甘蓝型油菜与白菜比较作图和比较QTL研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子标记的发展和大量遗传图谱的构建使不同物种间开展比较作图和比较QTL(Quantitative Trait Locus)的研究成为可能。比较作图可以作为一个有效的工具,将一个研究的比较透彻的物种中的信息和资源(像拟南芥、水稻等)转移到其它有待研究的物种中。这样不仅可以加快基因组的研究,又可以充分节省大量的人力和财力;同时,在比较作图的基础上,对同一性状在不同物种中(如芸苔属物种与拟南芥)开展QTLs比较分析,有利于深入了解复杂性状的遗传学基础。
     实验室成员曾根据韩国已经测序的白菜A3、A9染色体的208个BACs信息设计和初步筛选的407对引物(其中SSR引物92对、IBP(Intron Based Polymorphism)引物315对)。本研究从中进一步筛选出对应于155个BACs的155对引物,将对应于104个BACs的64个IBP标记和44个SSR标记定位到TN DH遗传连锁图谱上,并利用实验室以前定位在图谱上的标记,重新构建了含有938个标记的甘蓝型油菜TN DH高密度遗传连锁图。该图谱包括472个SSR、64个IBP、41个AFLP、52个RFLP、97个SNP、57个SRAP和61个SSAP。
     将法国的DY群体、RNSL群体以及其一个甘蓝型油菜整合图谱上的标记整合到TN DH遗传连锁图上,得到了包含1107个标记的甘蓝型油菜整合图谱。与TN DH遗传连锁图相比,整合图谱上增加了119个SSR、19个SNP和31个其它类型的标记;同时,将韩国公布的CK、JWF3P、VCS 3个白菜遗传图谱上的标记进行整合,得到一个包含658个标记的白菜整合图谱,含有439个SSR标记,145个IBP标记,48个RFLP标记和25个CAPS标记。通过对甘蓝型油菜/白菜整合图谱的比较分析以及图谱上的标记信息与拟南芥的比对,共发现了195个甘蓝型油菜/白菜整合图谱上的共同标记,其中10个为共同标记,138个为共BAC标记,47个根据拟南芥信息推测得到,为拟同源标记。根据甘蓝型油菜/白菜整合图谱的比较结果,推测甘蓝型油菜A基因组与白菜基因组间可能发生了24个染色体重排事件,其中有20个倒位和4个可能的片断缺失,没有明显的片断插入事件,重排涉及的片断长度(cM)占甘蓝型油菜A基因组的17.92%。
     硫甙含量是衡量种子品质的一个重要性状。在白菜CK DH遗传连锁图A9连锁群上检测到了1个稳定出现的硫甙含量QTL。通过与实验室甘蓝型油菜TN DH遗传连锁图A9连锁群上检测到的1个多年多点重复出现的硫甙含量QTL比较,发现2个QTL位于同一个位置,因此可以利用白菜信息对甘蓝型油菜硫甙含量进行深入研究。
The progress in the development of molecular markers and construction of genetic linkage maps make it possible to carry out comparative genomics and comparative QTL (Quantitative Trait Locus) among species. Comparative mapping is one of effective strategies in utilizing genetic information from model plants with completed genomic sequences, such as Arabidopsis thaliana and rice, to their relatives because of its high efficiency on input and output. Meanwhile, comparative QTL analysis could be amplied in different species about the same trait, such as Brasscica species and other relatives of Arabidopsis, by an approach based on a comparative mapping. This approach facilicates the further research on the genetic basement about the complex traits.
     407 primers including 92 SSR primer pairs and 315 IBP (Intron Based Polymorphism) primer pairs responding to 208 BACs of B.rapa were used for polymorphic assay between the parents of Brassica napus DH population (TNDH) by the partner of our lab. In this study, we do the further assay and select 155 polymorphic primer pairs responding to 155 BACs. And then, 64 IBP markers and 44 SSR primers were mapped onto the TN genetic linkage map which is responding to 104 BACs.After combined other available markers from our lab, a updated TN genetic linkage map was build up with a high density of molecular markers, containing 472 SSR markers, 64 IBP markers, 52 RFLP markers, 91 SNP markers, 57 SRAP markers and 61 SSAP markers. And then, a new Brassica napus consensus map was constructed based on the backbone of TN genetic map after integrated markers from the other public Brassica napus genetic maps such as DY, RNSL genetic linkage map and a consensus genetic linkage map, with a increasing of 119 SSR markers, 19 SNP markers and 31 other markers. At the same time, a new Brassica rapa consensus map was constructed based on the backbone of JWF3P genetic map after integrated markers from the other public Brassica rapa genetic maps such as CK and VCS genetic linkage map containing 658 markers including 439 SSR markers, 145 IBP markers, 48 RFLP markers and 25 CAPS markers.
