选择性催化还原氮氧化物钛基催化剂研究及催化转化器的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,汽车保有量飞速增加,汽车尾气造成的环境污染日益严重。柴油车因其动力与经济性能优越,逐渐成为机动车的主流,而柴油车尾气的主要污染物为碳烟颗粒物PM和氮氧化物NO_x。对于柴油机排放控制技术主要有两种:通过废气再循环(EGR)降低氧浓度及燃烧温度,从而降低NO_x的产生量,再采用微粒捕集器(DPF)去除PM;另一种为通过优化燃烧降低PM的产生,再采用选择性催化还原技术(SCR)去除NO_x。考虑到燃油经济性与我国的燃油品质,SCR技术更适合我国国情。
     氨选择性催化还原技术(NH_3-SCR)是一种应用广泛的脱硝技术,在固定源与移动源去除氮氧化物应用中都取得了很好的效果。高效催化剂的研发是该技术的核心内容,目前商用SCR催化剂为V_2O_5-WO_3(MoO3)/TiO_2,在中高温范围具有优异的催化性能。但活性组分钒是剧毒物质,脱落到环境中会造成二次污染,且该催化剂温度窗口窄,SO_2的氧化率高,易碱中毒。所以近年来研究者们在致力于开发新型非钒基的SCR催化剂。本文在现有研究基础上,希望通过对TiO_2载体进行改性,得到更高效的SCR催化剂。选取的活性组分主要为过渡金属铬(Cr)和稀土元素铈(Ce)。利用XRD、BET、XPS、TPD和TPR等技术对催化剂进行表征,研究载体优化对催化剂物理化学性质的影响。并利用原位漫反射红外光谱技术(in-situ DRIFTS)研究反应物在催化剂表面的吸附特性和反应机理。在传统钒钨钛催化剂研究方面,对商用V_2O_5-WO_3/TiO_2催化剂的碱金属中毒机理及中毒后的催化剂再生技术进行了研究,并在课题组前期工作基础上,制备了金属载体的钒钨钛催化转化器。本文的具体工作内容如下:
     (1)采用溶胶-凝胶法制备了WO_3/TiO_2催化剂,该催化剂在高温区间(400-600℃)展现出了较高的SCR活性。通过XRD、TEM、BET和TPD等表征技术对催化剂的结构、表面酸性等物化性质进行了研究,考察了钨添加量对催化剂性质的影响。结合Raman光谱和H_2-TPR技术,分析了表面钨氧化物结构,确定了钨四面体为高温SCR反应的主要活性组分。采用钨钛高温催化剂为载体,担载活性组分CeO_2得到CeO_2-WO_3/TiO_2催化剂,测试其中温催化性能,同时采用原位红外技术研究了WO_3的掺杂对催化剂表面酸性的影响以及CeO_2-WO_3/TiO_2催化剂的SCR反应机理。
     (2)向TiO_2载体中掺杂SO_4~(2-),以SO_4~(2-)/TiO_2为载体,制备了M(Cr, Ce)-SO_4~(2-)/TiO_2催化剂,研究SO_4~(2-)掺杂对TiO_2表面酸性和氧化还原性的影响,以及由此带来的SCR催化活性的差异。发现SO_4~(2-)的添加,可抑制TiO_2与金属氧化物的结晶度,利于形成高价态的金属离子(Cr~(6+)),并显著提升催化剂的氧化还原性,进而提高催化活性。通过DRIFTS研究了该催化剂的反应机理,200℃下的测试结果表明对于催化剂Cr2O3-SO_4~(2-)/TiO_2,反应过程中同时存在Eley-Rideal与Langmuir-Hinshelwood机理。而对于CeO_2-SO_4~(2-)/TiO_2催化剂,反应中只存在Eley-Rideal机理。
     (3)研究传统V_2O_5-WO_3/TiO_2催化剂的碱金属中毒机理,考察了不同的碱金属盐对催化剂的毒化作用,各类碱金属化合物对该催化剂的毒化作用的强弱为KCl>KNO_3≥NaNO_3>NaCl>Na_2SO_4>K_2SO_4。通过电泳再生法对中毒的催化剂进行了再生,与传统水洗再生法相比,该方法可显著恢复中毒催化剂的催化活性。结合研究组前期工作,采用溶胶-凝胶法在金属合金(FeCrAl)上涂覆过渡涂层SiO_2-Al_2O_3和催化剂V_2O_5-WO_3/TiO_2,制备了金属蜂窝载体的SCR催化转化器,并对其进行了封装。
     (4)研究了几种尖晶石结构催化剂对碳烟的催化氧化性能,选取了活性最高的CrCo_2O_4为活性组分,在负载少量贵金属的情况下制备了金属载体的微粒氧化转化器,并对其进行了台架测试,结果表明该催化转化器对HC、CO和PM有很高的去除效率,与该型号发动机的排放标准对比,发现发动机尾气经过转化器处理后CO、CH的排放在欧V限值以内,PM的排放在欧VI限值内。
     (5)对目前更先进的SCR技术-固体尿素SSCR技术进行了技术综述,并在仪器制造方面进行了初步设计和研究,设计了一种固体尿素粉末计量装置。
With the development of economy and the rapid increase of automobile amount, theenvironmental pollution caused by automobile exhaust has become more and more serious.Because of its power and economic performance, diesel vehicles has gradually become themainstream of motor vehicle, and the main pollutants in diesel exhaust are particles matter (PM)and nitrogen oxides (NO_x). The emission control technology for diesel engine are mainly of twotypes: reduceing the oxygen concentration and the combustion temperature through the exhaustgas recirculation (EGR) technology to reduce the amount of NO_xproduced, and then using dieselparticulate filter (DPF) to remove PM; Another is through the optimization of combustion toreduce the generation of PM, and then use a selective catalytic reduction technology (SCR)remove NO_x. Considering the economy and fuel quality, SCR technology is more suitable for ournational conditions.
