三效催化转化器高效长寿低排放优化设计理论及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对三效催化转化器转化效率低、起燃温度较高、工作寿命较短以及工作过程排放控制效率较低等现实存在的问题,将机理建模、数值模拟、多学科设计优化以及人工智能等理论应用于三效催化转化器的研发以及工作环境优化匹配过程中,以期探索一种更为有效、合理的高效长寿低排放三效催化转化器优化设计理论及方法,使三效催化转化器转化效率高、起燃温度较低、工作寿命较长以及工作过程排放控制效率高等性能,这对于提高汽车三效催化转化器的排放控制水平,探索新的三效催化转化器研发方法和技术都具有重要的理论意义和现实意义。
     本文以湖南大学“985”二期——汽车先进设计制造技术科技创新平台(动力排放与电控子项目)(教重函[2004]1号)及湖南省科技攻关重点项目“车用三效催化转化器理论方法、关键技术及应用”(湘科计[2002]87号)为依托,以成功研发转化效率高、起燃温度较低、工作寿命较长以及工作过程排放控制效率高的三效催化转化器为目的,采取理论分析与实验研究相结合的方法,创新研究一种高效长寿低排放三效催化转化器优化设计理论及方法,论文的主要工作及创新点如下:
     (1)建立了包括流动与传热、化学反应等子模型在内的多形状三效催化转化器性能数学模型,提出了用于流动与传热守恒方程组计算的控制容积逐面叠加法以及湍流流动压力场数值解法,以椭圆截面为代表的非圆柱形载体进行数值模拟,并分析了椭圆率、载体长度与载体截面积耦合、载体孔密度与孔壁厚耦合对三效催化转化器性能的影响,为多形状三效催化转化器性能研究提供了坚实的理论基础。(2)基于汽车三效催化转化器中气相和固相(载体表面)的质量平衡和能量平衡原理,建立了包括多基元催化反应机理、催化剂表面覆盖度变化、Ce储放氧的化学反应等子模型的多基元反应的三效催化转化器转化特性数学模型,模拟结果表明,转化效率模拟结果、气体组分分布与催化剂表面覆盖度变化模拟结果、三效催化转化器冷起动模拟结果以及助催化剂的储放氧能力模拟结果均与试验结果相吻合。
     (3)从烧结速率以及反应速率建立了包含劣化过程的三效催化转化器的劣化特性模型,对三效催化转化器老化特性进行数值仿真,结果表明:在老化过程中,Pt颗粒平均直径迅速增大,而失活因子在老化后迅速减小,催化剂的活性下降最大。在三效催化转化器100000km老化后, HC、CO、NOx三种气体的转化效率都降低20%以上。为此,从催化剂及其分布等方面提出了三效催化转化器的抗劣化措施,为三效催化转化器结构优化和性能改进提供了一定的依据。
     (4)首次提出了高效长寿三效催化转化器多学科优化设计方法,即以三效催化转化器转化效率、压力损失、质量以及抗热冲击性能为目标函数建立了多学科设计优化模型,系统研究基于多形状、多工况等几何、结构以及状态约束下高效长寿三效催化转化器的整体优化,采用高效长寿三效催化转化器多学科优化设计方法后,结果表明,三效催化转化器转化效率η提高了5.42%,压力损失Δp下降了6.99%,质量M减少了11.68%,位移变形Δε减少了20.91%,整体性能U提高了8.40%。这为高效长寿低污染三效催化转化器的优化设计提供了有力的理论指导。(5)采用最小二乘法和最小二乘支持向量机建立汽油机空气质量流量测量动态模型,基于椭圆齿轮油耗测量传感器测量原理建立了汽油质量流量测量模型,应用小波分析提取或者去除信号中的白噪声,分别采用剔除跳变信号算法及递推平均滤波算法剔除测量信号所出现的跳动性和波动性,并对去噪声处理后数据的进行函数链神经网络拟合,有效地消除采集数据时各种干扰的存在。并针对三效催化转化器工作环境参数信号特点,设计了模糊神经网络控制器和采用串行编程与ODBC技术相结合成功地开发了三效催化转化器工作环境热工状况监测系统,为确保三效催化转化器工作环境优化匹配提供有力的技术支持。
     汽油机三效催化转化器台架实验结果表明,本文研发的三效催化转化器的起燃温度大约在255℃左右。将三效催化转化器在国家汽车检测中心(襄樊)进行整车匹配后的排放检测实验,结果表明:本文研发的三效催化转化器对三种废气的转化效率均在92%以上,各项性能指标均满足欧IV排放标准限值。汽油机三效催化转化器与整车配套使用结果表明,本文研发的三效催化转化器与整车装车使用寿命长达120000km以上。
In this dissertation, in view of real problems, such as low conversion efficiency, high light-off temperature, a shorter working life as well as Inefficient control of emissions in the working process in Three-Way catalytic Converter(TWC), the theory including mechanism modeling, numerical simulation, and multi-disciplinary design optimization and artificial intelligence, etc. is applied to TWC for exploring a design optimization theories and methods of effective, rational, efficient , longevous and low- emission TWC, Which improve the TWC characteristics of high efficiency, low light-off temperature, a longer working life, as well as efficient emissions control performance in the working process. It is of great theoretical and practical significance to explore new TWC development methods and techniques, which improve the level of emission control of the automotive TWC.
     In this paper, based on Hunan University"985" the second phase project, " Scientific and technological innovation platform for advanced automotive design and manufacture technology " (electronic control and power emission subproject) (key project of the Ministry of Education [2004] 1), and focusing scientific and technological project in Hunan Province, " research and development on automotive TWC "( Hunan Science and technology research project [2002] 87) , a design optimization theory and methods of highly efficient, longevous and low-emission TWC is studied through the combination method of theoretical analysis with experimental study for the purpose of the successful research and development on TWC with characteristic of higher conversion efficiency, lower light-off temperature, a longer working life, as well as highly efficient emission control process. The main work and innovation of the paper are as follows:
