低渗透油田产出水处理工艺完善技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
这个项目是紧密结合油田现场实际提出的,涉及到油田采出液的变化情况认识,集输系统药剂的配伍性,工艺与操作合理性等问题。按项目技术服务合同内容要求,经过理论研究、室内研究试验和现场试验已找到采出水处理不达标的主要的原因,提出了下一步工作的技术方向。
     在对油田采出液的认识上,我们清醒地看到“黑水”在联合站油水系统的踪迹,经检测硫化物在10-20 mg/L之间,说明在杀菌效果不好的情况下可以产生潜在的腐蚀;同时也表明系统中管道、容器内防腐也存在一定的问题。腐蚀产物的出现不仅影响油田化学剂的药效而且会造成原油和污水水质的长期不达标运行,甚至堵塞油层、影响油田采收率。
     这项计划研究的另一项重要的内容是回答现场目前使用的药剂的针对性和使用效率高低的问题。也就是药剂的化学结构与配伍性试验。室内研究时取药剂1、2、3、4、5mL,在20℃室温下,以300倍生物显微镜或肉眼观察不同药剂比例混配时的物性变化。这个试验共进行了7种药剂145组725个观测点,历时四个月。其结果见表11:7种药剂中防垢缓蚀剂、杀菌剂配伍性较好,其他药剂比例接近时有特殊气味生成,特别是油水分离剂与无机絮凝剂接触能产生乳白色悬浮物,说明有新物质出现或改变了药剂原有性能,油水分离剂、滤料清洗剂有继续提高性能的空间。
     加药工艺所设定的加药点的合理性也会影响油水分离效果的相关指标,如硫化物转化剂作用不足问题;絮凝剂的加药点应前移;并保证反冲洗污水回收池清淤的正常进行。加大物理化学法对硫酸盐还原菌杀灭的实施力度。
     现场试验观测数据表明:过滤罐进出口的污水含油,换药前一次滤罐出口含油11.2mg/L,悬浮物16.4mg/L;二次滤罐出口含油5.7mg/L;悬浮物11.3mg/L。换成改进药剂后,一次滤罐出口含油降到7.2mg/L,悬浮物降到9.7mg/L;二次滤罐出口含油为4.5 mg/L;悬浮物为6.1mg/L。总体下降幅度是含油下降1.2 mg/L,悬浮物下降5.2mg/L。新配制的滤料清洗剂试验期间送样,由大庆油田设计研究院检测,结果表明:宋二联污水二次5#滤罐出口含油为2.10 mg/L ;悬浮物为2.89 mg/L ;小于2μm粒径所占比例已达85%,应当说滤料清洗试验在现场取得了初步的成功。
The project is in close connection with the actual proposed oil field, oil recovery related to changes in fluid understanding, gathering and transportation system, compatibility agents, technical and operational issues such as rationality. Technical service contracts in accordance with the contents of the project requirements, through theoretical research, indoor test and field test studies have found non-standard treatment recovery of the main reasons put forward the technical direction of the next step.
     Oilfield in the understanding of fluid, we clearly see the“black water”in the joint exhibition traces of oil-water system, after detection of sulfide in the 10-20 mg / L between the bactericidal effect in the case of poor can give rise to any potential corrosion; also show that the system of pipes, containers are also some corrosion problems. The appearance of corrosion products affect not only the efficacy oilfield chemicals and crude oil and sewage can cause long-term water quality standards do not run, or even plug the oil, the impact of oil recovery.
     The plans to study another important element is the answer to on-site targeted agents currently in use and efficiency of high or low. Pharmacy is the chemical structure and compatibility test. Interior study, take the Pharmacy 1,2,3,4,5 mL, at 20℃room temperature to 300 times the biological microscope or the naked eye when mixed with different pharmaceutical properties of the ratio change. The test carried out 7 Pharmacy 145 Group 725 observation points, which lasted four months. The results shown in Table 11:7 in the anti-scaling inhibitor insecticides, fungicides better compatibility, the proportion of other agents with special odor generated close to the time, especially oil and water separation agent and the inorganic flocculant suspensions exposure can produce white, indicating emergence of new material or change the original properties of pharmaceutical, oil and water separation agent, filter cleaning agent to continue to improve performance space.
     Technology Dosing set point will also affect the rationality of the effect of oil-water separation-related indicators, such as the role of sulfide into the problem of inadequate doses; Flocculent Dosing should be moved forward; and to ensure pool backwash water recovery normal dredging. Increase the physical and chemical sulfate-reducing bacteria on the implementation of efforts to kill.
     Dosing Dosing process set point will also affect the rationality of the related oil and water separation index, such as sulfides Agents for the problem of insufficient; flocculant dosing point should be moved forward; and ensure that anti-rinse water recovery tank clean the normal silt. Increase the physical and chemical methods on sulfate-reducing bacteria to kill the intensity.
