玉米粗缩病抗性遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米粗缩病是由玉米粗缩病病毒引起的一种世界性病害,也是我国黄淮海玉米产区的重要病害之一。感病植株显著矮化、不抽雄、雌穗不结实或籽粒少、产量严重损失甚至绝收。开展玉米粗缩病抗性遗传研究,选育抗病品种,是防治此病的经济有效途径之一。然而,现有种质资源中抗性材料较少。因此,寻找抗玉米粗缩病种质资源,探索其抗性遗传规律,发掘优异抗病等位基因,为玉米抗病分子育种实践提供基础。本论文就玉米粗缩病抗源鉴定、功能标记开发、QTL分析及候选基因功能分析做了相关研究,主要结果如下:
     1.采用网箱集团接种结合移栽的方法对200份国内外玉米自交系进行粗缩病抗性鉴定。结果表明,抗源较少,仅占鉴定材料的10%。筛选出的抗源有沈137、多黄29、金黄96B、中自01、海9-21、P138、CA339、齐319、丹3130、9046、835、黄野四、齐318、R18、SH15、CA335、X178、辽68、金黄59等,为玉米粗缩病抗性遗传研究以及抗病育种提供了材料基础。
     2.利用抗病自交系(沈137、多黄29、中自01、P138、CA339、齐319、丹3130、齐318、CA335、X178)和感病自交系(掖107、掖478、吉4112、803、K22、鲁原92、掖3189、辽5114、U8112、B73)分别构建抗、感基因组DNA池,结合AFLP标记筛选多态AFLP扩增片段,将稳定多态AFLP扩增片段转化为SCAR标记并进行相关验证。研究获得2个与玉米粗缩病抗性显著相关的SCAR标记SCAR69和SCAR74,分别位于染色体bin 2.07和5.04区;2个SCAR标记可应用于抗玉米粗缩病毒分子标记辅助选择。
     3.以现有X178×B73以及黄早四×掖107衍生的重组自交系群体为材料,分别构建高密度分子标记连锁图谱。其中,X178×B73 RIL群体的图谱包括643个分子标记(SSR, SNP和SCAR),覆盖玉米10条染色体,平均图距为1.59cM;黄早四×掖107 RIL群体构建的连锁图谱包括540个分子标记(SSR,SNP和SCAR),覆盖玉米10条染色体,平均图距为2.38 cM;选用3个抗病衡量指标(病株率—ID,病情指数—SI,校正病情指数—CSI)对玉米粗缩病抗性进行多年多点的QTL分析。
     结果表明,在X178×B73 RIL群体,检测到玉米第8染色体8.03处存在1个主效抗病QTL,其抗性基因来源为亲本X178,可解释28%的表型方差。在黄早四×掖107 RIL群体,于染色体2、3、4、6、7、8、10均检测到抗病QTL,其效应较小。通过比较定位分析以及抗病基因簇集分布,发现在玉米第3染色体3.04(SNP610-SNP1438)、第4染色体4.03(SNP1287—SNP581)、第6染色体(SNP1518-SNP408)、第7染色体7.02/03(SNP637—SNP686)、第8染色体8.06(SNP619—SNP68)存在玉米粗缩病抗性位点。
     4.真核翻译起始因子4E (Eukaryotic Initiation Factor 4E, eIF4E)是RNA病毒成功感染植物的重要决定因素。以玉米抗病自交系X178和感病自交系掖478为材料:1)分离eIF4E同源基因ZmeIF4E,研究基因表达模式。结果表明ZmeIF4E有5个外显子和4个内含子组成,编码218个氨基酸的蛋白;荧光定量PCR显示,该基因受植物激素——乙烯(ETH)、水杨酸(SA)和茉莉酸甲酯(JA)的调控,且在X178和掖478两自交系中的表达模式不同。2)ZmeIF4E序列比对(X178和掖478)和启动子分析表明,顺式作用元件DOFCOREZM、EECCRCAH1、GT1GAMSCAM4和GT1CONSENSUS存在的差异是ZmeIF4E基因表达模式发生变化的主要原因。3)关联分析表明,顺式作用元件EECCRCAH1与玉米粗缩病抗性显著相关;同时还发现顺式作用元件GT-1与玉米粗缩病抗性也显著相关。此外,这两个顺式作用元件在ZmeIF4E基因表达中存在互补或协同效应。综上可得ZmeIF4E基因的活性在玉米与粗缩病毒互作中发挥重要作用。
Maize Rough Dwarf Disease (MRDD) caused by maize rough dwarf virus (MRDV) is a worldwide disease. It is one of the most serious diseases in maize-growing area of China. Developing and cultivating resistant hybrids is an effective approach to control MRDD. However, a few resistance germplasm are identified so far. In this study, identification of resistant materials, development of molecular markers and QTL analysis were investigated. The results as follows:
     1. 200 maize inbred lines for MRDD resistance was evaluated by inoculating small brown plantthopper into net-boxes and the inbred lines of Shen137, Duohuang29, Jinhuang96B, Zhongzi01, Hai9-21, P138, CA339, Qi319, Dan3130,9046,835, Huangye4, Qi318, R18, SH15, CA335, X178, Liao68, Jinhuang59, Zixuanxi were identified.
     2. Resistant (Shen137, Duohuang29, Zhongzi01, P138, CA339, Qi319, Dan3130, Qi318, CA335, X178) and susceptible(Ye107, Ye478, Ji4112,803, K22, Luyuan92, Ye3189, Liao5114, U8112, B73) DNA bulks were composed by using genomic DNAs of 10 resistant and 10 susceptible inbred lines, respectively. Polymorphic AFLP markers were screened between two bulks and then transformed into SCAR (sequence characterized amplified region) markers. These SCAR markers associated with MRDD resistance was analyzed with disease incidence of 152 inbred lines. Results showed that SCAR69 and SCAR74 were validated to be highly associated with MRDD and could be used for MAS of MRDD resistance in maize.
     3. Two recombined inbred line populations (RIL) derived from Ye 107×Huangzao4, X178×B73, were evalutated for MRDV resistance in replicated field trials in different sites. Three resistance evaluating index (ID, SI, and CSI) were used for QTL analysis. Linkage maps were constructed using SSRs, SNPs and SCARs, and resistant QTL analyzed using MIM in MapQTL software. Results showed that in X178×B73 RIL population, a major resistance QTL was detected on chromosome bin 8.03, accounting for about 28% of the phenotypic variance. In Huangzao4×Ye 107 RIL population,7 resistant QTLs were detected on chromosome bin 3.04 (SNP610-SNP1438), bin 4.03 (SNP1287-SNP581), bin 6.05, bin7.02/03 (SNP637-SNP686), bin 8.06 (SNP619-SNP68). These QTLs accounted for lower than 10% of the phenotypic variance.