     A mathematical model of multi-shape TWC performance including sub-models, such as the flow and heat transfer, chemical reactions is established, and side-by-stacking method of the volume control for the conservation of flow and heat transfer equations calculating, as well as the numerical solution in turbulent flow pressure field is put forward. Non-cylindrical monolith represented by elliptical cross section carries out numerical simulation and the effect of ellipticity, the length of monolith coupled with cross-sectional area, the monolith hole density coupled with the hole wall thickness on the TWC performance is analyzed, Which provides a solid theoretical foundation for the study of multi-shape TWC performance.
     Based on principle of the mass and energy balance of the gas and solid phase (monolith surface) in the automobile TWC, the multi-element response and conversion features mathematical model in the TWC is established including sub-models, such as a multi-million-catalytic reaction mechanism, the catalyst surface coverage changes, Ce storage of oxygen chemical reaction. The simulation of conversion efficiency, the gas composition and distribution, the catalyst surface coverage changes, the cold-start of the TWC as well as the catalyst oxygen storage capacity coincides with the test results very well.
     The TWC deterioration characteristics model is established from the sintering rate and the response rate including the deterioration process, the TWC aging characteristic is simulated numerically, the results show that in the aging process, an average diameter of Pt particles increases rapidly, and the inactivation factor in the aging rapidly decreases, the activity of the catalyst declines largest. After 100,000 km aging of the TWC, HC, CO, NOx conversion efficiency reduces by 20 percent or more. To this end, TWC anti-aging measures are proposed from catalyst and its distribution, which provides a basis for the structure optimization and performance improvement of TWC.
     For the first time, multidisciplinary design optimization method is put forward for highly efficient, longevous and low-emission TWC which objective function includes conversion efficiency, pressure loss, mass and thermal shock resistance of TWC, in which based on more shape and working condition, such as geometry, structure and state bound, the overall optimization of highly efficient, longevous TWC is systematically studied. Through the method, the results show that the TWC conversion efficiencyηincreases by 5.42 percent, pressure lossΔp decreases by 6.99 percent, the mass M reduces by 11.68 percent, displacement deformationΔεreduces by 20.91 percent, and overall performance improves up to 8.40 percent. The method provides optimization design for highly efficient, longevous and low-emission TWC with strong theoretical guidance.
