ZnGeP_2中红外激光器的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
课题来源于北京市自然科学基金项目(4062008)。论文对基于ZnGeP(2ZGP)晶体的中红外OPO-DFG系统所产生的可调谐输出特性进行了深入的理论分析。
     基于中红外激光晶体材料对激光进行频率变换产生的宽带可调谐中红外波段光源,在军事领域以及在环境监测、生物医药等民生领域中都有着广泛的应用前景。采用中红外激光晶体材料的光参量变频过程(如OPO、DFG)是获得宽带可调谐中红外光源的主要有效途径。因此,本课题的研究不仅具有一定的理论价值,而且也具有较强的实用意义。论文主要围绕着以下三个方面展开:
     1.阐述了课题研究的背景和意义。对中红外光源在军用民需领域的应用做了简单的介绍。介绍了目前常用的适合于中红外波段的非线性晶体材料。阐述了OPO技术的发展历史以及利用OPO和DFG技术获得中红外激光输出的研究状况。
     2.详细讨论了Yb:YAG激光晶体的能级结构和光学特性,通过建立准三能级调Q激光系统的理论模型,得到了调Q Yb:YAG全固态激光器的输出特性。利用MATLAB程序语言对其进行了数值模拟计算,并对其结果进行了分析。
     3.以三波耦合方程为出发点,介绍了角度相位匹配的基本原理以及正负单轴晶体的I、II类相位匹配。介绍了OPO和DFG运转的基本原理并对二者的异同进行了分析比较。基于中红外激光晶体材料的Sellmeier色散方程和角度相位匹配理论,对中红外激光晶体材料的光学特性以及DFG过程的调谐特性、允许参量及走离角度、线宽特性以及转换效率进行了理论上的分析。通过MATLAB数值模拟计算,获得了ZGP晶体的折射率色散曲线,以及其在DFG过程中的有效非线性系数、角度调谐、允许角以及走离角等理论曲线,并且与AgGaSe2(AGSe)和AgGaS2(AGS)晶体的相应曲线进行了比较;得到了ZGP晶体抽运光线宽对DFG输出光线宽影响以及抽运光强度、晶体长度、相位失配对转换效率影响的理论曲线,同时与另外两种晶体相应曲线进行了比较。经过对三种晶体进行比较分析,我们得出结论:在DFG产生可调中红外输出的特性上,ZGP和AGSe两种晶体要优于AGS;但在转换效率方面,ZGP晶体要远优于AGSe和AGS。这与国内外已报道的实验数据相吻合。证实了ZGP晶体是一种可以产生可调谐中红外输出的较为理想的非线性光学晶体。
This thesis has focused on research of a mid-infrared laser using nonlinear optical crystal supported by Beijing Nature Foundation (No.4062008), the properties of tunable mid-infrared OPO-DFG system based on the crystal of ZnGeP2(ZGP).
     The tunable broadband of mid-infrared laser source was generated that the mid-infrared laser crystal has broad prospects for the applications in the realm of military, environmental monitoring and biological medicine, etc.. Optical parameter frequency conversion in mid-infrared laser crystal is an effective method to obtain a tunable broadband mid-infrared output. Therefore, this research has not only definite theoretical signification, but also strong practical function. There are three research work emphases in this paper as follows.
     1. The background and significance of research work have been explained. The application introduction of mid-infrared light source in military and livelihood fields, and the nonlinear optical crystal is very useful in the mid-infrared laser have been summarized. In addition, the developing history of OPO and DFG with nonlinear optical crystal to obtain mid-infrared laser output has been reviewed.
     2. The crystal energy structure and optical characteristics of Yb:YAG have been discussed in detail. The output characteristics of Yb:YAG all-solid-state laser have been obtained by establishing the theoretical model of Q-switched in quasi-three-level laser system. The output characteristics have been studied by simulating with MATLAB program.
