黄鹏飞,卢振洋,吕耀辉等.熔化极脉冲氢弧焊弧长动态调节性能研究[J].机械工程学报,2005, 41(1):194-197
    [33]Vender J. R. Tyler K.L. Moore D.S. Modeling, calibration, and control-theoretic analysis of the gmaw process[C]. In Nonlinear Analysis, Methods and Applications, volume 3,.Proc. American Control Conference(ACC), 1998:1747-1751
    [34]Naidu S. D. Tyler J. Ozcelik S. Classical control of gas metal arc welding[C]. In Trends in Welding Research: Proc. 5th International Conference, 1998:1033-1038
    [35]AbdelRahman M. Feedback linearization control of current and arc length in gmaw system[C]. Proc. of the American Control Conference, 1998
    [36]Naidu D.S. K.L.Moore, M.A. Abdelrahman. Gas metal arc welding control: Part 2- control strategy[M]. Nonlinear Analysis, 1999(35):85-93
    [37]Moore K.L. Naidu D. S. Ozcelik S. Modeling, Sensing and Control of Gas Metal Arc Welding[M]. Elsevier, 2003
    [38]Subbaram D. Naidu Selahattin Ozcelik, Kevin L. Application of mimo direct adaptive control to gas metal arc welding[C]. Proc. of the American Control Conference, 1998
    [39]Walcott B.L. Zhang Y. M. Liguo E. Interval model based control of gas metal arc welding[C]. Proc. of the American Control Conference, 1998.
    [40]Walcott B. L. Zhang Y. M. Liguo E. Robust control of pulsed gas metal arc welding[J]. Journal of Dynamic Systems, Measurement and Control, 2002, 124(2):281-89
    [41]Puklavec A. Torvornik B. Golob M. Modelling, simulation and fuzzy control of the gmaw welding process[C]. In 15th Triennial World Congr. Int. Fed. of Automatic Control, 2002.
    [42]http://www.fronius.com/download/welding.technology/papers/e_prozes.pdf
    [43]http://www.ewm.de/frame.html
    [44]张秀兰,红艳,绪炯.数字化焊接电源的发展[J].电焊机, 2003,33(2):9-10
    [45]殷树言,刘嘉.数字化弧焊电源与焊接技术的发展[J].现代制造, 2003,(1):46-48
    [46]上山智之,仝红军.微机数控电流波形GMA脉冲焊机的控制方法及焊接性能[J].焊接, 2000,(5):33-38
    [47]吴开源,李阳陆,沛涛等.基于DSP的弧焊逆变电源数字化控制系统[J].电子设计应用, 2002,(11):71-73
    [48]李阳,吴开源,黄石生等. DSP在弧焊逆变器中的应用[J].电焊机, 2003, 33(4):29-32
    [49]黄石生. GMAW-P焊熔滴过渡及其控制的研究现状[J].电焊机,2000(1):1-5
    [50]刘嘉,殷树言,丁京柱.数字化焊机及其特点[J].电焊机, 2001, 31(6): 8-11.