     Using the least square method and least squares support vector machines, the gasoline engine air mass flow measurement dynamic model is built,and Based on oval gear sensor fuel consumption measuring principle,gas mass flow measurement model is established. With the signal of white noise extracted or removed using wavelet analysis , and measurement signal beating and volatility removed by respectively using eliminating hopping signal algorithm and average recursive filter algorithm, and with function chain neural network fitting for the noise data processing, the interference of the various data collection is effectively eliminate. To provide strong technical support for the working environment optimization match in TWC, a fuzzy neural network controller is designed according to the TWC work environment characteristics of the parameters signal,and thermal situation of the working environment monitoring system of TWC is successfully developed by combining Serial Programming with ODBC technology.
     Gasoline engine TWC bench test results show that, the light-off temperature of the TWC developed in this paper is about 255℃, emissions testing of the TWC matched with the vehicle tested in the National Automotive Test Center (Xiangfan)show that, the exhaust gas conversion efficiency of the TWC developed is more than 92 percent, the performance indicators meets the European IV emission standards limit, the useful time of TWC with Vehicle loaded is up to more than 120,000 km.
引文
[1]龚金科.汽车排放污染及控制[M].北京:人民交通出版社,2007
    [2]龚金科,鄂加强,谭理刚等.热动力设备排放污染及控制[M].北京:中国电力出版社,2007.
    [3]刘巽俊.内燃机的排放与控制.北京:机械工业出版社,2003
    [4]蔡隆玉.多形状多结构参数三效催化转化器数值模拟及应用研究[D].长沙:湖南大学,2007.
    [5]林培琰等.非贵金属废气净化三效催化剂的研制.化学工程师,1990,(6):4-8
    [6]李琬等.稀土钙钛矿型催化剂与Hopcalit.环境化学,1985,(2):1-5
    [7]林培琰等.KHW型汽车排气净化催化剂的应用.石油化工,1984,16(2):105
    [8] Jeanet. High Temperature of Ceria-Zirconia Supported Pd Model Catalysts. SAE 980558
    [9] Roberta Dimonte. Pd/Ce0.6Zr0.4O2/Al2O3 as advanced materials for three-way catalysts.Part I: Catalyst characteristic,thermal stability and catalytic activity in the reduction of NO by CO. Applied catalysis B: Environmental,2000,24(3):157-167
    [10]李淑莲等.汽车尾气净化用Pt/ZrO2-CeO2催化剂的表征与性能.催化学报,1999,20(1):67-69
    [11]王务林,赵航,王继先.汽车催化转化器系统概述.北京:人民交通出版社,1999
    [12]王亚军,冯长根,王丽琼等.汽车催化转化器研究概述.石化技术与应用,2001,19(2):110-115
    [13] Voltz S.E.,Morgan C.R.,Liederman D.,et al.Kinetic Study of Carbon Monoxide and Propylene Oxidation on Platinum Catalysts.Ind Eng Chem Prod Res Develop,1973,12(4):294-301
    [14]康红艳.三效催化转化器反应机理研究及数值模拟:[湖南大学硕士学位论文].长沙:湖南大学,2005,
    [15] M.C.Lai , J.Y.Kim , C.Y.Cheng , etal . Three-Dimension Simulations of Automotive Catalytic Converter Internal Flow.SAE paper 910200,1991
    [16] Payri,Francisco,Benajes Jesus and Galindo Jose.One Dimensional FluidDynamic Model for Catalytic Converters in Automotive Engines.SAE 950785