     4. Translation initiation factors, particularly the eukaryotic initiation factor 4E (eIF4E), were found to be essential determinants of the outcome of plant infections by RNA viruses. In this study, we isolated an eIF4E orthologue and analyzed its expression patterns in two maize inbred lines X178 and Ye478. ZmeIF4E contains five exons encoding a protein with 218 amino acid residues. Quantitative RT-PCR showed that the ZmeIF4E gene was regulated in response to three plant hormones, namely ethylene, salicylic acid and jasmonates and its gene expression varied widely in two inbred lines. Furthermore, sequence analysis of the ZmeIF4E promoter region showed that base substitutions and insertion/deletion polymorphisms were present in four cis-acting elements, including DOFCOREZM, EECCRCAH1, GT1GAMSCAM4, and GT1CONSENSUS. These cis-acting elements may be responsible for diverse gene-expression patterns in two different inbred lines. Association analysis revealed that one SNP polymorphism in EECCRCAH1 was significantly associated with maize rough dwarf virus disease index obtained in 2007 and 2008 in Hebei, China. In addition, one SNP polymorphism in the GT-1 motif was found to affect MRDV resistance in 2007 in Hebei, China. We found that these two SNP polymorphism sites have complementary or synergistic effects on ZmeIF4E gene expression. Collectively, these results imply that these two regulatory motifs in the ZmeIF4E promoter are involved in MRDV resistance, indicating that eIF4E activity plays vital roles in pathogen infections and control of recessive resistance.
引文
1. 盖钧镒,植物数量性状遗传体系的分离分析方法研究遗传,2005.27(1):p.130-136.
    2. Elkind, Y. and A. Cahaner, A mixed model for the effects of single gene, polygenes and their interaction on quantitative traits. Theor Appl Genet,1986.72(3):p.377-383.
    3. Flor, H.H., Current status of the gene-for-gene concept. Annual Review of Phytopathology,1971.9:p.275-296.
    4. Ou, S.H., F.L. Nuque, and J.M. Bandong, Relation between qualitative and quantitative resistance to rice blast [Pyricularia oryzae, fungus diseases]. Plant disease,1975.65(11):p.1315-1316.
    5. Vale, F.X.R.D., J.E. Parlevliet, and L. Zambolim, Concepts in plant disease resistance. Fitopatol. bras.,2001.26(3): p.577-589.
    6. Young, N.D., QTL mapping and quantitative disease resistance in plant. Annual Review of Phytopathology,1996. 34:p.479-501.
    7. Lorenzo,O., et al., JASMONATE-INSENSITIVE1 Encodes a MYC Transcription Factor Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis. The Plant Cell,2004.16:p.1938-1950.
    8. Korstanje, R. and B. Paigen, From QTL to gene:the harvest begins. Nature Genetics,2002.31:p.235-236.
    9. Lander, E.S., et al., MAP MAKER:An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987.1(2):p.174-181.
    10. Cowen, N.M., The use of replicated progenies in marker-based mapping of QTL's. Theor Appl Genet,1988.75(6): p.857-862.
    11. 庄杰云,水稻杂种优势遗传机理与分子标记辅助高产育种研究浙江大学博士学位论文,2001.
    12. Tanksley, S.D. and J.C. Nelson, Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet,1996.92(2):p. 191-203.
    13. Bernacchi, D., et al., Advanced backcross QTL analysis in tomato. Ⅰ. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet,1998.97(3):p.381-397.
    14. Bernacchi, D., et al., Advanced backcross QTL analysis of tomato. Ⅱ. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet,1998.97(1-2):p.170-180.
    15. Ohno, Y, et al., Selective Genotyping With Epistasis Can Be Utilized for a Major Quantitative Trait Locus Mapping in Hypertension in Rats. Genetics,2000.155:p.785-792.
    16.沈圣泉,水稻(Oryza sativa L.)若干重要性状的QTL主效应、上位性效应及GE互作效应分析.浙江大学博士学位论文,2003.
    17. Burr, B. and F.A. Burr, Recombinant inbreds for molecular mapping in maize:theoretical and practical considerations. Trend in Genetics,1991.7(2):p.55-60.
    18. Austin, D.F. and M. Lee, Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet,1996.92(7):p.817-826.
    19. 庄杰云,et al.,应用二种定位法比较不同世代水稻产量性状QTL的检测结果.遗传学报,2001.28(5):p.458-464.
    20. Monforte, A.J. and S.D. Tanksley, Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits:breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet,2000.100(3-4):p.471-479.
    21. LIU, Y.G and K. TSUNEWAKI, Restriction Fragment Length Polymorphism (RFLP) Analysis in Wheat. Ⅱ. Linkage Maps of the RFLP Sites in Common Wheat. Jpn J Genet,1991.66:p.617-633.
    22. Roder, M.S., et al., Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics,1995.246(3):p.327-333.
    23. McCouch, S.R., et al., Molecular mapping of rice chromosomes.1998.76(6):p.815-829.
    24. Cho, R.J., et al., A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle. Mol Cell,1998.2:p.65-73.
    25. Temnykh, S., et al., Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet,2000.100(5):p.697-712.
    26. Tanksley, S.D., et al., High Density Molecular Linkage Maps of the Tomato and Potato Genomes. Genetics,1992. 132:p.1141-1160.
    27. Michelmore, R.W., I. Paran, and R.V. Kesseli, Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations. National Acad Sciences,1991.88(21):p.9828-9832.
    28. CONDE, M.F., D.R. PRING, and C.S.L. Ⅲ, Maternal inheritance of organelle DNA's in Zea mays-Zea perennis reciprocal crosses. J Hered,1979.70(1):p.2-4.
    29. 王秀娥,et al.,小麦一大赖草易位系的RFLP分析遗传学报,2001.28(12):p.1142-1150.
    30. 姚方印 and 李广贤,水稻香味的遗传分析山东农业科学,2001.2:p.28-28.
    31. 秦泰辰 and 邓德祥,利用遗传突变基因改良特用玉米玉米科学,2001.9(4):p.18-20.
    32. Welsh, J. and M. McClelland, Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res,1990. 18(24):p.7213-7218.
    33. Martin, G., et al., Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993.262(5138):p.1432-1436.
    34. Song, W.Y., et al., A Receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene, Xa21.1995. 270(5243):p.1804-1806.
    35. Marc, Z. and V. Pieter, Selective restriction fragment amplication:a general method for DNA fingerprinting. European Patent Application number,1993:p.92402629.7.
    36. Maheswaran, M., et al., Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet,1997.94(1):p.39-45.
    37. Boivin, J. and M. Watson, Time-Varying Parameter Estimation in the Linear Ⅳ Framework. Columbia University manuscript,1999.
    38. Cnops, G, et al., Chromosome landing at the Arabidopsis TORNADO1 locus using an AFLP-based strategy. Molecular and General Genetics,1996.253(1-2):p.32-41.
    39. Lahaye, T., K. Shirasu, and P. Schulze-Lefert, Chromosome landing at the barley Rarl locus. Molecular and General Genetics,1998.260(1):p.92-101.