     Ammonia selective catalytic reduction (NH_3-SCR) is an effective denitration technology. Ithas achieved very good results in the applications of removal nitrogen oxides for fixed sourceand mobile source. Research and development of high efficient catalyst is the core content of thistechnology, the current commercial SCR catalyst, V_2O_5-WO_3(MoO_3)/TiO_2, has excellentcatalytic properties in the middle temperature range. However the vanadium catalyst has manydisadvantages, such as the toxicity of vanadium species, highly SO_2oxidation rate, narrowtemperature window, and the alkali poisoning effect. Recently, researchers are committed to thedevelopment of new SCR catalyst without vanadium. Based on the existing research, we hope toobtain more efficient SCR catalyst by modifying TiO_2support. The transition metal chromium(Cr) and rare earth cerium (Ce) were selected as the main active component. The catalysts werecharacterized by XRD, BET, XPS, TPD and TPR technology to study on the effect ofoptimization of the catalyst carrier. Using the in-situ DRIFTS technology to study the adsorptionproperties of the reactants on the catalyst surface and the reaction mechanism. In the research of traditional catalyst, alkali metal poison mechanism on a commercial V_2O_5-WO_3/TiO_2catalystand the regeneration of poisoning catalyst were studied. Based on previous work of our researchgroup on the glass ceramic coating technology, the metal support catalytic converter withV_2O_5-WO_3/TiO_2catalyst was prepared. In this paper, the specific contents are as follows:
     (1) WO_3/TiO_2catalyst was prepared by sol-gel method, the catalyst showed high SCRactivity in the high temperature range (400-600℃). Structure, surface acidity andphysico-chemical properties of the catalyst were studied through the XRD, TEM, BET and TPDcharacterization. The effect of tungsten additives on the properties of catalyst was alsoinvestigated. The surface structure of tungsten oxide was analyzed by Raman spectrum andH_2-TPR technology, and tungsten tetrahedron was considered as the main active species in hightemperature SCR activity. CeO_2was loaded on WO_3/TiO_2to get CeO_2-WO_3/TiO_2catalyst usingin the middle temperature range. The effect of Ce loading on the activity of SCR was tested. Thereaction mechanism on CeO_2-WO_3/TiO_2was studied with DRIFTS technique.
     (2) SO_4~(2-)/TiO_2was prepared by sol-gel method. And the active component of M (Cr, Ce)were loaded on SO_4~(2-)/TiO_2support to obtain M (Cr, Ce)-SO_4~(2-)/TiO_2catalyst. We studied theeffect of SO_4~(2-)doping into TiO_2on the acidity and redox of the catalysts. Found that the SO_4~(2-)can inhibit crystallization of TiO_2and active component, and easy to form high valence state ion(Cr~(6+)), and significantly enhance redox of the catalyst, and then improve the catalytic activity.The reaction mechanism was studied by the DRIFTS technology. The results showed that: forCr_2O_3-SO_4~(2-)/TiO_2, Eley-Rideal and Langmuir-Hinshelwood mechanism exist simultaneously inthe reaction process; while for the CeO_2-SO_4~(2-)/TiO_2catalyst, only Eley-Rideal reactionmechanism exists.
     (3) Alkali metal-induced deactivation of traditional V_2O_5-WO_3/TiO_2catalyst used for SCRwas investigated. The poisoning effect of different alkali metal salts was studied and the Poisonintensity order is: KCl>KNO_3≥NaNO_3>NaCl>Na_2SO_4>K_2SO_4. The poisoned catalyst wasregenerated by electrophoresis method. Compared with the traditional washing regenerationmethod, this method can significantly restore the catalytic activity of the poisoned catalyst.Based on the previous work of our group, SCR catalytic converter based on metal honeycombcarrier was prepared and packaged.
     (4) The catalytic performance of several spinel catalysts was researched on soot combustionand CrCo_2O_4with highest activity was selected as active component. The particle matteroxidation converter with metal carrier was prepared, and it has been tested on the bench test. Theresults showed that the catalytic converter has high removal efficiency on HC, CO and PM. Theemission value of CO, CH and PM could satisfy the Europe V limits and Europe VI respectively.
     (5) Review the more advanced SCR technology-solid urea SCR technology. Some primarywork has carried out on the equipment manufacturing design and research. A solid urea powdermetering device was designed.
引文
[1]周文彬.采用EGR和催化还原技术降低柴油机NO_x排放的试验研究[D].大连:大连理工大学动力机械及工程学院,1998.
    [2]韩建.柴油车尾气SCR催化剂的制备与测试[D].长春:吉林大学物理学院,2012
    [3]中华人民共和国环境保护部.2010年环境统计年报[M].北京,2010.
    [4]邓涛.火电厂烟气SCR脱硝催化剂在线活化实验研究[D].长沙:长沙理工大学热能工程学院,2012.
    [5]郝吉明,段雷.大气污染控制工程实验[M].北京:高等教育出版社,2004.
    [6]吴忠标.大气污染控制工程(21世纪高等院校教材)[M].北京:科学出版社:2002.
    [7] Treea D R, Sevensson K I. Soot processes in compression ignition engines [J]. Progress inEnergy and Combustion Science,2007,33:272-309.
    [8] Kennedy I M. Models of soot formation and oxidation [J]. Progress in Energy and CombustionScience,1997,23(2):95-132.
    [9]郝吉明,傅立新,贺克斌.城市机动车排放污染控制:国际经验分析与中国的研究成果[M].北京:中国环境科学出版社.2001.
    [10]王建昕,傅立新,黎维彬.汽车排气污染治理及催化转化器[M].北京:化学工业出版社,2000.
    [11]李鹏,谭丕强,楼狄明等.满足国Ⅴ排放的重型柴油机排气后处理技术[J].车用发动机,2010,(4):1-6.
    [12] Busca G, Lietti L, Ramis G, Berti F. Chemical and mechanistic aspects of the selectivecatalytic reduction of NOxby ammonia over oxide catalysts: A review [J]. Applied Catalysis B:Enviornment,1998,18(1-2):1-36.