     3. Based on resonant three wave coupling equations, The basic principle of angle tunable in phasemaching type-I, and -II for a positive uniaxial crystal and negative uniaxial crystal have been theoretical analyzed and simulated. In addition, the principles of OPO and DFG with nonlinear optical crystal have been analyzed and compared. The optical properties of mid-infrared laser crystals and the tuning characteristics, parametric optics linewidth , acceptance angle, walk-off angle, conversion efficiency in the process of ZGP-DFG have been analyzed based on sellmeier equations of mid-infrared laser crystals and the theory of angle-phase-maching. Through numerical simulation with MATLAB, the curves of refractive index dispersion of ZGP and the curves of effective nonlinear coefficient, angle tuning and acceptance angle, walk-off angle for ZGP-DFG have been obtained and compared with relative crystal of AgGaSe2 (AGSe) and AgGaS2 (AGS). In addition, the relation curves of pump linewidth will influence DFG output linwidth, and the pump intensity, crystal length, phase-mismatch will influence the output conversion efficiency have been obtained, and compared with of AGSe and AGS. By making comparison of the three crystals, the conclusion was that: the tunable mid-infrared output of DFG with ZGP and AGSe were superior to AGS; in obtaining high conversion efficiency, ZGP was far superior to AGSe and AGS, which have been consistent with the experimental results in domestic and overseas researcher’s. Therefore, ZGP has been approved to be an ideal nonlinear laser crystals for generating tunable mid-infrared coherent radiation.
引文
1邓颖,朱启华,曾小明等.超短中红外激光脉冲的产生及其发展状况[J].激光与光电子学进展. 2006,43(8):21~25
    2 R.J.Keyes, T.M.Quist. Injection luminescent pumping of CaF2:U3+ with CaAs diode lasers[J].Appl Phys Lett, 1964,4(3):50~52
    3 S.A.Ochs, J.I.Pankove. Injection-luminescent pumping of a CaF2:Dy3+ lasers[C]. Proc IEEE, 1964,52:713~714
    4 M.Ross. YAG laser operation by semiconductor laser pumping[C].Proc IEEE, 1968,56:196
    5刘丹华,黄道君.红外探测技术的军事应用[J].红外技术. 2003,25(2):1~3
    6南秀华.红外技术及其军事应用[J].现代物理知识. 1996.4:36
    7陈亚菊,徐立亚.红外技术在医学和军事中的应用[J].光电子技术与信息. 1998,11(2):31~36
    8淦元柳,徐世录.美国直升机载红外干扰系统的现状与发展[J].激光与红外. 2006,36(1):7~10
    9何金成,杨祥龙,王立人等.近红外光谱透射法测量废水化学需氧量(COD)的光程选择[J]. 2007,41(5):752~755
    10韩润平,邹卫华,朱路等.生态滤池出水悬浮物的元素分析和红外光谱分析[J].光谱学与光谱分析. 2005,25(11):1801~1803
    11刘爱民,黄为一.应用红外方法探讨耐镉菌株高积累Cd2+的机理[J].环境科学学报. 2005,25(11):1502~1506
    12 Qian Ai-hong, Wang xian, Deng Yong-zhi, et a1. Heavy metal biosorption sites studies of laminariajaponica[J].Marine Science Bulletin. 2005,7(1):87~91
    13徐亮,刘建国,高闽光等.开放式长光程傅里叶变换红外光谱系统在环境气体分析中的应用[J].光谱学与光谱分析. 2007,27(3):448~451
    14刘美娟,冯巍巍,史丰荣等.污染气体红外光谱特征的快速提取与识别[J].光谱学与光谱分析. 2006,26(10):1854~1857
    15 H.Yao, H.Sugimori, K.Fukuda, et a1.Photothrombotic middle cerebral artery ocdusion and reperfusion laser system in spontaneously hypertensive rats[J]. Stroke. 2003,34(11):2716~2721
    16 L.Zuo, S.Sun, Q.Zhou, et a1. 2D-IR correlation analysis of deteriorative process of traditional Chinese medicine Qing Kai Ling injection[J]. J Pharm Biomed Anal. 2003,30(5):1491~1498
    17 B.R.Sdler, M.Cabrera, S.M.Smith, et a1. Smart medical systems with application to nutrition and fitness in space[J]. Nutrition. 2002,18(10):930~936
    18温俊,郑春兰,李顺英.红外线在医学中的应用[J].国外医学-放射医学核医学分册. 2004,28(5):237~240