    40. Thomas, D.W., Hibernating bats are sensitive to nontactile human disturbance.1995.76(3):p.940-946.
    41. Miftahudin, GJ. Scoles, and J.P. Gustafson, AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereale L). Theor Appl Genet,2002.104(4):p.626-631.
    42. Subudhi, P.K., et al., Classification of rice germplasm:Ⅲ. High-resolution fingerprinting of cytoplasmic genetic male-sterile (CMS) lines with AFLP. Theor Appl Genet,1998.96(6-7):p.941-949.
    43. Barrett, S., Political economy of the Kyoto Protocol. Oxf Rev Econ Policy,1998.14(4):p.20-39.
    44. Barret, S., On the Theory and Diplomacy of Environmental Treaty-Making. Environmental and Resource Economcs, 1998.11(3-4):p.317-333.
    45. Russell, J.R., et al., Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet,1997.95(4):p.714-722.
    46. Hill, M., et al., PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theor Appl Genet,1996.93(8):p.1202-1210.
    47. Paul, S., et al., Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor Appl Genet,1997.94(2):p.255-263.
    48. SENIOR, M.L., et al., Simple sequence repeat markers developed from maize sequences found in the GENBANK database:Map construction. Crop Sci,1996.36(6):p.1676-1683.
    49. Tautz, D., Hypervariabflity of simple sequences as a general source for polymorphic DNA markers. Nucl Acids Res, 1989.17(16):p.6463-6471.
    50. Murigneux, A., et al., Genotypic variation of quantitative trait loci controlling in vitro androgenesis in maize. Genome,1994.37(6):p.970-976.
    51. Olivier, J.P., Modeling physical adsorption on porous and nonporous solids using density functional theory. J Porous Mater,1995.2(1):p.9-17.
    52. Senior, M.L. and M. Heun, Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome,1993.36(5):p.884-889.
    53. Taramino, G., et al., Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet,1997.95(1-2):p.66-72.
    54. Wang, R.Y., E.A. Riskin, and R. Ladner, Codebook organization to enhance MAP detection of weighted universal vector quantized image transmission over noisy channels. Proceedings Data Compression Coference,1994.
    55. Edwards, M.D., C.W. Stuber, and J.F. Wendel, Molecular-Marker-Facilitated Investigations of Quantitative-Trait Loci in Maize. I. Numbers, Genomic Distribution and Types of Gene Action. Genetics,1987.116:p.113-125.
    56. Stuber, C.W., et al., Identification of Genetic Factors Contributing to Heterosis in a Hybrid From Two Elite Maize Inbred Lines Using Molecular Markers. Genetics,1992.132:p.823-839.
    57. Weller, J.I., M. Soller, and T. Brody, Linkage Analysis of Quantitative Traits in an Interspecific Cross of Tomato (Lycopersicon esculentum Ⅹ Lycopersicon pimpinellifolium) by Means of Genetic Markers. Genetics,1988.118:p. 329-339.
    58. 高用明 and 朱军,植物QTL定位方法的研究进展遗传.2000.22(3):p.175-179.
    59. Lander, E.S. and D. Botstein, Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps. Genetics,1989.121:p.185-199.
    60. Zeng, Z.B., Precision Mapping of Quantitative Trait Loci. Genetics,1994.136:p.1457-1468.
    61. Jansen, R.C., Interval Mapping of Multiple Quantitative Trait Loci. Genetics,1993.135:p.205-211.
    62. Jansen, R.C., Controlling the Type Ⅰ and Type Ⅱ Errors in Mapping Quantitative Trait Loci. Genetics,1994.138:p. 871-881.
    63. Fernando, R.L. and M. Grossman, Marker assisted selection using best linear unbiased prediction. Genet Sel Evol, 1989.21(4):p.467-477.
    64. Goddard, M.E., A mixed model for analyses of data on multiple genetic markers. Theor Appl Genet,1992.83(6-7): p.878-886.
    65. Xu, S. and W.R. Atchley, A Random Model Approach to Interval Mapping of Quantitative Trait Loci. Genetics, 1995.141:p.1189-1197.
    66. Grignola, F.E., I. Hoeschele, and B. Tier, Mapping quantitative trait loci in outcross populations via residual maximum likelihood. Ⅰ. Methodology. Genet Sel Evol,1996.28(6):p.479-490.
    67. Grignola, F., et al., Mapping quantitative trait loci in outcross populations via residual maximum likelihood. Ⅱ. A simulation study. Genet Sel Evol,1996.28(6):p.491-504.
    68. Lander, E. and L. Kruglyak, Genetic dissection of complex traits:guidelines for interpreting and reporting linkage results. Nature Genetics,1995.11:p.241-247.
    69. Churchill, GA. and R.W. Doerge, Empirical Threshold Values for Quantitative Trait Mapping. Genetics,1994.138: p.963-971.
    70. Visscher, P.M., R. Thompson, and C.S. Haley, Confidence Intervals in QTL Mapping by Bootstrapping. Genetics, 1996.143:p.1013-1020.
    71. Satagopan, J.M., et al., A Bayesian Approach to Detect Quantitative Trait Loci Using Markov Chain Monte Carlo. Genetics,1996.144:p.805-816.
    72. Uimari, P. and I. Hoeschele, Mapping-Linked Quantitative Trait Loci Using Bayesian Analysis and Markov Chain Monte Carlo Algorithms. Genetics,1997.146:p.735-743.
    73. Stephens, D.A. and R.D. Fisch, Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo. Biometrics,1998.54:p.1334-1347.
    74. Sillanpaa, M.J. and E. Arjas, Bayesian Mapping of Multiple Quantitative Trait Loci From Incomplete Inbred Line Cross Data. Genetics,1998.148:p.1373-1388.
    75. Sillanpaa, M.J. and E. Arjas, Bayesian Mapping of Multiple Quantitative Trait Loci From Incomplete Outbred Offspring Data. Genetics,1999.151:p.1605-1619.
    76. 陈宗祥, et al.,对水稻纹枯病抗源的初步研究.中国水稻科学,2000.14(1):p.15-18.
    77. Zou, J.H., et al., Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor Appl Genet,2000.101(4):p.569-573.
    78. 王力华and戴晓枫,棉花黄萎病抗性的分子研究进展.分子植物育种,2003.1(1):p.97-102.
    79. 周淼平, et al.,小麦赤霉病抗性QTL分析作物学报,2004.30(8):p.739-744.
    80. Glazebrook, J., Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology,2005.43:p.205-227.
    81. Tanksley, S.D., Mapping polygenes. Annu. Rev. Genet,1993.27:p.205-233.
    82.左示敏, et al.,植物数量抗病基因克隆及其抗性机理的研究进展.分子植物育种,2006.4(5)0:p.603-613.
    83. 周明华,et al.,水稻品种对水稻细菌性条斑病抗性研究进展.植物保护学报,2003.30(3):p.325-330.
    84.潘学彪,et al.,作物重要数量性状基因鉴定与应用的若干问题扬州大学学报,2005.26(2):p.50-55.