    [13]贺泓,李俊华,何洪,上官文峰,胡春等.环境催化-原理及应用[M].北京:科学出版社,2008.
    [14] Otto K,Shelef M, Kummer J T. Studies of surface reactions of nitric oxide by nitrogen-15isotope labeling. I. Reaction between nitric oxide and ammonia over supported platinum at200-250.deg. The Journal of Physical Chemistry,1970,74(13):2690-2698.
    [15] Janssen F, Vanden Kerkhof F, Bosch H, Ross J. Mechanism of the reaction of nitric oxide,ammonia, and oxygen over vanadia catalysts. I. The role of oxygen studied by way of isotopictransients under dilute conditions [J]. The Journal of Physical Chemistry,1987,91(23):5921-5927.
    [16] Janssen F, Vanden Kerkhof F, Bosch H, Ross J. Mechanism of the reaction of nitric oxide,ammonia, and oxygen over vanadia catalysts.2. Isotopic transient studies with oxygen-18andnitrogen-15[J]. The Journal of Physical Chemistry,1987,91(27):6633-6638.
    [17] Duffy B L, Curry-Hyde H E, Cant N W, Nelson P F. Isotopic Labeling Studies of the Effectsof Temperature, Water, and Vanadia Loading on the Selective Catalytic Reduction of NO withNH3over Vanadia-Titania Catalysts [J]. Journal of Physical Chemistry,1994,98(29):7153-7161.
    [18] Ozkan U S, Cai Y, Kumthekar M W. Investigation of the Mechanism of Ammonia Oxidationand Oxygen Exchange over Vanadia Catalysts Using N-15and O-18Tracer Studies [J]. Journal ofCatalysis,1994,149(2):375-389;
    [19] Ozkan U S, Cai Y, Kumthekar M W. Investigation of the Reaction Pathways in SelectiveCatalytic Reduction of NO with NH3over V2O5Catalysts: Isotopic Labeling StudiesUsing18O52,15NH3,15NO, and1N18O [J]. Journal of Catalysis,1994,149(2):390-403;
    [20] Ozkan U S, Cai Y, Kumthekarm M W. Mechanistic studies of selective catalytic reduction ofnitric oxide with ammonia over V2O5/TiO2(anatase) catalysts through transient isotopic labelingat steady state [J]. The Journal of Physical Chemistry,1995,99(8):2363-2371.
    [21] Inomata M,Miyamoto A, Murakallli Y. Mechanism of the reaction of NO and NH3onvanadium oxide catalyst in the presence of oxygen under the dilute gas condition [J]. Journal ofCatalysis,1980,62(1),140-148.
    [22] Ramis G,Yi L,Busca G. Ammonia activation over catalysts for the selective catalyticreduction of NOxand the selective catalytic oxidation of NH3: An FT-IR study [J]. Catalysis Today,1996,28(4):373-380.
    [23] Takagi M, Kawai T, Soma M, Onishi T, Tamaru K. The mechanism of the reaetion betweenNOxand NH3on V2O5in the presence of oxygen [J]. Journal of Catalysis,1977,50(3):441-446.
    [24] Tops e N Y. Mechanism of the Selective Catalytic Reduction of Nitric Oxide by AmmoniaElucidated by in Situ On-Line Fourier Transform Infrared Spectroscopy [J]. Science,1994,265(5176):1217-1219.
    [25](a) Tops e N Y. Characterization of the nature of surface sites on vanadia-titania catalysts byFTIR [J]. Journal of Catalysis,1991,128(2):499-511;(b) Tops e N Y, Tops e H, Dumesic J H.Vanadia/Titania Catalysts for Selective Catalytic Reduction (SCR) of Nitric-Oxide by Ammonia: I.Combined Temperature-Programmed in-Situ FTIR and On-line Mass-Spectroscopy Studies [J].Journal of Catalysis,1995,151(1):226-240;(c) Tops e N Y, Tops e H, Dumesic J H.Vanadia/Titania Catalysts for Selective Catalytic Reduction of Nitric-Oxide by Ammonia: I.I.Studies of Active Sites and Formulation of Catalytic Cycles [J]. Journal of Catalysis,1995,151(1):241-252.
    [26] Nikolopoulos A, Stergioula E, Efthimiadis E, Vasalos I. Selective catalytic reduction of NOby propene in excess oxygen on Pt-and Rh-supported alumina catalysts [J]. Catalysis Today,1999,54(4):439-450.
    [27] Parvulescu V, Grange P, Delmon B. Catalytic removal of NO [J]. Catalysis Today,1998,46(4):233-316.
    [28] Macleod N, Lambert R M. Lean NOxreduction with CO+H2mixtures over Pt/Al2O3andPd/Al2O3catalysts [J]. Applied Catalysis B: Environmental,2002,35(4):269-279.
    [29] Krocher O, Devadas M, Elsener M, Wokaun A, Soger N, Pfeifer M, Demel Y, Mussmann L.Investigation of the selective catalytic reduction of NO by NH3on Fe-ZSM5monolith catalysts [J].Applied Catalysis B: Environmental,2006,66(3-4):208-216.
    [30] Lobree L J, Hwang I C, Reimer J A, Bell A T. Investigations of the State of Fe in H-ZSM-5[J]. Journal of Catalysis,1999,186(2):242-253.
    [31] Coq B, Mauvezin M, Delahay G, Butet J B, Kieger S. The simultaneous catalytic reduction ofNO and N2O by NH3using an Fe-zeolite-beta catalyst [J]. Applied Catalysis B: Environmental,2000,27(3):193-198.
    [32] Coq B, Mauvezin M, Delahay G, Kieger S. Kinetics and mechanism of the N2O reduction byNH3on a Fe-zeolite-beta catalyst [J]. Journal of Catalysis,2000,195(2):298-303.