     Observational data show that the field test: filter can import and export of waste water containing oil, a filter tank before dressing the export of oil 11.2mg / L, SS 16.4mg / L; secondary filter can export oil 5.7mg / L; SS 11.3mg / L. Changed to improve the Pharmacy, the first export of oil tank filter down to 7.2mg / L, suspended solids down to 9.7mg / L; secondary filter can export oil to 4.5 mg / L; suspended matter 6.1mg / L. Overall decline is the decline in oil 1.2 mg / L, suspensions dropped 5.2mg / L. The new test preparation of filter cleaning agent during the sample from the Daqing Oilfield Design and Research Institute, and the results show: Song 2 of 5 # of Sewage secondary filter can export oil to 2.10 mg / L; SS was 2.89 mg / L; small 2μm particle size in the proportion reached 85%, should be said that tests at the scene cleaning filter made initial success.
引文
[1]刘天齐.石油化工环境保护手册[M].北京:中国石化出版社,1990,133~137.
    [2]刘惠卿,盘英,李玉嫦.“三泥”处理现状[J].石油化工环境保护,2001,(1):33~36.
    [3]马文臣,易绍金.石油开发中污水的环境危害[J].石油与天然气化工,1997,26(2):125~127.
    [4]王毓仁,陈家伟,孙晓兰.国外炼油厂含油污泥处理技术[J].炼油设计,1999,9 (29):51~56.
    [5]石油工业部计划司.炼油工业环境保护[M].北京:石油工业出版社,1985,208~209.
    [6]陈家伟,孙晓兰,王毓仁.国外炼厂污泥无害化处理实践和发展方向[J].石油化工环境保护,1997,(1):33~37.
    [7]董进.螺旋沉降离心机在污泥脱水装置上的应用[J].石油化工环境保护,1996,(4):35~39.
    [8]谢宏明.从废弃油泥中提取原油的工艺方法[P].中国,CN 1195017A.1998-10-07.
    [9]王国柱.从石油土中提取石油的方法[P].中国,CN 90107638. 4.1991-04-03.
    [10]李凡修.含油污泥无害化处理及综合利用的途径[J].油气田环境保护,1998,8(3):42~43.
    [11]尤俊洪.一种处理污泥的方法[P].中国,CN 816001176.1987-01-24.
    [12]蒋锋,张萍.浮选渣脱水并回收污油的初步研究[J].石油化工环境保护1997,(3):38~42.
    [13]张秀霞,耿春香,冯成武.溶剂萃取-蒸气蒸馏法处理含油污泥[J].上海环境科学,2000,19(5):228~229.
    [14]李新盛.油泥分离与处理的研究[D].沈阳:东北大学,2004.
    [15]宫健,周振文,路建安等.生物降解含油污泥技术介绍[J].山东环境,2000,增刊:120.
    [16]国家环境保护总局科技标准司编著.危险废物污染与防治技术指南[M].北京:中国环境科学出版社,2004.
    [17]李化民.油田含油污水处理[M].北京:中国石化出版社, 1992:67~76.
    [18]王毓仁,陈家伟,孙晓兰.国外炼油厂含油污泥处理技术[J].炼油设计, 1999, 29(9): 51-56.
    [19] Furman,HarveyA,Cioletti,etal.Process of separating excess water or sludge from recovered crude petroleum oil[D]. USA,US 6260620.2001-07-17.
    [20]Heuer.Processfortherecoveryofoilfromwasteoilsludge[D].WO92/04424,1992.
    [21] Brano Sander. Dewatering of petroleum containing sludges with recovery of the oil component[D].US 4417976.1983.
    [22]来松清稠油采出水可生物处理性试验研究[ J] .石化技术,2003(02) 3:22~26.
    [23]雷乐成,陈琳,何锋油田稠油污水深度处理后回用于热采注汽锅炉的试验研究[J] .给水排水2003(03) :27~28.
    [24]汤规成辽河石化特种高浓度污水预处理技术应用研究[D]硕士2006 :67~76.
    [25]卢红霞,刘福胜,于世涛,王志萍阳离子聚丙烯酰胺絮凝剂的制备及其絮凝性能[J] .化工环保,2007(4) :67~76.
    [26]黎钢,朱墨,钱家麟用固液分离方法处理水基废弃钻井液[J] .钻井液与完井液,1999(3)46 :47~48.
    [27]黎钢,朱墨,钱家麟.固液分离法处理废弃钻井液的技术与现状[J].钻井液与完井液,1997(1) :57~58.
    [28]周风山,曾光,何纶,张坤,范维旺.废弃钻井完井液固液分离技术研究进展[J] .钻井液与完井,2007(5) :27~29.
    [29]张建国,聂进,邓皓,肖遥,王蓉沙.固液分离法处理废钻井液的实验研究[J] .油气田环境保护,2001(1) :17~19.
    [30]宋永亭.杜春安.王新.袁长忠.苏俊杰采油污水回用深度处理技术研究进展[期刊论文] -工业水处理2009(1) :23~25.
    [31]芦艳,孟丽丽,于水利.纳米Al2O3改性PVDF超滤膜处理含油污水研究[J] .安全与环境学报,2008(04) :34~35.