    85. Liu, J., et al., Predictive Value for the Chinese Population of the Framingham CHD Risk Assessment Tool Compared With the Chinese Multi-provincial Cohort Study. JAMA,2004.291:p.2591-2599.
    86. Thomson, P.A., et al., Association ofNeuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population Association between NRG1 and BP, SCZ. Molecular Psychiatry,2006.12:p.94-104.
    87. Dilbirligi, M., et al., High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics,2006.88:p.74-87.
    88. El-Assal, S.E.-D., et al., A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nature Genetics, 2001.29:p.435-440.
    89. Werner, J.D., et al., Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. PNAS,2005.102(7):p.2460-2465.
    90. Kroymann, J., et al., Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. PNAS, 2003.25(100):p.14587-14592.
    91. Doebley, J., A. Stec, and L. Hubbard, The evolution of apical dominance in maize. Nature,1997.386:p.485-488.
    92. Yano, M., et al., Hd1, a Major Photoperiod Sensitivity Quantitative Trait Locus in Rice, Is Closely Related to the Arabidopsis Flowering Time Gene CONSTANS. The Plant Cell,2000.12:p.2473-2483.
    93. Kojima, S., et al., Hd3a, a Rice Ortholog of the Arabidopsis FT Gene, Promotes Transition to Flowering Downstream of Hdl under Short-Day Conditions. Plant Cell Physiology,2002.43(10):p.1096-1105.
    94. Takahashi, Y., et al., Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. PNAS,2001.98(14):p.7922-7927.
    95. Doi, K., et al., Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hdl. Genes Dev,2004.18:p.926-936.
    96. Fridman, E., et al., Zooming In on a Quantitative Trait for Tomato Yield Using Interspecific Introgressions. Science, 2004.305(5691):p.1786-1789.
    97. Liu, J., et al., A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. PNAS,2002. 99(20):p.13302-13306.
    98. Frary, A., et al., fw2.2:A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science,2000. 289(5476):p.85-88.
    99. Ishimaru, K., K. Ono, and T. Kashiwagi, Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta,2004.218(3):p.388-395.
    100. Mouchel, C.F., GC. Briggs, and C.S. Hardtke, Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Gene & Development,2004.18:p.700-714.
    101. Glazier, A.M., J.H. Nadeau, and T.J. Aitman, GENETICS:Finding Genes That Underlie Complex Traits. Science, 2002.298(5602):p.2345-2349.
    102. Salvi, S. and R. Tuberosa, To clone or not to clone plant QTLs:present and future challenges. TREND in Plant Science,2005.10(6):p.297-304.
    103. Li, Z.-K., et al., Are the Dominant and Recessive Plant Disease Resistance Genes Similar? A Case Study of Rice R Genes and Xanthomonas oryzae pv. oryzae Races. Genetics,2001.159:p.757-765.
    104. Sanchez, A.C., et al., Genetic and physical mapping of xa13, a recessive bacterial blight resistance gene in rice. Theor Appl Genet,1999.98(6-7):p.1022-1028.
    105. Sirithunya, P., et al., Quantitative Trait Loci Associated with Leaf and Neck Blast Resistance in Recombinant Inbred Line Population of Rice (Oryza Sativa). DNA Res,2002.9(3):p.79-88.
    106. Perchepied, L., C. Dogimont, and M. Pitrat, Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in a recombinant inbred line population of melon. Theor Appl Genet,2005.111(1):p.65-74.
    107. Faris, J.D. and T.L. Friesen, Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat. Theor Appl Genet,2005.111(2):p.386-392.
    108. Jorge, V., et al., Genetic architecture of qualitative and quantitative Melampsora larici-populina leaf rust resistance in hybrid poplar:genetic mapping and QTL detection. New Phytol,2005(167):p.1.
    109. Bilgic, H., B.J. Steffenson, and P.M. Hayes, Comprehensive genetic analyses reveal differential expression of spot blotch resistance in four populations of barley. Theor Appl Genet,2005.111(7):p.1238-1250.
    110. Li, Z.k., et al., Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet,1995.91(2):p.382-388.
    111. Tao, Y., et al., Mutational Analysis of the Arabidopsis Nucleotide Binding Site-Leucine-Rich Repeat Resistance Gene RPS2. Plant Cell,2000.12:p.2541-2554.
    112. Hwang, C.-F. and V.M. Williamson, Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi. The Plant Journal,2003.34(5):p. 585-593.
    113. Belkhadir, Y., R. Subramaniam, and J.L. DangI, Plant disease resistance protein signaling:NBS-LRR proteins and their partners. Current Opinion in Plant Biology,2004.7(4):p.391-399.
    114. Pflieger, S., et al., Disease resistance gene analogs as candidates for QTLs involved in pepper-pathogen interactions. Genome,1999.42(6):p.1100-1110.
    115. Quint, M., et al., Identification of genetically linked RGAs by BAC screening in maize and implications for gene cloning, mapping and MAS. Theor Appl Genet,2003.106(7):p.1171-1177.
    116. Monosi, B., et al., Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet,2004.109(7):p. 1434-1447.
    117. Wang, Z., et al., Rice ESTs with disease-resistance gene- or defense-response gene-like sequences mapped to regions containing major resistance genes or QTLs. Molecular Genetics and Genomics,2001.265(2):p.302-310.
    118. McIntyre, C.L., et al., Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome,2005.48(3):p.391-400.
    119. Jiang, S.-M., et al., Cloning of resistance gene analogs located on the alien chromosome in an addition line of wheat-Thinopyrum intermedium. Theor Appl Genet,2005.111(5):p.923-931.
    120. Calenge, F., et al., Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet,2005.110(4):p.660-668.
    121. Xu, Q., X. Wen, and X. Deng, Isolation of TIR and nonTIR NBS-LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Theor Appl Genet,2005.111(5):p.819-830.
    122. Mizobuchi, R., et al., Differential expression of disease resistance in rice lesion-mimic mutants. Plant Cell Reports, 2002.21(4):p.390-396.
    123. Chenault, K.D., et al., Field reaction to Sclerotinia blight among transgenic peanut lines containing antifungal genes. Crop Sci,2005.45:p.511-515.
    124. Xing, T., et al., MALDI-Qq-TOF-MS and transient gene expression analysis indicated co-enhancement of β-1,3-glucanase and endochitinase by tMEK2 and the involvement of divergent pathways. Physiological and Molecular Plant Pathology,2003.62(4):p.209-217.
    125. Xiong, L. and Y. Yang, Disease Resistance and Abiotic Stress Tolerance in Rice Are Inversely Modulated by an Abscisic Acid-Inducible Mitogen-Activated Protein Kinase. The Plant Cell,2003.15:p.745-759.
    126. Chen, H., et al., Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. PNAS,2003.100(5):p.2544-2549.
    127. Xiong, M., S. Wang, and Q. Zhang, Coincidence in map positions between pathogen-induced defense-responsive genes and quantitative resistance loci in rice. Science in China Series C:Life Sciences,2002.45(5):p.518-526.