    [33] Sun Q, Gao Z X, Chen H Y, Sachtler W M H. Reduction of NOxwith ammonia over Fe/MFI:Reaction mechanism based on isotopic labeling [J]. Journal of Catalysis,2001,201(1):88-99.
    [34] K gel M, Sandoval V, Schwieger W, Tissler A, Turek T. Simultaneous catalytic reduction ofNO and N2O using Fe-MFI prepared by solid-state ion exchange [J]. Catalysis Letter1998,51(1):23-25.
    [35] Long R, Yang R. Selective catalytic reduction of NO with ammonia over Fe3+exchangedmordenite (Fe-MOR): Catalytic performance, characterization, and mechanistic study [J]. Journalof Catalysis,2002,207(2):274-285.
    [36] Sultana A, Nanba T, Sasaki M, Haneda M, Suzuki K, Hamada H. Selective catalytic reductionof NOxwith NH3over different copper exchanged zeolites in the presence of decane [J]. Catal.Today,2011,164(1):495-499.
    [37] Piehl G, Liese T, Grünert W. Activity, selectivity and durability of VO-ZSM-5catalysts forthe selective catalytic reduction of NO by ammonia [J]. Catalysis Today,1999,54(4):401-406.
    [38] Pasel J, K ner P, Montanari B, Gazzano M, Vaeeari A, Makowski W, Lojewski T, DziembajR, Papp H. Transition metal oxide supported on active carbons as low temperature Catalysts forthe Selective catalytic reduction (SCR) of NO with NH3[J]. Applied Catalysis B: Environmental,1998,18(3-4):199-213.
    [39] Chiang Y C, Chiang P C, Huang C P. Effects of pore structure and temperature on VOCadsorption on activated carbon [J], Carbon,2001,39(4):523-534.
    [40] Zhang X, Huang Z, Liu Z. Effect of KCl on selective catalytic reduction of NO with NH3over a V2O5/AC catalyst [J]. Catalysis Communication,2008,9(5):842-846.
    [41] Li P, Liu Q, Liu Z. N2O and CO2Formation during Selective Catalytic Reduction of NO withNH3over V2O5/AC Catalyst [J]. Industrial&Engineering Chemistry Research,2011,50(4):1906-1910.
    [42] Boyano A, Lázaro M J, Cristiani C, Maldonado-Hodar F J, Forzatti P, Moliner R. Acomparative study of V2O5/AC and V2O5/Al2O3catalysts for the selective catalytic reduction ofNO by NH3[J]. Chemical Engineering Journal,2009,149(1-3):173-182.
    [43] Zhu Z P, Liu Z Y, Niu H X, Liu S J. Promoting Effect of SO2on Activated Carbon-SupportedVanadia Catalyst for NO Reduction by NH3at Low Temperatures, Journal of Catalysis,1999,187(1):245-248.
    [44] Garcia-Bordejé E, Calvillo L, Lázaro M J, Moliner R. Vanadium supported on carbon-coatedmonoliths for the SCR of NO at low temperature: effect of pore structure [J]. Applied Catalysis B:Environmental,2004,50(4):235-242.
    [45] Marbán G, Antuňa R, Fuertes A B. Low-temperature SCR of NOxwith NH3over activatedCarbon fiber composite-supported metal oxides [J]. Applied Catalysis B: Environmental,2003,41(3):323-338.
    [46] Zhu Z P, Liu Z Y, Niu H X, Liu S J, Hu TD, LiuT, Xie Y N. Mechanism of SO2Promotionfor NO reduction with NH3ove activated carbon-supported vanadium oxide catalyst [J], Journal ofCatalysis,2001,197(1):6-16.
    [47] Zhu Z H, Radovie L R, Lu G Q. Effects of acid treatments of carbon on N2O and NOReduction by carbon-supported copper catalysts [J], Carbon,2000,38(3):451-464.
    [48] Singoredjo L, Slagt M, Wees J V, KaPteijn F, Moulijn J A. Selective catalytic reduetion ofNO with NH3over carbon supported copper catalysts [J]. Catalysis Today,1990,7(2):157-165.
    [49] TSeng H H, Wey M Y, Liang Y S, Chen K H. Catalytic removal of SO2, NO and HCI fromincineration flue gas over activated carbon-supported metal oxides [J], Carbon,2003,41(5):1079-1085.
    [50] Tang X L, Hao J M, Yi H H, Li J H. Low-temperature SCR of NO with NH3over AC/Csupported manganese-based monolithic catalysts [J]. Catalysis Today,2007,126(3-4):406-411.
    [51] Bosch H, Janssen F. Catalytic reduction of nitrogen oxides-A review on the fundamentals andtechnology [J]. Catalysis Today,1988,2(4):369-532.
    [52] Pavuleseu V I, Grange P, Delmon B. Catalytic removal of NO [J]. Catalysis Today,1998,46(4):233-316.
    [53] Uchishawa J O, Obuchi A., Zhao Z, Kushiyama S. Carbon oxidation with platinum supportedcatalysts [J]. Applied Catalysis B: Environmental,1998,18(3-4): L183-187.
    [54] Uchishawa J O, Obuchi A, Nanba T, Ohi A. Catalytic performance of Pt/MOx loaded overSiC-DPF for soot oxidation [J]. Applied Catalysis B: Environmental,2003,43(2):117-129.
    [55] Uchishawa J O, Wang S D, Nanba T, Ohi A, Obuchi A. Improvement of Pt catalyst for sootoxidation usingmixed oxide as a support [J]. Applied Catalysis B: Environmental,2003,44(3):207-215.
    [56] Krishna K, Bueno-López A, Makkee M, Moulijn J A. Potential rare earth modified CeO2catalysts for soot oxidation I: Characterisation and catalytic activity with O2[J]. Applied CatalysisB: Environmental,2007,75(3-4):201-209.