    19 U.Mahmood, R.Weissleder. Near-infrared optical imaging of proteases in cancer[J]. Mol Cancer Ther. 2003,2(5):489~496
    20 C.P.Schultz. The potential role of fourier transform infrared spectroscopy and imaging in cancer diagnosis incorporating complex mathematical methods[J]. Technol Cancer Res Treat. 2002,1(2):95~104
    21 R.Sindhuphak, S.Issaravanich, V.Udomprasertgul, et a1. A new approach for the detection of cervical cancer in Thai women[J]. Gynecd Oncd. 2003, 90(1):10~14
    22林彦霆,顾庆天,刘宏等. ZnGeP2多晶料合成与晶体生长[J].功能材料. 2006,37(6):864~866
    23 J.D.Wiley, E.Buehler, J.L.Shay, et a1. The melt growth and doping of CdGeP2[J]. Journal of Electronic Materials. 1973, 2(4):601~607
    24 W.Ruderman, I.Zwieback. Development of large high quality chalcopyrite single crystals for nonlinear optical applications[C]. Materials research society symposium proceedings.2000:361
    25董春明,王善朋,陶绪堂.中红外非线性光学晶体的研究进展[J].人工晶体学报.2006.35(4): 785~789
    26 F.Rotermund, V.Petrov, F.Noack, et a1. Characterization of ZnGeP2 for Parametric Generation with Near-Infrared Femtosecond Pumping[J]. Fiber And Integrated Optics.2001,20(2):139~150
    27 G.A.Verozubova, A.I.Gribenyukov, V.V.Korotkova, et al. Synthesis and Growth of ZnGeP2 Crystals for nonlinear optical applications[J]. J.Crystal Growth.2000, 213(3-4):334~339
    28 F.L.Madarasz, J.O.Dimmock, N.Deitz, et a1. Sellmeier Parameters for ZnGeP2 and GaP[J]. J.Appl.Physics. 2000, 87(3):1564~1565
    29吴海信,倪友保,耿磊等.红外非线性晶体ZnGeP2的生长与品质研究[J].人工晶体学报. 2007,36(3):507~511
    30 K.Stoll, J.J.Zondy, O.Acef. Fourth-harmonic generation of a Continuous-wave CO2 Laser by use of an AgGaSe2/ZnGeP2 doubly resonant device[J].Optics Letters, 1997, 22 (17) : 1302~1304.
    31 K.L.Vodopyanov. Parametric generation of tunable infrared radiation in ZnGeP2 and GaSe pumped at 3μm [J]. J Opt Soc Am B.1993, 10(9) :1723~1729.
    32 N.P.Barnes, K.E.Murray, M.G.Jani. ZnGeP2 parametric amplifier[J]. J Opt Soc Am B.1998,15(1):232~237.
    33 G.A.Verozubova, A.I.Gribenyukov, V.V.Korotkova, et a1. ZnGeP2 growth:melt non-stoichiometry and defect substructure[J]. Journal of crystal growth. 2002, 237(3):2000~2004
    34 Y.Shimony, G.Kimmel, O.Raz, et a1. X-ray diffraction analysis of melt-grown ZnGeP2 (ZGP) [J]. Journal of Crystal Growth. 1999,199(1):583~587
    35杨春晖,张建.新型中远红外波段非线性光学晶体磷化锗锌[J].人工晶体学报.2004, 33(2):141~143
    36卓洪升,顾庆天,房昌水.红外非线性材料的研究(I) ZnGeP2-多晶料的合成[J].人工晶体学报. 1999,28(1):88~90
    37李鸿燕.中红外大功率非线性晶体[J].光机电信息.1999,16(9):22~25
    38姚宝权,贺万骏,李玉峰等. 2μm Tm,Ho:YLF激光抽运ZnGeP2光参量振荡技术研究[J].中国激光. 2005,32(1):39~42
    39程干超,杨琳,史保森等.单晶AgGaSe2红外倍频器[J].中国激光. 1995, 22(3): 214~218
    40 R.S.Feigelson, R.K.Route. Recent developments in the growth of chalcopyrite crystals for nonlinear infrared application [J]. Optical Engineering. 1987, 26(2): 113~119
    41 E.Niwa, K.Masumoto. Growth of AgGaS2 single crystals by a self-seeding vertical gradient freezing method [J].Journal of Crystal Growth. 1998,192:354~360
    42张建军,朱世富,赵北君等.两温区气相输运温度振荡法合成AgGaS2多晶材料[J].四川大学学报(工程科学版). 2005,37(4):73~76
    43雷勇波,赵北君,朱世富等. AgGaS2单晶生长石英安瓿镀碳工艺研究[J].人工晶体学报.2008, 37(1):25~28
    44石顺祥,陈国夫,赵卫等.非线性光学[M].西安:西安电子科技大学出版社. 2003:131~170
    45 L.Isaenko, A.Yelisseyev, S.Lobanov,et al.LiInSe2:A biaxial ternary chalcogenide crystal for nonlinear optical applications in themed-infrared[J].J.Appl.Phys. 2002,91:9475~9480.