    [17]帅石金,王建昕,庄人隽等.车用催化器结构因素对流速分布的影响.汽车工程,2000,22(1):29-32
    [18] Voltz S.E.,Morgan C.R.,Liederman D.,et al.Kinetic Study of Carbon Monoxide and Propylene Oxidation on Platinum Catalysts.Ind Eng Chem Prod Res Develop,1973,12(4):294-301
    [19] Oh S.H.,Cavendish J.C..Transients of Monolithic Catalytic Converters: Response to Step Changes in Feedstream Temperature as related to Controlling Auto-mobile Emissions.Ind. Eng. Chem. Prod. Res. Dev.,1982,21:29-37
    [20] Shigeki Sugiura.Amulti Dimensional Numerical Method for Predicting Warm Up Characteristic of Automobile Catalytic Converter System.SAE 952413
    [21] Montreuil C.N.,Williams S.C.,Adamczyk A.A..Modeling Current Generation Catalytic Converters: Laboratory Experiments and Kinetic Parameter Optimization- Steady State Kinetics.SAE paper 920096
    [22] Pattas,K.N. Stamatelos,A.M.,et al.Transient Modeling of 3–Way Catalytic Converter.SAE 940934
    [23] Katsuyuki Ohsawa,Naoki Baba and Shinji Kojima. Numerical Prediction of Transient Conversion Characteristics in a Three-Way Catalytic Converter.SAE 982556
    [24] Grigorios C. Koltsakis , Anastasios M.Stamatelos . Modeling dynamic phenomena in 3-way catalytic converters. Chemical Engineering Science,1999,(54):4567-4578
    [25]宋金瓯,解茂昭.汽车催化器工作过程的非稳态数值模型.大连理工大学学报,2000,40(2):176-179
    [26]何凤英.物质迁移引起的热交换对催化转化器性能影响和模型[上海交通大学硕士学位论文].上海:上海交通大学,2002
    [27] Shin’ichi Mastunaga, Koji Yokota. Thermal Deterioration Mechanism of Pt/Rh Three-way Catalysts .SAE paper 982706.
    [28] Ichiro Hachisuka, Hirohito Hirata, et al. Deactivation Mechanism of NOx Storage-Reduction Catalyst and Improvement of Its Performance. SAE 2000-01-1196
    [29] Ernane Ribeiro Streva,et al. Gasoline-Ethanol Blend Aging Effects on Engine Performance and Exhaust Emissions. Detroit,Michigan:2003 SAE World Congress 2003-01-3184
    [30] Katherine W. Hughes. Effect of Thermal Mass on Aging and Emissions Performance. Detroit,Michigan:2004 SAE World Congress 2004-01-1492
    [31] Joseph R. Theis,Justin A. Ura, George W, et al. The Effects of Aging Temperature and Air-Fuel Ratio on the NOx Storage Capacity of a Lean NOx Trap. SAE 2004-01-1493
    [32] C. Larese, et al. TWC deactivation by lead: A study of the Rh/CeO2 system. Applied Catalysis B: Environmental 62(2005) 132-143
    [33] A. Mart?′nez-Arias,et al. DRIFTS-XANES study of Pd-Ni/(Ce,Zr)Ox/Al2O3 model automotive catalysts. Catalysis Today(2006) 0920-5861
    [34] Stavroula Y. Christou,Henrik Birgersson, et al. Reactivation of severely aged three-way catalysts by washing with weak EDTA and oxalic acid solutions. Applied Catalysis B: Environmental 71(2007) 158-198
    [35]方茂东,范书章,刘东洲等.催化转化器在发动机台架上的评价试验装置.汽车工程,2000,22(3):159-161
    [36]方茂东,程勇,詹兴泉,李孟良.催化转化器老化试验相关性研究.汽车工程,2003,25(1):56-60
    [37]李有东,陈金亮.三效催化转化器性能劣化及其对策. 2003,32(2):32-34
    [38]尤丽.三效催化转化器老化特性数值仿真及优化研究[湖南大学硕士学位论文].长沙:湖南大学,2008.