     Comparasion of the two consensus maps between A genome was performed, subsequently, based on 10 common markers, 138 common BAC markers between them and 47 pseudo-homologue markers were determined after they were compared with Arabidopsis genomic sequences, respectively. 24 chromosome rearrangements, account for 17.92% of the B.napus A genome, was found between this two divergented genomes, including 20 inversions and 4 indels, but distinct segment insertions/deletions.
     Glucosinolate content is an important trait for seed quality of Brassica species. A stable conmon QTL which is determining of seed glucosinolate content was detected on A9 linkage group of both TN and CK genetic linkage map under different environments in different years. Comparative QTL indicates the QTL at the same position of B.rapa and B.napus. So we can do some further research about the QTL of glucosinolate content in B. napus using the information of B. rapa.
引文
1.方荣,陈学军,缪南生,涂伟凤。茄科植物比较基因组学研究进展。江西农业学报,2007,19(2):35-38
    2.兰海,张志明,高世斌,潘光堂,荣廷昭。玉米与水稻种子休眠性QTL的比较研究。玉米科学,2009
    3.李媛媛,傅廷栋,马朝芝。芸薹属植物比较基因组学研究进展。植物学通报。2007,24(2):200-207
    4.栗茂腾,王芳,张椿雨,孟金陵。甘蓝型油菜亚基因组杂种(ArAnCcCn)的细胞学研究。作物学报,2006,32(3):351-357
    5.刘峰,吴晓雷,陈受宜。大豆分子标记在RIL群体中的偏分离分析。遗传学报,2000,27:883-887
    6.刘后利。油菜遗传育种学。2000,82-177
    7.龙艳。甘监型油菜开花期QTL定位及分析。[博士学位论文]。武汉:华中农业大学图书馆。 2007
    8.吕香玲,李新海,谢传晓,郝转芳,吉海莲,史利玉,张世煌。玉米抗甘蔗花叶病毒基因的比较定位,遗传,2008,30(1):101-108
    9.邱丹。甘蓝型油菜DH作图群体的构建和重要农艺性状及品质性状的QTL分析。[博士学位论文]。武汉:华中农业大学图书馆。2006
    10.覃瑞,宋发军,宋运淳。植物基因组比较作图研究进展。细胞生物学杂志,2004,26(2):158-162
    11.王磊,陈景堂,张祖新。主要禾谷类作物比较基因组学研究策略与进展。遗传,2007,29(9):1055-106
    12.王毅,姚骥,张征锋,郑用琏。基于玉米综合QTL图谱的比较分析及株高QTL的统合分析。科学通报,2006,51(10):1776-1786
    13.严建兵,汤华,黄益勤,郑用琏,李建生。玉米F2群体分子标记偏分离的遗传分析。遗传学报,2003,30(10):913-918
    14.Axelsson T,Bowman C M,Sharpe A G,Lydiate D J,Lagercrantz U.Amphidiploid Brassica juncea contains conserved progenitor genomes.Genome,2000,43:679-688
    15.Babula D,Kaczmarek M,Barakat A,Delseny M,Quiros C F,Sadowski J.Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana:complexity of the comparative map.Mol Genet Genome,2003,268:656-665
    16.Boivin K,Acarkan A,Mbulu R S,Clarenz O,Schmidt R.The Arabidopsis genome sequence as a tool for genome analysis in Brassicaceae:A comparison of the Arabidopsis and Capsella rubella genomes.Plant Physiol,2004,135:735-744
    17.Bonierbale M W,Plaisted R L,Tanksley S D.RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 1988,120: 1095-1103
    18. Burn J E, Bagnall D J, Metzger J D, Dennis E S, Peacock W J. DNA methlation, vernalization and the initiation of flowering. Natl Acad Sci USA, 1993, 90: 287-291
    19. Cavell A C, Lydiate D J, Parkin I A, Dean C, Trick M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome, 1998, 41: 62-69
    20. Chen M, San M B. Sequence organization and conservation in sh2/al homologous regions of sorghum and rice. Genetics, 1998, 148(1): 435-443
    21. Chen M, San M P, Oliveira A C, Woo S S, Zhang H, Wing R A, Bennetzen J L. Microcolinearity in sh2/al homologous regions of the maize, rice, and sorghum genomes. Proc Natf Acad Scf, 1997, 94(7): 3431-3435
    22. Cheung W Y, Champagne G, Hubert N, Landry B S. Comparison of the genetic maps of Brassica napus and Brassica oleracea. TAG, 1997, 94: 569-582
    23. Cheung W Y, Champagne G, Hubert N, Tulsieram L, Charne D, Patel J, Landry B S. Conservation of S-locus for self-incompatibility in Brassica napus (L) and Brassica oleracea (L). Thero Appl Genet, 1998, 95: 73-82
    24. Choi S R, Teakle G R, Plaha P, Kim J H, Allender C J, Beynon E, Piao Z Y, Soengas P, Han T H, King G J, Barker G C, Hand P, Lydiate D J, Batley J, Edwards D, Koo D H, Bang J W, Park B S, LimY P. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet, 2007, 115(6): 777-92