    46 F.Rotermund, V.Petrov, F.Noack, et al.Optical parametric generation of femto -second pulses up to 9 mm with LiInS2 Pumped at 800 nm[J]. Appl Phys Lett. 2001,78:2623~2625.
    47 W.Shi, Y.J.Ding, X.Mu, et al.Tunable and coherent nanosecond radiation in the range of 2.7~28.7μm based on difference-frequency generation in gallium selenide[J]. Appl.Phys.Lett. 2002, 80:3889~3891
    48 R.H.Kingston. Parametric amplification and oscillation at optical frequencies[J]. Pro IRA. 1962,50:472
    49 N.M.Kroll. Parametric amplification in spatially extended media and application to the design of tunable oscillators at optical frequencies[J].Phys Rev.1962,16:252
    50 J.A.Giordmaine, R.C.Miller. Tunable coherence parametric oscillation in LiNbO3 at optical frequencies[J]. Phys Rev. 1965,14(24):973~976
    51 R.G.Smith, J.E.Geusic, H.J.Levinstein, et al. Continuous optical parametric oscill -ation in Ba2NaNb5O15[J]. Appl Phys Lett.1968,12:308
    52姚宝权,王月珠,王骐.中红外光参量振荡器发展状况分析[J].激光技术.2002, 26(3):217~220
    53 S.Chandra, T.H.Allik, G.Catella , et al. Tunable output around 8μm from a single step AgGaS2 OPO pumped at 1.064μm[J]. Advanced Solid State Lasers. 1998, 19: 282~284
    54 S.Marzenell, R.Beigang, R.Wallenstein. Mid infrared femtosecond AgGaSe2 optical parametric oscillator[C]. Lasers and Electro-Optics,1999.CLEO'99. 1999: 35~36
    55 K.L.Vodopyanov, J.P.Maffetone, I.Zwieback, et al. The most longwave OPO pumped by a 1μm laser[C]. Lasers and Electro-Optics, 2000. (CLEO 2000). 2000 :13~14
    56 K.L.Vodopyanov, F.Ganikhanov, J.P.Maffetone, et al. ZnGeP2 optical parametric oscillator with 3.8~12.4μm tunability[J]. Opt Lett.2000,25(11):841~843
    57 T. Schroder. Two-stage nanosecond OPO based on LiNbO3 and AgGaSe2 tunable from 3~6μm[C]. Lasers and Electro-Optics, 2001. CLEO '01. Technical Digest. 2001:450~451
    58 K.L.Vodopyanov, P.G.Schunemann. Broadly tunable noncritically phase-matched ZnGeP2 optical parametric oscillator with a 2μJ pump threshold[J]. Opt Lett. 2003, 28(6):441~443
    59姚宝权,贺万骏,李玉峰等.2μm Tm,Ho:YLF激光抽运ZnGeP2光参量振荡技术研究[J].中国激光.2005,32(1):39~42
    60 R.S.Kurti, K.D.Singer.Pulse compression in a silver gallium sulfide, midinfared, synchronously pumped optical parametric oscillator[J]. J Opt Soc Am B.2005, 22(10):2157~2163
    61鲁燕华,王卫民,彭跃峰等.磷锗锌光学参量振荡技术研究[J].强激光与粒子束.2006,18(8):1261~1264
    62 D.Creeden, P.A.Ketteridge, P.A.Budni et al. Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2μm Tm-doped fiber laser[J]. Opt.Lett. 2008, 33(4):315~317
    63 A.F.Nieuwenhuis, C.J.Lee, P.J.M.van der Slot, et al. High-efficiency mid-infraredZnGeP2 optical parametric oscillator directly pumped by a lamp-pumped, Q-switched CrTmHo:YAG laser[J]. Opt.Lett.2008,33(1):52~54
    64 B.Yao, Y.Ju, Y.Wang, et al.Performance evaluation of ZnGeP2 optical parametric oscillator pumped by a Q-switched Tm,Ho:GdVO4 laser[J]. Opt Lett. 2008,6(1): 68~70
    65 L.E.Myers, M.R.Bosenberg. Peridically Poled Lithium Niobate and Quasi-phase- Matched Optical Parametric Oscillators[J].IEEE J.QE.1997,33(10):1663~1672