    [39]王斌松.利用氧传感器诊断电控发动机故障交通运输工程学报,2002,2(2): 48-50
    [40]韦安和,陈特銮,马亚琴.汽油发动机排气催化转化器转化性能的研究.华南理工大学学报(自然科学版). 1999,27 (7): 86 90
    [41]申长江.一种车用氧传感器的研制[安徽农业大学硕士学位论文].合肥:安徽农业大学,2003
    [42]伍小明.2003.第二代车载诊断系统OBD-11[J].引进与咨询.(8). 37 39
    [43]刘雪芳,李岩,贾彦.汽车尾气催化转化器性能影响因素及其应用问题分析[J].内蒙古公路与运输,2001 (4): 41-44
    [44]刘雪芳.汽车与环境污染[J].内蒙古环境保护. 1998,10 (2): 34-41
    [45]朱军.氧传感器信号电压波形分析[J].汽车维修与保养. 2000,(11 ): 21-24
    [46]朱军.氧传感器波形分析[J].汽车维修与保养,2002,(1): 47-49
    [47]何锐,刘光葵,孙尧卿.氧传感器及其在汽车中的应用[J].传感器技术. 1999,18(3):1-4
    [48]吴克刚,曹建明.发动机测试技术[M].北京:人民交通出版社,2002
    [49]吴峰,卢燕,翟公涛.汽车排放与OBD随车诊断系统[J].青岛建筑工程学院学报. 2002,23 (3): 116-118
    [50]张正智2003年我国汽车工业的发展与分析[J].汽车研究与开发. 2004,(1): 5- 6
    [51]张增建,傅茂林,邢书清等,2001.电控汽车车载诊断系统与汽车废气排放[J].世界汽车,(2): 16 18
    [52]李东江,宋良玉.现代汽车用传感器及其故障检修技术[M].北京:机械工业出版社,1999
    [53]李兴虎.汽车排气污染与控制[M].北京:机械工业出版社,1999
    [54]杨邦朝,简家文,段建华,等.氧传感器的原理与进展[J].传感器世界. 2002, (1):1-8
    [55]汪立极.氧传感器的波形研究与发动机故障诊断[J].汽车维修. 2003,(11):11-13
    [56]汽车工程手册编辑委员会.汽车工程手册基础篇[M].北京:人民交通出版社,2001
    [57]陆华忠,赵云峰,吴慕春.本田汽车维修手册[M].沈阳:辽宁科学技术出版社,1997.
    [58]陈盛梁,罗宇,黄川,等,汽车尾气三效催化转化器及其最新进展[J].重庆大学学报,2002,25 (9): 90-93
    [59]国家质量监督检验检疫总局.汽油车用催化转化器的技术要求和试验方法(GB/T 18377-2001)[M].北京:中国标准出版社,2001.
    [60]罗志安,钱晓良,孙尧卿,等.二氧化锆氧传感器的零电位[J].传感器技术.2002,21 (9): 14 17
    [61]郝勇,范群,赫冬青,等.汽车排气污染现状及防治对策[J].环境保护科学. 2003,29 (4): 15-16
    [62]郭志才.汽车污染物排放问题探讨交通标准化[J]. 2003,(12):18~20.
    [63]钱人一,汽车发动机三效催化转化器和氧传感器的故障诊断[J].汽车技术. 2000,(3): 34-36
    [64]崔心存.现代汽车新技术[M].北京:人民交通出版社,2001.
    [65]梁宏伟,黄海燕,陈杰,等.发动机管理系统中OBD-11技术研究[J].车用发动机. 2002, (3). 26-28
    [66]黄河.汽车电喷系统基本原理[M].上海:上海交通大学出版社,2003.