    [57] Uchisawa J, Obuchi A, Ohi A, Nanba N, Nakayama N. Activity of catalysts supported onheat-resistant ceramic cloth for diesel soot oxidation [J]. Powder Technol,2008,180(1-2):39-44.
    [58] Zhang Y H, Zou X T. The catalytic activities and thermal stabilities of L i/Na/K carbonatesfor diesel soot oxidation [J]. Catalysis Communication,2007,8(5):760-764.
    [59] Neeft J P A. Catalytic oxidation of soot. Potential for the reduction of dieselparticulateemissions,[PhD Dissertation], Delft: Delft University of Technology,1995.
    [56] Stannore B R, Brilhac J F, Gilot P. The oxidation of soot: a review of expements chanismsand models [J]. Carbon,2001,39(15):2247-2268.
    [61] Neeft J P A, Makkee M, Moulijn J A. Metal oxides as catalysts for the oxidation of soot [J].The Chemical Engineering Journal and the Biochemical Engineering Journal,1996,64(2):295-302.
    [62] Russo N, Fino D, Saracco G, Specchia V. Studies on the redox p roperties of chromiteperovskite catalysts for soot combustion [J]. Journal of Catalysis,2005,229(2):459-469.
    [63] Fino D, Russo N, Cauda E, Saracco G, Specchia V. La-Li-Cr perovskite catalysts for dieselparticulate combustion [J]. Catalysis Today,2006,114(1):31-39.
    [64] L iu J, Zhao Z, Xu C M, Duan A J, Meng T, Bao X J. Simultaneous removal of NOxanddiesel soot particulates over nanometric La2-xKxCuO4complex oxide catalysts [J]. Catalysis Today,2007,119(1-4):267-272.
    [65] Liu J, Zhao Z, Xu C M, Duan A J. Simultaneous removal of NOxand diesel soot particulatesover nanometerLn-Na-Cu-O perovskite-like complex oxide catalysts [J]. Applied Catalysis B:Environmental,2008,78(1-2):61-72.
    [66]张亚军,苏军,张春润等.我国重型柴油机国Ⅳ及未来阶段排放控制技术路线选择分析研究[J].内燃机,2009,(5):45-49.
    [67] Dumesic J A, Tops e N Y, Tops e H, Chen Y, Slabiak T. Kinetics of Selective CatalyticReduction of Nitric Oxide by Ammonia over Vanadia/Titania [J]. Journal of Catalyis,1996,163(2):409-417.
    [68] Shubin A A, Lapina O B, Courcot D. Characterization by solid state51V NMR spectroscopy[J]. Catalysis Today,2000,56(4)379-387.
    [69] Imanari M, Watanabe Y. Reduction of NOxin Combustion Flue Gases on Tungsten BasedCatalysts [J]. Studies in Surface Science and Catalysis,1981,7:841-852.
    [70] Ramis G, Busca G, Cristiani C, Lietti L, Forzatti P, Bregani F. Characterization oftungsta-titania catalysts [J]. Langmuir,1992,8(7):1744-1749.
    [71] Engweiler J, Harf J, Baiker A. WOx/TiO2Catalysts Prepared by Grafting of TungstenAlkoxides: Morphological Properties and Catalytic Behavior in the Selective Reduction of NO byNH3[J]. Journal of Catalysis,1996,159(2):259-269.
    [72] Lietti L, Svachula J, Frorzatti P, Busca G, Ramis G, Bregani F. Surface and catalyticproperties of Vanadia-Titania and Tungsta-Titania systems in the Selective Catalytic Reduction ofnitrogen oxides [J]. Catalysis Today,1993,17(1-2):131-140.
    [73] Kobayashi M, Miyoshi K. WO3-TiO2monolithic catalysts for high temperature SCR of NOby NH3: Influence of preparation method on structural and physico-chemical properties, activityand durability [J]. Applied Catalysis B: Environmental,2007,72(3-4):253-261.
    [74] Yang H M, Shi R R, Zhang K, Hu Y H, Tang A D, Li X W. Synthesis ofWO3/TiO2nanocomposites via sol-gel method [J]. Journal of Alloys and Compounds,2005,398(1-2):200-202.
    [75] Zhu Z F, He X M, Zhao Y, Ren Q. Influence of WO3Additive on Crystallite StructuralTransformation of TiO2Powders [J]. Rare Metal Materials and Engineering,2010,39(5):0771-0774.
    [76] Daniel M F, Desbat B, Lassegues J, Gerand B, Figlarz M. Infrared and Raman study ofWO3tungsten trioxides and WO3, xH2O tungsten trioxide tydrates [J]. Journal of Solid StateChemistry,1987,67(2)235-240.
    [77] Chan S S, Wachs I E, Mruuell L L. Relative raman cross-sections of tungsten oxides:[WO3,Al2(WO4)3and WO3/Al2O3[J]. Journal of Catalysis,1984,90(1):150-155.
    [78] Vurrman M A, Wachs I E, Hirt A M. Structural determination of supported vanadiumpentoxide-tungsten trioxide-titania catalysts by in situ Raman spectroscopy and x-rayphotoelectron spectroscopy [J]. J. Phys. Chem.1991,95(24)9928-9937.
    [79] Horsley J A, Wachs I E, Brown J M, Via G H, Hardcastle F D. Structure of surface tungstenoxide species in the tungsten trioxide/alumina supported oxide system from x-ray absorptionnear-edge spectroscopy and Raman spectroscopy [J]. The Journal of Physical Chemistry,1987,91(15):4014-4020.
    [80] Deo G, Wachs I E. Predicting molecular structures of surface metal oxide species on oxidesupports under ambient conditions [J]. The Journal of Physical Chemistry,1991,95(15):5889-5895.
    [81] Schloz A, Schnyder B, Wokaun A. Influence of calcination treatment on the structure ofgrafted WOxspecies on titania [J]. Journal of Molecular Catalysis A: Chemical,1999,138(2-3):249-261.