    [51]王伟明.逆变式GMA单脉冲和双脉冲焊机数字控制系统研究[D].北京:北京工业大学, 2004
    [52]张勇,华学明,吴毅雄等.数字信号处理器在CO2焊接中的应用[J].焊接, 2002, 31(5):37-39
    [53]李芳, GMAW-P数字电源设计及熔滴过渡特征信号提取与建模研究[D].上海:上海交通大学, 2008
    [54]华学明,吴毅雄,焦馥杰等.以数字信号为基控制的可控硅焊机的数字触发[J].焊接学报, 2002,23(2):72-76
    [55]华学明,张勇,吴毅雄等.数字信号处理器控制的焊接电源研制[J].电焊机,2002,32(10):25-28
    [56]Zadeh L.A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338~353
    [57]Mamdani E.H. Application of fuzzy algorithms for control of simple dynamic plant [J]. Proc. IEEE, 1974, 121(12): 1585~1588
    [58]刘曙光,魏俊民,竺志超等.模糊控制技术[M].北京:中国纺织出版社, 2001
    [59]陶永华,尹怡欣,葛芦生.新型PID控制及应用[M].北京:机械工业出版社, 1998
    [60]胡绳荪.现代弧焊电源及其控制[M].北京:机械工业出版社,2006
    [61]薛家祥,杨国华,董飞等.基于模糊逻辑的弧焊电源动特性分析[J].电焊机, 2007,37(1):31-34
    [62]Oshima Kenji. Fuzzy Expert System for Robotic Arc Welding[J]. ASME. Production Engineering Division, 1991, 51: 85-90
    [63]艾盛,王坚. PMIG焊焊接电弧电压的模糊控制[J].电焊机, 1993,23(5):1-5
    [64]赵举东,杨虹.脉冲MIG/MAG焊接熔滴过渡的自适应模糊控制[J].电子与自动化, 199726(1):14-18
    [65]孙栋,赵举东,赵家瑞.智能控制MIG焊熔滴过渡[J].电焊机, 1996,26(2):11-14
    [66]杜宏旺,刘铮,赵亚楠等.基于观测器与前馈的送丝机模糊PI速度控制[J].焊接学报,2010, 31(1):85-88
    [67]徐应群,黄松涛.熔化极气体保护焊送丝速度的模糊控制[J].现代焊接, 2006,48(12):16-18
    [68]郑春红,苏玉鑫.基于遗传算法的模糊控制送丝系统[J].西安石油学院学报(自然科学版), 2001, 16(3):50-52
    [69]赵举东,杨虹,肖锦辉.机器人用逆变弧焊电源的神经元网络控制研究[J].电子技术应用, 1997, 23(7):13-16
    [70]Dilthey U., et al. On-line Quality in Gas shielded Metal Arc Welding Using ArtificialNeural Networks[J]. Welding and Cutting, 1997, 49(2):22-24
    [71]安藤弘平,长谷川光雄.焊接电弧现象[M].北京:机械工业出版社,1985: 542-544.
    [72]Lancaster J.F. Influence of heat flow on metal transfer in the metal inert gas welding of aluminum, Physics of the welding arc symposium. Inst. of welding, London(1962)
    [73]Muller A.,Greerie W.J. , Rothschild G.R. Characteristics of Inert-Gas-Shielded Metal-Arcs, J.A.W.S., 30,717(1961).
    [74]黄静文等译,美国焊接学会编.焊接手册(第7版)第1卷焊接基础[M].北京:机械工业出版社,1988:91~92
    [75]O’Brien R. L., Welding Handbook, 8th ed., vol. 2[M]. American Welding Society, 1991
    [76]安藤弘平,长谷川光雄.焊接电弧现象[M].北京:机械工业出版社,1985: 56-56
    [77]傅希圣,牛尾诚夫. MAG焊时焊丝熔化速度与送丝速度稳定平衡的物理本质[J].焊接技术, 1997,21(3):2-5
    [78]傅希圣,李烨,王夏冰.熔化极气体保护焊焊丝伸出长度和电弧弧长的稳定性[J].焊接学报, 1995,16(2):100-104
    [79]杨文杰.电弧焊方法及设备[M].哈尔滨:哈尔滨工业大学出版社,2007: 157-159
    [80]殷树言.气体保护焊技术问答[M].北京:机械工业出版社, 2004: 174-175
    [81]赵家瑞,董挺.焊接自动控制基础[M].北京:机械工业出版社, 1990:289-297
    [82]雷毅,材料成型自动控制基础[M].北京:中国石油大学出版社, 2009: 294-310
    [83]张光先等.逆变焊机原理与设计.北京:机械工业出版社,2008:134-145
    [84]Wang Weiming,Liu Jia,Su Jianzhong,et,al.Study of modeling and simulation of full digital controlled PMIG/MAG welding system based onMatlab/Simulink[J].China Welding,2004,13(1):31~35.