    128. Wen, N., Z. Chu, and S. Wang, Three types of defense-responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Molecular Genetics and Genomics,2003.269(3):p.331-339.
    129. Liu, B., et al., Candidate Defense Genes as Predictors of Quantitative Blast Resistance in Rice. Mol Plant Microbe Interact,2004.17:p.1146-1152.
    130. Faris, J.D., et al., Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet,1999. 98(2):p.219-225.
    131. Trognitz, F., et al., Plant Defense Genes Associated with Quantitative Resistance to Potato Late Blight in Solanum phureja × Dihaploid S. tuberosum Hybrids. Mol Plant Microbe Interact,2002.15(6):p.587-597.
    132. Taylor, J.L., et al., Structural analysis and activation by fungal infection of a gene encoding a pathogenesis-related protein in potato. Mol Plant Microbe Interact,1990.3(2):p.72-77.
    133. Pajerowska, K.M., J.E. Parker, and C. Gebhardt, Potato Homologs of Arabidopsis thaliana Genes Functional in Defense Signaling—Identification, Genetic Mapping, and Molecular Cloning. Mol Plant Microbe Interact,2005. 18(10):p.1107-1119.
    134. Torneroa, P., et al., RAR1 and NDR1 Contribute Quantitatively to Disease Resistance in Arabidopsis, and Their Relative Contributions Are Dependent on the R Gene Assayed. The Plant Cell,2002.14:p.1005-1015.
    135. Chern, M.-S., et al., Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. The Plant Journal,2001.27(2):p.101-113.
    136. Wisser, R.J., et al., Identification and Characterization of Regions of the Rice Genome Associated With Broad-Spectrum, Quantitative Disease Resistance. Genetics,2005.169:p.2277-2293.
    137. Fan, W. and X. Dong, In Vivo Interaction between NPR1 and Transcription Factor TGA2 Leads to Salicylic Acid-Mediated Gene Activation in Arabidopsis. The Plant Cell,2002.14(1377-1389).
    138. Dong, J., C. Chen, and Z. Chen, Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Biomedical and Life Sciences,2003.51(1):p.21-37.
    139. Ramalingam, J., et al., Candidate Defense Genes from Rice, Barley, and Maize and Their Association with Qualitative and Quantitative Resistance in Rice. Mol Plant Microbe Interact,2003.16(1):p.14-24.
    140. Biraghi, A., Histological observations on maize plants affected by dwarfing. Notiz Malatt Plante,1949.7:p.1-3.
    141. HARPAZ, I., Needle Transmission of a New Maize Virus. Nature,1959.184:p.77-78.
    142. Dovas, C.I., K. Eythymiou, and N.I. Katis, First report of Maize rough dwarf virus (MRDV) on maize crops in Greece. Plant Pathology,2004.53(2):p.238.
    143. Louie, R., J.J. Abt, and A. USD A, Mechanical transmission of maize rough dwarf virus. Maydica,2004.49(3):p. 231-240.
    144.苗洪芹 and 陈巽祯,河北省玉米粗缩病发生危害与肪治.植物保护,1997.23(6):p.17-18.
    145.李斌,玉米粗缩病7号染色体抗病位点的精细定位山东大学硕士学位论文,2009.
    146.郭启唐and李钊敏,晋南玉米粗缩病发生与品种抗病性的关系山西农业科学,1995.23(2):p.41-44.
    147.吉贞芳,et al.,玉米粗缩病发生危害与播期和品种的关系.植物保护,1998.24(4):p.27-29.
    148. Luisoni, E., et al., Serological relationship between maize rough dwarf virus and rice black-streaked dwarf virus. Virology,1973.52(1):p.281-283.
    149. Azuhata, F., et al., Close similarity between genome structures of rice black-streaked dwarf and maize rough dwarf viruses. J Gen Virol,1993.74:p.1227-1232.
    150. ARNEODO, J.D., et al., Cytopathological characterization of Mal de Rio Cuarto virus in corn, wheat and barley. Fitopatol. bras.,2002.27(3):p.289-302.
    151.方守国,et al.,我国玉米粗缩病株上发现的水稻黑条矮缩病毒农业生物技术学报,2000.8(1):p.12.
    152. Fang, S., et al., Identification of rice black-streaked dwarf fijivirus in maize with rough dwarf disease in China. Archives of Virology,2001.146(1):p.167-170.
    153. Zhang, H., et al., Sequence Analysis Shows that a Dwarfing Disease on Rice, Wheat and Maize in China is Caused by Rice Black-streaked Dwarf Virus. European Journal of Plant Pathology,2001.107(5):p.563-567.
    154.张恒木,et al.,浙江和河北发生的一种水稻、小麦、玉米矮缩病是水稻黑条矮缩病毒引起的.中国病毒学,2001.16(3):p.246-251.
    155. Bai, F.-w., et al., Phylogenetic Analysis Reveals that a Dwarfing Disease on Different Cereal Crops in China is due to Rice Black Streaked Dwarf Virus (RBSDV). Virus Genes,2002.25(2):p.201-206.
    156.郑巧兮,et al.,一种新的纯化玉米粗缩病毒的方法及病毒形态的研究.生物化学与生物物理学报,1984.16(5):p.571-576.
    157.龚祖埙,et al.,我国禾谷类病毒病的病原问题□Ⅷ.玉米粗缩病病原的研究.生物化学与生物物理学报,1981.13(1):p.55-60.
    158. Boccardo, G and R.G Milne, The maize rough dwarf virion:I. Protein composition and distribution of RNA in different viral fractions. Virology,1975.68(1):p.79-85.
    159.邓文生,et al.,玉米粗缩病毒基因组第七组份的cDNA克隆及序列分析微生物学报,2000.40(5):p.488-494.
    160.吴淑华,et al.,江苏玉米粗缩病病原病毒的RTI PCR检测.农业生物技术学报,2000.8(4):p.369-372.
    161.邓先明and刘光珍,玉米粗缩病(MRDV)和鼠耳病(MWEV)的发生和研究简况.国外农学-植物保护,1994.7(3-4):p.15-18.
    162.陈巽祯,et al.,玉米粗缩病发病规律及综合肪治研究华北农学报,1986.1:p.90-97.
    163.钱幼亭,et al.,不同播种期对玉米粗缩病发生的影响.1999.25(3):p.23-24.
    164.苗洪芹,et al.,玉米播期与玉米粗缩病病株率的关系植物保护,2001.27(4):p.9-12.
    165.张仲恺,云南植物病毒科技出版社,2001.
    166.李怀方and丁占生,玉米粗缩病的发生及防治.植保技术与推广,1997.17(3):p.16-17.
    167.李芳贤,玉米粗缩病(MRDV)的发生危害与防治对策.玉米科学,2000.8(4):p.75-78.