    [82] Hardcastle F D, Wachs I E. Raman spectroscopy of chromium oxide supported on Al2O3,TiO2and SiO2: a comparative study [J]. Journal of Molecular Catalysis,1988,46(1-3):173-186.
    [83] Wachs I E, Chersich C C, Hardenberg J H, Reduction of WO3/A12O3and unsopported WO3:A comparative ESCA study [J]. Applied Catalysis,1985,13(2):335-346.
    [84] Vermaire D C, van Berge P C. The preparation of WO3/TiO2and WO3/Al2O3andcharacterization by temperature-programmed reduction [J]. Journal of Catalysis,1989,116(2):309-317.
    [85] Benitez V M, Fígoli N S. About the importance of surface W species inWOx/Al2O3duringn-butene skeletal isomerization [J]. Catalysis Communication,2002,3(10):487–492.
    [86] Lietti L, Alemany J L, Forzatti P, Busca G, Ramis G, Giamello E, Bregani F. Reactivity ofV2O5-WO3/TiO2catalysts in the selective catalytic reduction of nitric oxide by ammonia [J].Catalysis Today,1996,29(1-4)143-148.
    [87] Chen J P, Yang R T. Role of WO3in mixed V2O5-WO3/TiO2catalysts for selective catalyticreduction of nitric oxide with ammonia [J]. Applied Catalysis A: General,1992,80(1):135-148.
    [88] Lietti L, Nova I, Ramis G, DallAcqua L, Busca G, Giamello E, Forzatti P, Bregani F.Characterization and Reactivity of V2O5–MoO3/TiO2De-NOxSCR Catalysts [J]. Journal ofCatalysis,1999,187(2):419-435.
    [89] Ganduglia-Pirovano M V, Hofmann A, Sauer J. Oxygen vacancies in transition metal and rareearth oxides: Current state of understanding and remaining challenges [J]. Surface ScienceReports,2007,62(6):219-270.
    [90] Reddy B M, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta J C. StructuralCharacterization of CeO_2TiO_2and V_2O_5/CeO_2TiO_2Catalysts by Raman and XPS Techniques[J]. The Journal of Physical Chemistry B,2003,107(22):5162-5167
    [91] Wu Z B, Jin R B, Wang H Q, Liu Y. Effect of ceria doping on SO2resistance of Mn/TiO2forselective catalytic reduction of NO with NH3at low temperature [J]. Catalysis Communication,2009,10(6):935-939.
    [92] Shen Y S, Zhu S M, Qiu T, Shen S B. A novel catalyst of CeO2/Al2O3for selective catalyticreduction of NO by NH3[J]. Catalysis Communication,2009,11(1):20-23.
    [93] Xu, W, He H, Yu Y. Deactivation of a Ce/TiO2Catalyst by SO2in the Selective CatalyticReduction of NO by NH3[J]. The Journal of Physical Chemistry C,2009,113(11):4426-4432.
    [94] Gao X, Jiang Y, Fu Y, Zhong Y, Luo Z, Cen K. Preparation and characterization of CeO2/TiO2catalysts for selective catalytic reduction of NO with NH3[J]. Catalysis Communication,2010,11(5):465-469.
    [95] Chen, L, Li J, Ge M. Promotional Effect of Ce-doped V2O5-WO3/TiO2with Low VanadiumLoadings for Selective Catalytic Reduction of NOxby NH3[J]. The Journal of Physical ChemistryC,2009,113(50):21177-21184.
    [96] Chen L, Li J, Ge M, Zhu R. Enhanced activity of tungsten modified CeO2/TiO2for selectivecatalytic reduction of NOxwith ammonia [J]. Catalysis Today,2010,153(3-4):77-83.
    [97] Shan W, Liu F, He H, Shi X, Zhang C. Novel cerium-tungsten mixed oxide catalyst for theselective catalytic reduction of NOxwith NH3[J]. Chemistry Communication,2011,28:43-45.
    [98] Shan W, Liu F, He H, Shi X, Zhang C. A superior Ce-W-Ti mixed oxide catalyst for theselective catalytic reduction of NO_xwith NH_3[J]. Applied Catalysis B: Environmental,2012,115-116:100-106.
    [99] Larrubia M A, Ramis G, Busca G. An FT-IR study of the adsorption of urea and ammoniaover V_2O_5-MoO_3-TiO_2SCR catalysts [J]. Applied Catalysis B: Environmental,2000,27(3):L145–L151.
    [100] Si Z C, Weng D, Wu X D, Li J, Li G. Structure, acidity and activity of CuOx/WOx-ZrO_2catalyst for selective catalytic reduction of NO by NH_3[J]. Journal of Catalysis,2010,271(1):43–51.
    [101] Liu F D, He H, Ding Y, Zhang C B. Effect of manganese substitution on the structure andactivity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. AppliedCatalysis B: Environmental,2009,93(l-2):194–204.
    [102] Chen L, Li J H, Ge M F. DRIFT Study on Cerium-Tungsten/Titiania Catalyst for SelectiveCatalytic Reduction of NO_xwith NH_3[J]. Environmental Science&Technology,2010,44(24):9590-9596.
    [103] Alemany L J, Lietti L, Ferlazzo N, Forzatti P, Busca G, Giamello E, Bregani F. Reactivityand Physicochemical Characterization of V_2O_5-WO_3/TiO_2De-NO_xCatalysts [J]. Journal ofCatalysis,1996,155(1):117-130.
    [104] Wauthoz P, Ruwet M, Machej T, Grange P. Influence of the preparation method on theV_2O_5/TiO_2/SiO_2catalysts in selective catalytic reduction of nitric oxide with ammonia [J]. AppliedCatalysis,1991,69(1):149-167.
    [105] Blanco J, Bahamonde A, Alvarez E, Avila P. Symposiumon Reduction of NO_xand SO_xfrom Combustion Sources [C], Proceedings of the214th National Meeting, Am. Chem. Soc.,1997.