    25. Christopher D T, Foo Cheung, Rama M, Jonathan C, Brian J H, Jennifer R W, Erin E H, Ryan A, Tamara S A, Luke J T, Marielle V, Martin T, Ian Bancroft. Comparative Genomics of Brassica oleracea and Arabidopsis thaliana Reveal Gene Loss, Fragmentation, and Dispersal after Polyploidy. The Plant Cell, 2006, 18: 1348-1359
    26. Clancy J A, Han F, Ullrich S E, the North American Barley Genome Project. Comparative Mapping of β -Amylase Activity QTLs among Three Barley Crosses. Crop Sci, 2003, 43: 1043-1052
    27. Delourme R et al. Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet. 2006,113: 1331-1345
    28. Devos K M, Gale M D. The genetic maps of wheat and their potential in plant breeding. Outl Agric, 1993, 22: 93-99
    29. Fukuik, Hmidon O, Hushg S K. Variability in 1-DNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theor Appl Genet, 1994, 87: 893-899
    30. Hacket C A, Breadfoot L B. Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity, 2003, 90: 33-38
    31. Handa H. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana.Nucleic Acids Res,2003,31:5907-5916
    32.Li H,Rene V,Neville M,Zhou M.Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley(Hordeum vulgare L.).BMC Genomics,2008,9:401
    33.Hittalmani S,Huang N,Courtois B,Venuprasad R,McLaren G,Khush G S.Identification of QTL for growth and grain yield-related traits in rice across nine locations of Asia.Theor Appl Genet,2003,107(4):679-690
    34.Hoenecke M,Chyi Y S.Comparison of Brassica napus and B.rapa genomes based on the restriction fragment length polymorphism mapping.Rapeseed in a Changing World:Proc.8th International Rapeseed Cong(Saskatchewan.Canada).1991,1102-1107
    35.Howell P M,Sharpe A G,Lydiate D J.Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape(Brassica napus).Genome,2003,46:454-460
    36.Hu J,Sadowski J,Osborn T C,Landry B S,Quiros C F.Linkage group alignment from four independent Brassica oleracea RFLP maps.Genome,1998,41(2):226-235
    37.Hulbert S H,Richter T E.Axtell J D,Bennetzen J L.Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes.Proc Natl Acad Sci USA,1990,87(11):4251-4255
    38.Huyen T T,Phan,Simon R,Ellwood,James K,Hane,Rebecca F,Michael M,Richard P O.Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp.Culinaris.Theor Appl Genet,2007,114:549-558
    39.Inoue,Brown,Barker,Reed,Casler,Michael,Jung.Comparative QTL Mapping for Seed Weight Between Ryegrass and Cereals.ASA-CSSA-SSSA Annual Meeting Abstracts.2008:782-789
    40.Kato K,Nakamura W,Tabiki M H,Sawada S.Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes.Theor Appl Genet,2001,102(6-7):980-985
    41.Kim J S,Chung T Y,King G J,Jin M,Yang T J,Jin Y M,Kim H I,Park B S.A Sequence-Tagged Linkage Map of Brassica rapa.Genetics,2006,174:29-39
    42.Kim H R,Choi S R,Bae J,Hong C P,Lee S Y,Hossain M J,Nguyen D V,Jin M,Park B S,Bang J W,Ian Bancroft,Lim Y P.Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa.BMC genomics,2008,submitted
    43.Koch M,Kiefer M.Genome evolution among cruciferous plants-a lecture from the comparison of the genetic maps of three diploid species:Capsella rubella,Arabidopsis lyrata ssp.petraea and Arabidopsis thaliana.American Journal of Botany,2005,92(4):761-767
    44.Kowalski S P,Lan T H,Feldmann A K,Paterson A H.Comparative Mapping of Arabidopsis thaliana and Brassica oleracea Chromosomes Reveals Islands of Conserved Organization.Genetics,1994,138:499-510
    45.Kuittinen H,Haan A A,Vogl C,Oikarinen S,Leppala J,Koch M,Mitchell-Olds T,Langley C H,Savolainen O.Comparing the linkage maps of the close relatives Arabidopsis lyrata and Arabidopsis thaliana.Genetics,2004,168:1575-1584
    46. Lagercrantz U, Lydiate D. Comparative genome analysis in Brassica. Genetics, 1996a, 144: 1903-1909
    47. Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics, 1998,150(3): 1217-1228
    48. Lan T H, Paterson A H. Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea. Genetics, 2000, 155: 1927-1954