    168. Bar-tsur, A., H. Saadi, and Y. Antignus, Resistance of corn genotypes to maize rough dwarfs virus [in Israel]. Maydica,1988.33(3):p.189-200.
    169.郭启唐,李钊敏,and董哲生,玉米粗缩病及自交系抗病性观察与分析植物保护,1995.1:p.21-23.
    170.刘志增,et al.,玉米自交系及杂交种抗粗缩病性鉴定与分析.玉米科学,1996.4(4):p.68-70.
    171.苏智宗,et al.,玉米抗粗缩病品种的探讨.玉米科学,2000.8:p.73-74.
    172.尚佑芬,et al.,玉米推广品种与品种资源抗病毒病苗期鉴定初报.山东农业科学,2001.4:p.3-5,11.
    173.陈永坤,玉米抗粗缩病种质鉴定与基因定位初步研究.新疆农业大学硕士学位论文,2006.
    174.石正太,石他山,and贾惊涛,玉米粗缩病发生与防治的调查研究莱阳农学院学报,1997.14(3):p.181-183.
    175.何龙,玉米粗缩病抗性基因SSR标记初步研究重庆大学硕士学位论文,2008.
    176.王飞,玉米粗缩病抗病位点的分子标记定位山东大学博士学位论文,2007.
    177.王安乐,et al.,玉米自交系抗组缩病特性的遗传基础及轮回选择效应研究.山西农业科学,1998.26(4):p.64-67.
    178.张永生,玉米遗传图谱构建和花粉管通道法转化玉米的研究山东大学博士论文,2005.
    179.李常保,et al.,玉米抗粗缩病病毒(MRDV)基因的RAP D标记及其辅助选择效果研究.作物学报,2002.28(4):p.564-568.
    180.梁琼,燕永亮,and侯明生,不同玉米品种抗感MRDV与防御酶活性的关系华中农业大学学报,2003.22(2):p.114-116.
    181.梁琼and侯明生,玉米品种抗感粗缩病毒与过氧化物酶关系的研究.云南农业大学学报,2004.19(5):p.546-549.
    182.吴国栋,玉米粗缩病抗性基因分子标记和定位的初步研究.山东大学硕士学位论文,2000.
    183.邸垫平,et al.,玉米抗粗缩病接种鉴定方法研究初报.河北农业大学学报,2005.28(2):p.76-78,103.
    184. Duβle, C., et al., Saturation of two chromosome regions conferring resistance to SCMV with SSR and AFLP markers by targeted BSA. Theor Appl Genet,2003.106(3):p.485-493.
    185. Quarrie, S.A., et al., Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J. Exp. Bot,1999.50(337):p.1299-1306.
    186. Brauer, M.J., et al., Mapping Novel Traits by Array-assisted Bulk Segregant Analysis in Saccharomyces cerevisiae. Genetics,2006.173:p.1813-1816.
    187. Cho, Y.G, et al., Cloning and mapping of variety-specific rice genomic DNA sequences:amplified fragment length polymorphisms (AFLP) from silver-stained Polyacrylamide gels. Genome,1996.39(2):p.373-378.
    188. Postlethwait, J.H. and W.S. Talbot, Zebrafish genomics:From mutants to genes. Trends in Genetics,1997.13(5):p. 183-190.
    189. Xu, M.L., et al., High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Molecular and General Genetics,1999.261(3):p.574-581.
    190. Malek, B.v., W.E. Weber, and T. Debener, Identification of molecular markers linked to Rdrl, a gene conferring resistance to blackspot in roses. Theor Appl Genet,2000.101(5-6):p.977-983.
    191. Nakamura, K., et al., Genetic mapping of the dominant albino locus in rainbow trout (Oncorhynchus mykiss). Mol Genet Genomics,2001.265(4):p.687-693.
    192. Ou6draogo, J.T., et al., Identification of AFLP markers linked to resistance of cowpea (Vigna unguiculata L.) to parasitism by Striga gesnerioides. Theor Appl Genet,2001.102(6-7):p.1029-1036.
    193. Xu, M., E. Huaracha, and S.S. Korban, Development of sequence-characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple. Genome,2001. 44(1):p.63-70.
    194.薄天岳,et al.,亚麻抗锈病基因M4的特异分子标记遗传学报,2002.29(10):p.922-927.
    195.赵晓彦,王晓鸣,and王述民,普通菜豆抗炭疽病基因SCAR标记鉴定.作物学报,2007.33(11):p.1815-1821.
    196. protocol, L., CIMMYTApplied Molecular Genetics Laboratory. Mexico,1998.
    197. Lalitha, S., Primer Premier 5. Biotech software & internet report,2000.1(6):p.270-272.
    198. Stam, P., Construction of integrated genetic linkage maps by means of a new computer package:JoinMap. Plant Journal,1999.3:p.739-744.
    199. Stam, P. and J.W.v. Ooijen, JOINMAP (tm) version 3.0:Software for the calculation of genetic linkage maps. CPRO-DLO Wagerningen, The Netherlands,1995.
    200. Voorrips, R.E., MapChart:software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity,2002.93(1):p.77-78.
    201.方宣钧,吴为人,and唐纪良,作物DNA标记辅助育种.北京,科学出版社,2002:p.19.
    202. Shi, L., et al., Comparative QTL mapping of resistance to Gray leaf spot in maize based on bioinformatics. Agricultural Sciences in China,2007.6(12):p.1411-1419.
    203. Ellis, J., P. Dodds, and T. Pryor, Structure, function and evolution of plant disease resistance genes. Current Opinion in Plant Biology,2000.3(4):p.278-284.
    204. McDowell, J.M., et al., Intragenic Recombination and Diversifying Selection Contribute to the Evolution of Downy Mildew Resistance at the RPP8 Locus of Arabidopsis. Plant Cell,1998.10:p.1861-1874.
    205. Gassmann, W., M.E. Hinsch, and B.J. Staskawicz, The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant Journal,1999.20(3):p.265-277.
    206. Wang, Z.-X., et al., The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. The Plant Journal,1999.19(1):p.55-64.
    207. Yoshimura, S., et al., Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial□inoculation. PNAS,1998.95(4):p.1663-1668.
    208. Tai, T.H., et al., Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. PNAS, 1999.96(24):p.14153-14158.
    209. Ori, N., et al., The I2C Family from the Wilt Disease Resistance Locus 12 Belongs to the Nucleotide Binding, Leucine-Rich Repeat Superfamily of Plant Resistance Genes. The Plant Cell,1997.9(4):p.521-532.
    210. Salmeron, J.M., et al., Tomato Prf Is a Member of the Leucine-Rich Repeat Class of Plant Disease Resistance Genes and Lies Embedded within the Pto Kinase Gene Cluster. Plant Cell,1996.86(1):p.123-133.
    211. Whitham, S., et al., The product of the tobacco mosaic virus resistance gene N:Similarity to toll and the interleukin-1 receptor. Cell,1994.78(6):p.1101-1115.