    [106] Chen J P, Yang R T. Selective Catalytic Reduction of NO with NH3on SO_4~(-2)/TiO_2Superacid Catalyst [J]. Journal of Catalysis,1993,139(1):277-288.
    [107] Tanabe K, Itoh M, Morishige K, Hattori H. Proceedings of the International Symposium onPreparation of Catalysts [C]. Brussels,1975.
    [108] Yamaguchi T. Recent progress in solid superacid [J]. Applied Catalysis,1990,61(1):1-25.
    [109] Waqif M, Bachelier J, Saur O, Lavalley J C. Acidic properties and stability ofsulfate-promoted metal oxides [J]. Journal of Molecular Catalysis,1992,72(1):127-138.
    [110] Sohn J R, Jang H J. Characterization of TiO2/SiO2modified with H2SO4and activity for acidcatalysis [J]. Journal of Catalysis,1992,136(1):267-270.
    [111] Baraket L, Ghorbel A, Grange P. Selective catalytic reduction of NO by ammonia onV2O5-SO42-/TiO2catalysts prepared by the sol-gel method [J]. Applied Catalysis B: Environmental,2007,72(1-2):37-43.
    [112] Si Z C, Weng D, Wu X D, Yang J. Roles of Lewis and Br nsted acid sites in NO reductionwith ammonia on CeO_2-ZrO_2-NiO-SO_4~(2-)catalyst [J]. Journal of RARE EARTHS,2010,28(5):727-731.
    [113] Kobylinski T P, Taylor B W. The catalytic chemistry of nitric oxide: I. The effect of water onthe reduction of nitric oxide over supported chromium and iron oxides [J]. Journal of Catalysis,1973,31(3):450-458.
    [114] Niiyama H, Murata K, Ebitani A, Echigoya E. The mechanism of the reaction of nitrogenoxide with ammonia over Cr_2O_3/Al_2O_3and Cr_2O_3catalysts: I. Characterization of the catalysts [J].Journal of Catalysis,1977,48(1-3):194-200.
    [115] Wong W C, Nobe K. Reduction of nitric oxide with ammonia on alumina and titaniasupported metal oxide catalysts [J]. Industrial&Engineering Chemistry Product Research andDevelopment,1986,25(2):179-186.
    [116] Kohler K, Schlapfer CW, Vonzelewsky A, Nickl J, Engweiler J, Baiker A. ChromiaSupported on Titania: I. An EPR Study of the Chemical and Structural Changes Occurring duringCatalyst Genesis [J]. Journal of Catalysis,1993,143(1):201-214.
    [117] Engweiler J, Nickl J, Baiker A, Kohler K, Schlapfer C W, Vonzelewsky A. ChromiaSupported on Titania.II. Morphological Properties and Catalytic Behavior in the SelectiveReduction of Nitric Oxide by Ammonia [J]. Journal of Catalysis,1994,145(1):141-150.
    [118] Scharf U, Schneider H, Baiker A, Wokaun A. Chromia Supported on Titania.III. Structureand Spectroscopic Properties [J]. Journal of Catalysis,1994,145(2):464-478.
    [119] H. Schneider, U. Scharf, A. Wokaun, A. Baiker, Chromia on Titania: IV. Nature of ActiveSites for Selective Catalytic Reduction of NO by NH_3[J]. Journal of Catalysis,1994,146(2):545–556.
    [120] Curry-Hyde E, Baiker A. Amorphous chromia for low-temperature selective catalyticreduction of nitric oxide [J]. Industrial&Engineering Chemistry Research,1990,29(10):1985-1989.
    [121] Kohler K, Maciejewski M, Schneider H, Baiker A. Chromia Supported on Titania: V.Preparation and Characterization of Supported Cro_2, CrOOh, and Cr_2O_3[J]. Journal of Catalysis,1995,157(2):301-311.
    [122] Schneider H, Maciejewski M, Kohler K, Wokaum A, Baiker A. Chromia Supported onTitania: VI. Properties of Different Chromium Oxide Phases in the Catalytic Reduction of NO byNH_3Studied by in Situ Diffuse Reflectance FTIR Spectroscopy [J]. Journal of Catalysis,1995,157(2):312-320.
    [123] Fountzoula Ch, Matralis H K, Papadopoulou Ch, Voyiatzis G A, Kordulis Ch. The Influenceof the Chromium Content on the Physicochemical Properties and the Catalytic Behavior ofCrOx/TiO_2Catalysts for the Selective Catalytic Reduction of Nitric Oxide by Ammonia atRelatively High Temperatures [J]. Journal of Catalysis,1997,172(2):391-405.
    [124] Ayari F, Mhamdi M, Delahay G, Ghorbel A. Sol–gel derived mesoporous Cr/Al_2O_3catalystsfor SCR of NO by ammonia [J]. Journal of Porous Materials,2010,17(3):265-274.
    [125] Wang S B, Murata K, T Hayakawa, Hamakawa S, Suzuki K. Oxidative dehydrogenation ofethane by carbon dioxide over sulfate-modified Cr_2O_3/SiO_2catalysts [J]. Catalysis Letters,1999,63(1-2)59-64.
    [126] Grzybowska B, S oczyński J, Grabowski R, Wcis o K, Koz owska A, Stoch J, Zieliński J.Chromium Oxide/Alumina Catalysts in Oxidative Dehydrogenation of Isobutane [J]. Journal ofCatalysis,1998,178(2):687-700.
    [127] Ma L, Li J H, Ke R, Fu L X. Catalytic Performance, Characterization, and MechanismStudy of Fe2(SO4)3/TiO2Catalyst for Selective Catalytic Reduction of NO_x by Ammonia [J]. TheJournal of Physical Chemistry C,2011,115(15):7603-7612.
    [128] Lietti L, Nova I, Ramis G, DallAcqua L, Busca G, Giamello E, Forzatti P, Bregani F.Characterization and Reactivity of V_2O_5–MoO_3/TiO_2De-NO_xSCR Catalysts [J]. Journal ofCatalysis,1999,187(2):419-435.