    [67]龚木益,燃料电池汽车及重整器[J].汽车技术. 1997. (8): 60-61
    [68]董团结,王建听,庄人隽,等.三效催化转化器与电控汽油机匹配的研究[J].内燃机学报. 2001,19 (6): 573-576
    [69]蒋耘农,杨亚东.催化转化器的正确使用及故障诊断[J].汽车技术2001,(2): 37-39
    [70] William B Clemmens, Michael A Sabourin, Thomas Rao. 1990. Detection of Catalyst Performance Loss Using On-Board Diagnostics. SAE paper 900062
    [71] Botsaris P N, Bechrakis D, Sparis P D. An estimation of three-way catalyst performance using artificial neural networks during cold start. AppliedCatalysis A: General 243(2003): 285-292
    [72] Botsaris P N, Sparis P D. Microprocessor controlled three-way catalyst efficiency monitoring system. Microprocessors and Microsystems. 20(1997): 585-593
    [73] Botsaris P N, Sparis P D.2000. Ambient temperature influence on catalytic outlet-inlet temperature diference. Proc Instn Mech Engrs, Part D, Journal of Automobile Engineering. 214(D): 95- 101
    [74] Jacques Gordon. 2002. On-board diagnostics-this year and beyond. Aftermarket Business. (3): 52-56
    [75] Jan Kaspar, Paolo Fomasiero, Neal Hickey. 2003. Automotive catalytic converters: current status and some perspectives. Catalysis Today 77 (2003):419-449
    [76] Jeffery S Hepburn, Douglas A Dobson, Carolyn P Hubbard et al. 1994. A Review of the Dual EGO Sensor Method for OBD- II Catalyst Efficiency Monitoring. SAE paper 942057
    [77] Joseph R Theis. 1994. Catalytic Converter Diagnosis Using the Catalyst Exotherm. SAE paper 942058
    [78] Nick Collinge, Wel Cal, Tom Ma et a1.1993. A linear Catalyst Temperature Sensor for Exhaust Gas Ignition and On Board Diagnostics of Misfire and Catalyst Efficiency. SAE paper 930938
    [79] Peter G Eastwood. 1993. Measurement of Catalytic Converter Performance Using Exhaust Gas Sensors with Modified Characteristics. SAE paper 932873
    [80] Sparis P D, Botsaris P, Karkanis A et al. 1997. Three-way catalyst assessment viaoutlet-inlet temperature measurements: driving tests. Proc Instn Mech Engrs, Part D, Journal of Automobile Engineering. 211(D6): 445-454
    [81] Anders Unger, Kent Smith. The OBD II System in the Volvo 850 Turbo. SAE paper 932665
    [82]王连波,赵钰琳.现代化学基础[M].北京:化学工业出版社,1987
    [83]李绍芬.反应工程[M].北京:化学工业出版社,2000
    [84]天津大学物理化学科研室.物理化学[M].北京:高等教育出版社,1993
    [85]李绍芬.化学与催化反应工程[M].北京:化学工业出版社,1986
    [86]曹声春,胡艾希,尹笃林.催化原理及其工业应用技术[M].湖南:湖南大学出版社,2001
    [87]刘军.汽车排气后处理装置工作过程数值模拟[江苏大学博士学位论文].江苏:江苏大学,2001
    [88] Pattas K.N.,Stamatelos A.M.,Pistikopoulos P.K.,et al.Transient Modellingof 3-way Catalytic Converters.SAE Paper 940934
    [89]龚金科,周立迎,梁昱等.三效催化转化器压力损失对发动机性能的影响[J].汽车工程,2004,26(4):413-416
    [90]傅德薰,马延文.计算流体力学[M].北京:高等教育出版社,2002.7
    [91] Wendland.D.W.,Kreucher,J.E. and Anderson E.Reducing Catalytic converter Pressure Loss with Enhanced Inlet-Header Diffusion.SAE 952398
    [92] Montreuil C.N.,Williams S.C.,Adamczyk A.A..Modeling Current Generation Catalytic Converters: Laboratory Experiments and Kinetic Parameter Optimization-Steady State Kinetics.SAE paper 920096
    [93]郭健.多学科设计优化技术研究[西北工业大学硕士学位论文].西安:西北工业大学.2001.
    [94]穆雪峰.多学科设计优化代理模型技术的研究和应用[南京航空航天大学硕士学位论文].南京:南京航空航天大学. 2004.
    [95] Joseph P.Giesing, Jean-Francois M. Barthelemy. A Summary of Industry MDO Applications and Needs [J], AIAA-98-4737, ibid.
    [96] Sobieszczanski-Sobieski J. A Linear Decomposition Method for Optimization ProblemBlueprint for Development [J]. NASA Technical Memorandum83248, 1982.