    212. SHI, H., et al., Development of sequence characterized amplified region (SCAR) primers for the detection of resistance to Sporisorium reiliana in maize. Agricultural Sciences in China,2009.8(8):p.910-919.
    213.吕香玲,et al.,玉米抗甘蔗花叶病毒SCAR分子标记开发.2009.42(6):p.1980-1987.
    214.胡会庆and李子银,分子标记在植物遗传研究中的应用进展.生物学杂志,1997.14:p.32-34.
    215. Ahn, S. and S.D. Tanksley, Comparative linkage maps of the rice and maize genomes. PNAS,1993.90(17):p. 7980-7984.
    216. Ahn, I.-Y., Enhanced particle flux through the biodeposition by the Antarctic suspension-feeding bivalve Laternula elliptica in Marian Cove, King George Island. Journal of Experimental Marine Biology and Ecology,1993.171(1): p.75-90.
    217. Kilian, L., Small-sample Confidence Intervals for Impulse Response Functions. The Review of Economics and Statistics,1998.80(2):p.218-230.
    218. Lin, F., Embracing causality in specifying the indeterminate effects of actions. American Association for Artificial Intelligence,1996.95:p.1985-1993.
    219. Kurata, K., Site of origin of projections from the thalamus to dorsal versus ventral aspects of the premotor cortex of monkeys. Neuroscience Research,1994.21(1):p.71-76.
    220. PATERSON, D.M., Biogenic structure of early sediment fabric visualized by low-temperature scanning electron microscopy. Journal of the Geological Society,1995.152(1):p.131-140.
    221. Van-Ooijen, J.W., MapQTL 5, Software for the Mapping of Quantitative Trait Loci in Experimental Populations. Wageningen, Netherlands:Kyazama B.V.,2004.
    222.李兆波,et al., SNP标记技术及其在农作物育种中的应用.辽宁农业职业技术学院学报,2010.12(3):p.8-9.
    223.段灿星,水稻抗灰飞虱QTL分析:中国农业科学院学位论文,2008.
    224. Kruijt, M., et al., Rearrangements in the Cf-9 Disease Resistance Gene Cluster of Wild Tomato Have Resulted in Three Genes That Mediate Avr9 Responsiveness. Genetics,2004.168:p.1655-1663.
    225. Liu, X.M., B.S. Gill, and M.-S. Chen, Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6DS of wheat. Theor Appl Gene,2005.111(2):p.243-249.
    226. Qu, S., et al., The Broad-Spectrum Blast Resistance Gene Pi9 Encodes a Nucleotide-Binding Site-Leucine-Rich Repeat Protein and Is a Member of a Multigene Family in Rice. Genetics,2006.172:p.1901-1914.
    227.刘卫东 and 王石平,水稻中大麦Mlo和玉米Hml抗病基因同源序列的分析和定位.遗传学报,2002.29(10):p.875-879.
    228. YAN, J.-B., et al., Comparative analyses of QTLfor important agronomic traits between maizeand rice. Acta Genetica Sinca,2004.31(12):p.1401-1407.
    229. Milla, R.M.A., et al., Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J,2003.36:p.602-615.
    230. Robaglia, C. and C. Caranta, Translation initiation factors:a weak link in plant RNA virus infection. TREND in Plant Science,2006.11(1):p.40-45.
    231. Browning, K.S., et al., Identification of an isozyme form of protein synthesis initiation factor 4F in plants. J. Bio. Chem.,1992.267:p.10096-10100.
    232. Gingras, A.C., B. Raught, and N. Sonenberg, eIF4 initiation factors:effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem,1999.98:p.913-963.
    233. Hershey, J.W.B. and W.C. Merrick, Translational Control of Gene Expression, Cold Spring Harbor Laboratory Press, Cold Spring Harbor. New York,2000:p.33-88.
    234. Kang, B.C., et al., The pvrl locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J.,2005.42:p.392-405.
    235. Lellis, A.D., et al., Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr. Biol.,2002.12:p.1046-1051.
    236. Wittmann, S., et al., Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology,1997.234: p.84-92.
    237. Yeam, I., et al., Functional dissection of naturally occurring amino acid substitutions in eIF4E that confers recessive potyvirus resistance in plants. Plant Cell,2007.19:p.2913-2928.
    238. Miyoshi, H., et al., Binding analyses for the interaction between plant virus genome-linked protein (VPg) and plant translational initiation factors. Biochimie,2006.88:p.329-340.
    239. Ruffel, S., et al., A natural recessive resistance gene against Potato virus Yin pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J.,2002.32:p.1067-1075.
    240. Nicaise, V., et al., The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the Potyvirus Lettuce mosaic virus. Plant Phiol,2003.132:p.1272-1282.
    241. Gao, Z., et al., The potyvirus recessive resistance gene, sbml, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J.,2004.40:p.376-385.
    242. Ruffel, S., et al., The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol Genet Genomics,2005.274:p.346-353.
    243. Stein, N., et al., The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J.,2005.4:p.912-922.
    244. Nieto, C., et al., An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J.,2006.48:p.452-462.
    245. Benedetti, D.A. and J.R. Graff, eIF-4E expression and its role in malignancies and metastases. Oncogene,2004.23: p.3189-3199.
    246. Aranzana, M.J., et al., Genome-Wide Association Mapping in Arabidopsis Identifies Previously Known Flowering Time and Pathogen Resistance Genes. PLoS. Genet,2005.1:p.0531-0539.
    247. Hagenblad, J., et al., Haplotype Structure and Phenotypic Associations in the Chromosomal Regions Surrounding Two Arabidopsis thaliana Flowering Time Loci. Genetics,2004.168:p.1627-1638.
    248. Olsen, K.M., et al., Genetics.2004.167:p.1361-1369.
    249. Osterberg, M.K., et al., Naturally Occurring Indel Variation in the Brassica nigra COL1 Gene Is Associated With Variation in Flowering Time. Genetics,2002.161:p.299-306.
    250. Gonzalez-Martinez, S.C., et al., Association Genetics in Pinus taeda L. I. Wood Property Traits. Genetics,2007. 175:p.399-409.
    251. Crossa, J., et al., Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics,2007.177:p.1889-1913.
    252. Andersen, J.R., et al., Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Gene,2005.111(2):p.206-217.
    253. Camus-Kulandaivelu, L., et al., Patterns of Molecular Evolution Associated With Two Selective Sweeps in the Tbl-Dwarf8 Region in Maize. Genetics,2008.180:p.1107-1121.
    254. Ducrocq, S., et al., Key Impact of Vgtl on Flowering Time Adaptation in Maize:Evidence From Association Mapping and Ecogeographical Information. Genetics,2008.178(4):p.2433-2437.