    [129] Long R Q, Yang, R T. Characterization of Fe-ZSM-5Catalyst for Selective CatalyticReduction of Nitric Oxide by Ammonia [J]. Journal of Catalysis,2000,194(1):80-90.
    [130] Yamaguchi T, Jin T, Tanabe K. Structure of acid sites on sulfur-promoted iron oxide [J].The Journal of Physical Chemistry,1986,90(14):3148-3152.
    [131] Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey R J. Adsorption, Activation, andOxidation of Ammonia over SCR Catalysts [J]. Journal of Catalysis,1995,157(2):523-535.
    [132] Amores J M G, Escribano V S, Ramis G, Busca G. An FT-IR study of ammonia adsorptionand oxidation over anatase-supported metal oxides [J]. Applied Catalysis B: Environmental,1997,13(1):45-58.
    [133]赵海红,谢国勇,刘振宇,刘有智.应用原位漫反射红外-质谱技术研究CuO/Al_2O_3催化剂表面酸性及其反应性能[J].化学学报,2008,66(9):1021-1027.
    [134] Lisi L, Lasorella G, Malloggi S, Russo G. Single and combined deactivating effect of alkalimetals and HCl on commercial SCR catalysts [J]. Applied Catalysis B: Environmental,2004,50(4):251-258.
    [135] Kr cher O, Elsener M. Chemical deactivation of V_2O_5/WO_3-TiO_2SCR catalysts byadditives and impurities from fuels, lubrication oils, and urea solution. Part1. Catalytic studies [J].Applied Catalysis B: Environmental,2008,77(3-4):215-227.
    [136] Tang F, Xu B, Shi H, Qiu J, Fan Y. The poisoning effect of Na~+and Ca~(2+)ions doped on theV_2O_5/TiO_2catalysts for selective catalytic reduction of NO by NH_3[J]. Applied Catalysis B:Environmental,2010,94(1-2):71-76.
    [137] Chen J, Buzanowski M, Yang R, Cichanowicz J. Deactivation of the Vanadia Catalyst in theSelective Catalytic Reduction Process [J]. Journal of the Air&Waste Management Association,1990,40:1403-1409.
    [138] Sjoerd Kijlstra W, Biervliet M, Poels E K, Bliek A. Deactivation by SO2ofMnOx/Al2O3catalysts used for the selective catalytic reduction of NO with NH3at lowtemperatures [J]. Applied Catalysis B: Environmental,1998,16(4):327-337.
    [139] Yang S, Guo Y, Yan N, Wu D, He H, Xie J, Qu Z, Jia J. Remarkable effect of theincorporation of titanium on the catalytic activity and SO_2poisoning resistance of magneticMn–Fe spinel for elemental mercury capture [J]. Applied Catalysis B: Environmental,2011,101(3-4):698-708.
    [140] Khodayari R, Ingemar Odenbrand C U. Regeneration of commercial SCR catalysts bywashing and sulphation: effect of sulphate groups on the activity [J]. Applied Catalysis B:Environmental,2001,33(4):277-291.
    [141] Khodayari R, Odenbrand C U I. Regeneration of commercial TiO_2-V_2O_5-WO_3SCRcatalysts used in bio fuel plants [J]. Applied Catalysis B: Environmental,2001,30(1-2):87-99.
    [142]王婧姝.金属载体催化剂玻璃涂层的研究及在选择催化氮氧化物中的应用[D].长春:吉林大学物理学院,2009.
    [143]牛晓巍.柴油车尾气四效催化剂的制备与表征[D].长春:吉林大学物理学院,2010.
    [144]牛晓巍,徐跃,王婧姝,华伦,张贺,韩炜. NiCrFe金属上涂覆玻璃陶瓷涂层的结构和性能[J].稀有金属材料与工程,2011,40(1):96-100.
    [145] Niu X W, Zhang H, Hu X J, Han W. Synthesis of well-adhered SiO2-Al2O3glass-coating onNiCrFe alloy supports [J]. Applied Surface Science,2013,268(1):265-269.
    [146] Jia J S, Zhou J, Zhang J G, Yuan Z S, Wang S D. The influence of preparative parameters onthe adhesion of alumina washcoats deposited on metallic supports [J]. Applied Surface Science,2007,253(23):9099–9104.
    [147]董文生,王心葵,彭少逸.尖晶石的性质、制备及在催化中的应用[J].石油化工高等学校学报,1996,9(4):10-14.
    [148]刘坚,赵震,徐春明,等. Mn_1-x(Li, Ti)xCO_2O_4尖晶石型复合氧化物的制备、表征与催化性能[J].无机化学学报,2005,21(9):1306-1310.
    [149] L iu J., Zhao Z., Xu C. M., et al. Study on the catalytic combustion of diesel soot overnanometric Lanthanum–Co-baltmixed catalysts [J]. React. Kinet. Catal. Lett.,2006,87:107-114.
    [150] Shangguan W F, Teraoka Y, Kagawa S. Simultaneous catalytic removal of NOxand dieselsoot particulates over ternary AB2O4spinet-type oxides [J]. Appl Catal B,1996,8:217227.
    [151]刘光辉,黄震,上官文峰等.同时催化去除柴油机微粒和NO的试验研究(2)[J].内燃机学报,2003,21(2):111一114.
    [152] Tatur M, Tomazic D, Lacin F, Sullivan H, Kotrba A. Directions in Engine-Efficiency andEmissions Research Conference, dearborn,2009[C].
    [153]德国曼商用车辆股份公司.用固体尿素球产生氨的装置和方法:中国,200510098006.8[P].2006-05-10[2004.09.01].
    [154] Tarabulski T J, Brewster N Y, Peter-Hoblyn J D, United Kingdom C, Valentin J M, Conn F.Reducing NO_xemissions from an engine by selective catalytic reduction utilizing solid reagents.US5809775[P].1998-09-22[1997-04-02].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700