    66 J.M.Boon-Engering, L.A.W.Gloster, W.E.van der Veer, et al. High efficient single- longitudinal-modeβ-BaB2O4 optical parametric oscillator with a new cavity design[J].Opt.Lett.1995,20(20):2087~2089
    67 D.T.Reid, Z.Penman, M.Ebrahimzadeh, et al. Broadly tunable infrared femto -second optical parametric oscillator based on periodically poled RbTiOAsO4[J]. Opt Lett.1997,22(18):1397~1399
    68 M.Ebrahimzadeh, P.J.Phillips, S.Das.Low-threshold mid-infrared optical para -metric oscillation in periodically poled LiNbO3, synchronously pumped by a Ti: Sapphire laser[J].Appl Phy B.2001,72(7):793~801
    69 K.Fradkin, A.Arie, A.Skliar, et al. Tunable midinfrared source by difference fre -quency generation in periodically poled KTiOPO4[J].Appl Phys Lett.1999,74(7): 914~916
    70 K.Fradkin-Kashi, A.Arie, P.Urenski, et al. Mid-infrared difference-frequency generation in periodically poled KTiOAsO4 and application to gas sensing[J]. Opt Lett.2000,25(10):743~745
    71 F.Seifert, V.Petrov, M.Woerner, et al.Solid-state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10μm[J]. Opt Lett.1994,19 (23):2009~2011
    72 R.Utano, M.J.Ferry. 8~12μm generation using difference frequency generation in AgGaSe2 of a Nd:YAG pumped KTP-OPO[J].Advanced solid-state lasers.1997, 10:267~269
    73 K.S.Abedin, S.Haidar, Y.Konno ,et al. Difference frequency generation of 5~18μm in a AgGaSe2 crystal[J].Appl Opt.1998,37(9): 1642~1645
    74 J.Song, J.F.Xia,Z.Zhang, et al. Mid-infrared pulses generated from the mixing output of an amplified,dual-wavelength Ti:Sapphire system[J]. Opt Lett.2002,27 (3):200~202
    75 S.C.Pei, S.Yu.Tu, A.H.Kung. Mid-IR generation by difference frequency mixing of two pulsed PPLN OPOs in ZnGeP2[C]. Quantum Electronics and Laser ScienceConference, QELS '05. 2005,2: 791~793
    76 J.Saikawa, M.Miyazaki, M.Fujii, et al.Difference Frequency Generation in a ZnGeP2 Crystal Pumped by a Large Aperture Periodically Poled MgO:LiNbO3 Optical Parametric System[CD]. Advanced Solid-State Photonics, OSA Technical Digest Series .2007,paper MB8.
    77 J.Saikawa, M.Miyazaki, M.Fujii, et al.Tunable, Narrow-Bandwidth Mid-IR Generation in ZnGeP2 Crystals Pumped by a Large Aperture Periodically Poled Mg Doped LiNbO3 Optical Parametric System[CD]. Advanced Solid-State Photonics, OSA Technical Digest Series.2008,paper MC46.
    78 K.Furuta, T.Kojima, S.Fujikawa, et al. Diode-pumped 1kW Q-switched Nd:YAG rod laser with high peak power and high beam quality[J]. Opt Lett.2005,44: 4119~4122
    79林洪沂,檀慧明,田玉冰等.LDA端面泵浦声光调Q Yb:YAG 1.03μm激光器[J].激光与红外.2008(1):25~27
    80 D.S.Sumida, T.Y.Fan. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid state laser media[J].Opt.Lett.1994, 19(17):1343~1345
    81 U.Baruch ,A.Ciesen, M.Karszewski et a1. Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053nm[J].Opt.Lett. 1991, 20(7):713~715
    82张丽哲,戴建明,张伟力等.全固化可调谐Yb:YAG激光器[J].中国激光.2001, 28(10):873~876
    83 G.L.Bourdet.Theoretical Investigation of Quasi-Three-Level Longitudinally -Pumped Continuous Wave Lasers [J].Appl.Opt.2000,39(6):966~971
    84柳强,巩马理,闫平等.光学参量振荡器的相位匹配[J].激光杂志.2002,23(2): 1~4
    85田文,任刚,蔡邦维等.ZnGeP2光参变振荡器晶体参数的数值分析[J].激光技术.2006, 30(1):104~106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700