    255. Salvi, S., et al., Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. PNAS,2007.104(27):p.11376-11381.
    256. Thornsberry, J.M., et al., Dwarf8 polymorphisms associate with variation in flowering time.2001.28:p.286-289.
    257. Tommasini, L., et al., Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Gene,2007.115(5):p.697-708.
    258. Gebhardt, C., et al., Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed,2004. 13:p.93-102.
    259. Malosetti, M., et al., A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics,2007.175:p.879-889.
    260. Simko, I., et al., Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theor Appl Gene,2004.108:p. 217-224.
    261. Garrisa, A.J., S.R. McCoucha, and S. Kresovicha, Population Structure and Its Effect on Haplotype Diversity and Linkage Disequilibrium Surrounding the xa5 Locus of Rice (Oryza sativa L.). Genetics,2003.165:p.759-769.
    262. Quint, M., et al., Development of RGA-CAPS markers and genetic mapping of candidate genes for sugarcane mosaic virus resistance in maize. Theor Appl Gene,2002.105(2-3):p.355-363.
    263. Remington, D.L., et al., Structure of linkage disequilibrium and phenotypic associations in the maize genome. PNAS,2001.98(20):p.11479-11484.
    264. Liu, K., et al., Genetic Structure and Diversity Among Maize Inbred Lines as Inferred From DNA Microsatellites. Genetics,2003.165:p.2117-2128.
    265. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Method,2001.25:p.402-408.
    266. Higo, K., et al., Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucleic Acids Res.,1999.27: p.297-300.
    267. Xie, C., et al., An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol Breeding,2008.21:p.407-418.
    268. Bradbury, P.J., et al., TASSEL:software for association mapping of complex traits in diverse samples. Bioinformatics,2007.23:p.2633-2635.
    269. Meyer, J.D.F., et al., Construction of a fosmid library of cucumber (Cucumis sativus) and comparative analyses of the eIF4E and eIF(iso)4E regions from cucumber and melon (Cucumis melo). Mol. Genet. Genomics,2008.279:p. 473-480.
    270. Matton, D.P., et al., Identification of cis-acting elements involved in the regulation of the pathogenesis-related gene STH-2 in potato. Plant Molecular Biology,1933.22:p.279-291.
    271. Warner, S.A., R. Scott, and J. Draper, Isolation of an asparagus intracellular PR gene (AoPR1) wound-responsive promoter by the inverse polymerase chain reaction and its characterization in transgenic tobacco. Plant J.,1993. 3:p.191-201.
    272. Hahn, K. and G. Strittmatter, Pathogen-defence gene prpl-I from potato encodes an auxin-responsive glutathione Stransferase. Eur. J. Biochem,1994.226:p.619-626.
    273. Rushton, P.J., et al., Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO. J.,1996.15:p.5690-5700.
    274. Schubert, R., et al., An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Molecular Biology,1997.34:p.417-426.
    275. Wildermuth, M.C., et al., Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 2001.414:p.562-565.
    276. Lebel, E., et al., Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J.,1998.16:p.223-233.
    277. Ohme-Takagi, M. and H. Shinshi, Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell,1995.7:p.173-182.
    278. Buttner, M. and K.B. Singh, Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene inducible, GCC-box DNA binding protein interacts with an OCS binding protein. Proc. Natl. Acad. Sci. USA.,1997.94:p.5961-5966.
    279. Liu, Q., et al., Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell,1998.10:p.1391-1406.
    280. Fujimoto, S.Y., et al., Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell,2000.12:p.393-404.
    281. Park, J.M., et al., Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell,2001.13:p.1035-1046.
    282. Berrocal-Lobo, M., A. Molina, and R. Solano, Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J.,2002.29:p.23-32.
    283. Chen, W., et al., Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell,2002.14:p.559-574.
    284. Yang, Y. and D.F. Klessig, Isolation and Characterization of a tobacco mosaic virus-inducible myb oncogene homologfrom tobacco. Proc. Natl. Acad. Sci. USA.,1996.93:p.14972-14977.
    285. Green, P.J., et al., Binding site requirements for pea nuclear protein factor GT-l correlate with sequences required for light-dependent transcriptional activation of the rbcS.3A gene. EMBO. J.,1988.7:p.4035-4044.
    286. Park, H.C., et al., Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-Like transcription factor. Plant Physiology,2004.135:p.2150-2161.
    287. Van-Loon, L.C. and J.F. Antoniw, Comparison of the effects of salicylic acid and ethephon treatment with virus-induced hypersensitivity and acquired resistance in tobacco. Eur. J. Plant Path.,1988.88:p.237-256.
    288. Dong, X., JA, ethylene, and disease resistance in plants. Curr. Opin. Plant. Biol.,1998.1:p.316-323.
    289. Harms, K., et al., Expression of a Flax Allene Oxide Synthase cDNA Leads to Increased Endogenous Jasmonic Acid (JA) Levels in Transgenic Potato Plants but Not to a Corresponding Activation of JA-Responding Genes. The Plant Cell,1995.7:p.1645-1654.
    290. Lehmann, J., et al., Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments.1995.197:p.156-162.
    291. Maleck, K., et al., The transcriptome of Arabidopsis thaliana during systemic acquired resistance during systemic acquired resistance. Nat. Genet.,2000.26:p.403-410.
    292. Reymond, P., et al., Differential gne epression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell,2000.12:p.707-719.
    293. THOMMA, B.P.H.J., et al., Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Plant Biology,1998.95:p.15107-15111.
    294. Thomma, B.P.H.J., et al., Requirement of Functional Ethylene-Insensitive 2 Gene for Efficient Resistance of Arabidopsis to Infection by Botrytis cinerea. Plant Physiology,1999.121:p.1093-1101.
    295. Thomma, B.P.H.J., et al., The complexity of disease signaling in Arabidopsis. Curr. Opin. Immuno,2001.13:p. 63-68.
    296. Penninckx, I.A., et al., Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell,1998.10:p.2103-2113.
    297. Albrecht, T., et al., Quantification of rapid, transient increases in jasmonic acid in wounded plants using a monoclonai antibody. Planta,1993.191:p.86-94.
    298. CREELMAN, R.A. and J.E. MULLET, Jasmonic acid distribution and action in plants:Regulation during development and response to biotic and abiotic stress. Colloquium Paper,1995.92:p.4114-4119.
    299. MCCCONN, M., et al., Jasmonate is essential for insect defense in Arabidopsis. Plant Biology,1997.94:p. 5473-5477.
    300. Penninckx, I.A.M.A., et al., Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell,1996.8:p.2309-2323.
    301. Sano, H., et al., Regulation by Cytokinins of Endogenous Levels of Jasmonic and Salicylic Acids in Mechanically Wounded Tobacco Plants. Plant Cell Physiology,1996.37(6):p.762-769.
    302. Epple, P., K. Apel, and H. Bohlmann, Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell,1997.9:p.509-520.
    303. Ryals, J.A., et al., Systemic acquired resistance. Plant Cell,1996.8:p.1809-1819.
    304. Terras, F.R.G., et al., Small cysteine-rich antifungal proteins from radish:Their role in host defense. Plant Cell, 1995.7:p.573-588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700