    [97] Sobieszczanski-Sobieski J. Sensitivity of Complex Internally Coupled Systems [J], AIAAJournal, 1990,28(1): 153-60.
    [98] Sobieszcanski-sobieski J. A Step from Hierarchic to Nonhierarchic System, NASA/CP-3031,1989.
    [99] Renaud J.E..Improved Coordination in Nonhierarchic System Optimization [J], AIAAJournal, 1993,131(12):2367-2373.
    [100] Sellar R.S..Response Surface Based Concurrent Subspace Optimization for Multidisciplinary System Design [J], AIAA-96-0714,1996.
    [101] Bolebaum C.L.. Formal and Heuristic System Decomposition in Structural Optimization[J], NASA/CR-4413, 1991.
    [102] Braun R.D二Use of the Collaborative Optimization Architecture for Launch Vehicle [J],AIAA-96-4018. 1996
    [103]余雄庆,姚卫星等.关于多学科设计优化计算框架的探讨[J] .机械科学与技术. 2003 ,23(3):286-289.
    [104]龚春林.多学科设计优化技术研究[西北工业大学硕士学位论文].西安:西北工业大学,2004.
    [105]陈琪峰,李晓斌,戴金海.导弹总体参数优化设计的合作协调进化MDO算法[J].国防科技大学学报. 2001,23(5):9-11.
    [106]谷良贤,龚春林,宋寒冰.协作优化方法的计算特性及其应用范围研究[J] .空间科学学报. 2002年增刊.
    [107]谷良贤,宋寒冰,龚春林.协作优化算法及其在飞行器设计中的应用[J] .弹箭与制导学报. 2002,9
    [108]胡峪,李为吉.飞机多学科设计的分级优化方法[[J] .西北工业大学学报. 2001,19(1):144-147.
    [109]范丽,周洪伟,张育林.飞行器多学科优化设计中基于产品模型的数据集成[J].中国空间科学技术. 2002,4.
    [110]白小涛.飞机多学科设计协同优化及近似技术研究[西北工业大学硕士学位论文].西安:西北工业大学.2005.
    [111]陈伟,杨树兴,赵良玉BLISS方法的基本理论及应用[J] .弹箭与制导学报. 2007,27(5); 229-232,236.
    [112]马静敏.基于isIGHT的电子汽车衡的多学科设计优化[山东科技大学硕士学位论文].青岛:山东科技大学.2005.
    [113]王鹏.鱼雷总体多学科设计优化理论和应用研究[西北工业大学硕士学位论文].西安:西北工业大学.2004
    [114] Dudley, J., Multidisciplinary Optimization of the High-Speed Civil Transport, AIAA-95-0124, 1995..
    [115] Barthelemy, J.F M., Integrating Aerodynamics and Structures in the–Minimum Weight Design of a Supersonic Transport Wing, AIAA-92-2372, 1992.
    [116] Sutjahjo, E., Multidisciplinary Coupled Finite Element Procedures for Fluid Mechanics, Heat Transfer, and Solid Mechanics, AIAA-94-4256, 1994.
    [117] Sobieszczanski-Sobieski, J., Multidisciplinary Aerospace Design Optimization:Survey of Recent Developments, AIAA-96-0711,1996.
    [118] Sobieszczanski-Sobieski, J., Sensitivity of Complex Internally Coupled Systems,AIAA Journal, Vol. 28, No. 1,January 1990, p153一160.
    [119] Olds, J., System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO, AIAA-94-4339, 1994.
    [120]鄂加强.智能故障诊断及其应用[M].长沙:湖南大学出版社,2006.
    [121]张学工.关于统计学习理论与支持向量机.自动化学报[J], 2000,26(1):32-42
    [122]刘孟祥,钟志华,龚金科.基于函数链神经网络的车用发动机气缸压力数据采集系统[J].湖南大学学报(自然科学版)2007,34(4):29-32.
    [123]刘孟祥,龚金科.车用发动机热工状况在线监测系统[J].农业机械学报,2008,39(9):203-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700