    [85]刘岩,常佶,田立欣.电流控制型开关电源[J].现代电子技术,2001,10:60-62
    [86]屈克庆,刘兆魁,朱锦洪.一种双环控制的恒压大电流弧焊逆变电源[J].洛阳工学院学报. 2001,22(2):25-29
    [87]夏田,朱锦洪.峰值电流模式逆变焊机控制电路的设计[J].通讯电源技术. 2004,21(1):7-9
    [88]倪海东,蒋玉萍.高频开关电源集成控制器[M].北京:机械工业出版社,2004:112-118
    [89]刘伯春.智能PID调节器的设计和应用[J] .电气自动化,1995(3):18-21
    [90]陶永华.新型PID控制及其应用[M] .北京:机械工业出版社,2002: 14-23
    [91]吴麒.自动控制原理[M] .北京:清华大学出版社,2001
    [92]T. Takagi, M. Sugeno. Fuzzy identification of systems and its applications to modeling and control[J], IEEE Trans, on Systems. Man. And Cybern., SMC-15(1):116~132, (1985)
    [93]S. Yamane, G. Alzamora and T. Kubota. Fuzzy Control of Wire Feed Rate in Robot Welding[J], Proc. IEEE 1992 Conf. on Intelligent Control and Instrumentation. Singapore, 1992,Vol 2, 1375~1379
    [94]Z. Bingul, G. E. Cook and A. M. Strauss. Application of fuzzy logic to spatial thermal control in fusion welding[J], IEEE Trans, on Industry application, 2000,36(6):1523~1530
    [95]P. Koseeyaporn, G. E. Cook, A. M. Strauss, et al. Adaptive voltage control in fusion arc welding[J], IEEE Trans, on Industry Applications, 2000,36(5):1300~1307
    [96]J. L. Castro, M. Delgado.“Fuzzy systems with defuzzification are universal approximators”, IEEE Trans, on Systems. Man. And Cybern., SMC-26(1), pp. 149~152, (1996).
    [97]L. X. Wang.“Fuzzy systems are universal approximators”, Proc. IEEE 1992 Conf. on Fuzzy Systems. San Diego, pp. 1163~1170, (1992).
    [98]L. X. Wang, J. M. Mendel.“Fuzzy basis functions, universal approximation and orthogonal least squares learning”, IEEE Trans. on Neural Networks, 3(5), pp. 807~814, Sept. (1992).
    [99]H. Ying.“General SISO takagi-sugeno fuzzy systems with linear rule consequent are universal approximators”, IEEE Trans, on Systems. Man. And Cybern, SMC-6(4), pp. 582~587, (1998).
    [100]H. Ying, Y. S. Ding, S. K. Li, et al.“Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators”, IEEE Trans, on Systems, Man and Cybern, Part A, 29(5), pp. 508-514 (1999).
    [101]H. Ying.“Sufficient conditions on uniform approximation of multivariate functions by general Takagi-Sugeno fuzzy systems with linear rule consequent”, IEEE Trans, on Systems, Man and Cybern, Part A, 80(4), pp. 515-520 (1998).
    [102]K. Zeng, N. Y. Zhang and W. L. Xu.“A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximators”, IEEE Trans, on FuzzySystems, 8(6), pp. 773–780 (2000).
    [103]K. Zeng, N. Y. Zhang and W. L. Xu.“Sufficient condition for lineaer T-S fuzzy systems as universal approximators”, Acta Automatica Sinica, 27(5), pp. 606~612, (2001).
    [104]X. J. Zeng, M. G. Singh.“Approximation properties of fuzzy systems generated by min inference”, IEEE Trans, on Systems. Man. And Cybern., SMC-26(1), pp.187~193, (1996).
    [105]Palani P. K., Murugan N. Selection of parameters of pulsed current gas metal arc welding[J]. Journal of Materials Processing Technology, 2006,172(1):1~10
    [106]Richardson I. M., Bucknall P. W., States I. The influence of power source dynamics on wire melting rate in pulsed GMA welding[J]. Welding Journal, 1994,73(2):32~37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700