    [32]张奉东. PVDF管式超滤膜在低渗油田水处理中的研究及应用——以江苏台兴油田为例[J] .海洋石油,2008(02) :24~26.
    [33]彭志,李凡磊,赵绍伟.江苏油田含油污水处理新工艺新技术[J] .油田化学, 2008(01) :24~26.
    [34]李波,周世俊.含油污水处理技术[J] .辽宁化工,2007(01) :42~44.
    [35]蔺爱国,刘培勇,刘刚,张国忠.膜分离技术在油田含油污水处理中的应用研究进展[J] .工业水处理,2006(01) :30~31.
    [36]邱金建膜分离技术在天然气化工废水处理中的试验研究[D]硕士2006.
    [37]王建黎,王定海,徐志康,徐又.并流条件下聚丙烯中空纤维微孔膜的过滤特性[J] .膜科学与技术,2005(06) :28~29.
    [38]秦朝远,钱冬梅,王瑞月.有机膜处理含油废水的研究进展[J].甘肃科技,2005(11) :38~39
    [39]徐根良,曾静,翁建庆.含油废水处理技术综述[J].水处理技术,1991(1) :12~14.
    [40]王春梅含油废水处理方法. [期刊论文] -化工时刊2000(10) :22~24.
    [41]顾平.刘奎.杨造燕. Fenton试剂处理活性黑KBR染料废水研究[期刊论文] -中国给水排水1997(6) :44~46.
    [42]陈雷,祁佩时,南军.石油开采废水处理技术的现状与展望[J] .中国给水排水1999(11) :42~44.
    [43]邓波.溶气气浮法在油田采出水处理中的应用[J].给水排水,1996(5) :52~54.
    [44]邹启贤,陆正禹,油田废水处理综述[J] .工业水处理,2001(8) :60~64.
    [45]吴永胜.油田含油污水的除油技术评述[J] .工业水处理,1990(3) :33~34.
    [46]张宝良,郝志清,徐德会.气浮技术的发展及在含油污水处理中的应用[J] .油田地面工程,1993(1) :12~14.
    [47]韩洪军含油废水电解气浮的理论和试验[J] .环境工程,1993(6) :14~16.
    [48]项勇,常斌.好氧污水处理技术的应用[J] .油气田地面工程,2002(1) :49~51.
    [49]赵景霞,回军,王有华,谢大宁,林大泉. ZB4109絮凝剂的研制及应用[J] .工业水处理,1999(1) :55~56.
    [50]梁克民,郭海燕,谢大宁. ZB型絮凝剂在含油废水处理中的应用[J] .科技通报,2003(2) :62~64.
    [51]阎安,王玉江,贾建清.油田含油污水除油新技术[J] .水处理技术1998(2) :42~44.
    [52]吕开河,郭东荣,高锦屏.油田废水的生物处理[J] .钻井液与完井液,1996(6) :77~78.
    [52]王永.膜法处理油田采出水的进展[J] .膜科学与技,1998(2) :42~44.
    [53]王生春,温建志,王海,宋玉志,王立国,刘国华.聚丙烯中空纤维微孔滤膜在油田含油污水处理中的应用[J] .膜科学与技术,1998(2) :88~89.
    [54]王静荣,吴光夏,吴开芬,任冬伟.中空纤维超滤膜处理油田含油污水的研究[J] .膜科学与技术,1998(2) :92~94.
    [55]宁迁伟胜利油田开发使用的回注污水絮凝剂和浮选剂[J] .油田化学,1998(4) :102~104.
    [56]赵景霞,刘念曾,黎平,梁朝.含油污水浮选复合絮凝剂新配方的工业试验[J] .石油炼制与化工,2001(10) :82~84.
    [57]陈国丽,李连生,马书忠.复合高分子絮凝剂处理奥里乳化油船舶压载污水的探讨[J] -环境工程1999(5) :99~101.
    [58]洪宗国,张爱清,李云.铁系混凝剂处理含聚合物油田污水的研究[J] .环境化学,2000(4) :62~64.
    [59]张乃东,郑威. Fenton法在水处理中的发展趋势[J] .化工进展,2001(12) :102~104.
    [60]关卫省,赵方周.利用混凝法处理油田废水的研究[J] ,水处理技术,1999(5) :92~93.
    [61]谭亚军,蒋展鹏,余刚湿式空气氧化法的几种改进途径[J].污染防治技术,1998(4) :44~46.
    [62]薛向东,金奇庭.水处理中的高级氧化技术[J].环境保护,2001(6):82~83.
    [63]张乃东,郑威.羟自由基·OH在水处理中的应用[J] .哈尔滨商业大学学报(自然科学版)2001(3) :62~64.
    [63]王亚明,朱和益,赵素华.有机废水催化氧化处理的研究进展[J] .化工环保,1999(3) :72~74.
    [64]曲久辉.强化臭氧化在处理有机废水中的典型反应与应用[J].环境科学,1997(3) :78~79.
    [65]吕锡武,严煦世.光化学氧化饮用水中有机优先污染物[J] .中国环境科学,1992(1) :18~20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700