    49. Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet, 2003, 107: 168-180
    50. Love C, Logan E, Erwin T, Spangenberg G, Edwards D. ANALYSIS OF THE BRASSICA 'A' AND 'C' GENOMES AND COMPARISON WITH THE GENOME OF ARABIDOPSIS THALIANA. ISHS Acta Horticulturae, 706
    51. Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theoretical Applied Genetic, 2002, 105: 622-628
    52. Lukens L, Zou F, Lydiate D, Parkin I, Osborn T. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics, 2003, 164: 359-372
    53. Lysak M A, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA, 2006, 103: 5224-5229
    54. Lysak M A, Koch M, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Res, 2005, 15: 516-525
    55. Lysak M A, Cheung K, Kitschke M, Bures P. Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiology, 2007, 145: 402-410
    56. Lyttle T W. Segregation distorters. Annual Review of Genetics, 1991, 25: 511 -557
    57. McGrath J M, Quiros C F. Generation of alien chromosome addition lines from Synthetic Brassica napus, morphology, cytology, fertility, and chromosome transmission. Genome, 1990, 33: 374-383
    58. Melchinger A E, Utz H F, Schon C C. QTL mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics, 1998, 149: 383-403
    59. Nagamura Y, Tanaka T, Takiguchi T, Toyonaga R, Nozawa H, Takamatsu M, Sotome T, Yano M, Sasaki T. Hybridization of rice DNA markers to other plant genomes. Rice Genome, 1995, 2: 5-7
    60. Nelson M N, Lydiate D J. New evidence from Sinapis alba L. for ancestral triplication in a crucifer genome. Genome, 2006, 49: 230-238
    61. O'Neill C N, Bancroft I. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J, 2000, 23: 233-243
    62.Parkin I A P,Gulden S M,Sharpe A G,Lukens L,Trick M,Osbom T C,Lydiate D J.Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana.Genetics,2005,171:765-781
    63.Parkin I A,Sharpe A G,Lydiate D J.Patterns of genome duplication within the Brassica napus genome.Genome,2003,46:291-303
    64.Parkin I A.Lydiate D J,Trick M.Assessing the level of collinearity between Arabidopsis Thaliana and Brassica napus for A.thaliana chromosome 5.Genome,2002,45:356-366
    65.Pereira M G,Lee M,Bramel C P,Woodman W,Doebley J W,Hitkus R.Construction of an RFLP map in sorghum and comparative mapping in maize.Genome,1994,37:236-243
    66.Perfectti F,Pascual L.Segregation distortion of isozyme loci in chefimoya(Annona cherimola Mill).Theoretical Applied Genetics,1996,93:440-446
    67.Plieske J,Struss D.STS markers linked to Phoma resistance genes of the Brassica B-genome revealed sequence homology between Brassica nigra and Brassica napus.Thero Appl Genet,2001,102:483-488
    68.Piquemal J,Cinquin E,Couton F,Rondeau C,Seignoret E,Doucet I,Perret D,Villeger M J,Vincourt P,Blanchard P.Construction of an oilseed rape(Brassica napus L.) genetic map with SSR markers.Theor Appl Genet,2005,111(8):1514 -1523
    69.Priya R Jagannath A,Naveen C B,Lakshmi P K,Sarita S,Vibha G,Akshay K R Deepak P.Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers:homoeologous relationships,diversification and evolution of the A,B and C Brassica genomes.BMC Genomics,2008,9:113
    70.Qiu D,Morgan C,Shi J,Long Y,Liu J,Li R,Zhuang X,Wang Y,Tan X,Dietrich E,Weihmann T,Everett C,Vanstraelen S,Beckett P,Fraser F,Trick M,Barnes S,Wilmer J,Schmidt R,Li J,Li D,Meng J,Bancroft I.A comparative linkage map of oilseed rape and its use for QTLs analysis of seed oil and erucic acid content.Theor Appl Genet,2006,114:67-80
    71.Rana D,Boogaart T,O'Neill C M,Hynes L,Bent E,Macpherson L,Park J Y,Lira Y R Bancroft I.Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives.Plant J,2004,40:725-733
    72.Richards E J.DNA methylation and plant development.Trends Genet,1997,13:319-323
    73.Rivenbark A G,Jones W D,Risher J D,Coleman W B.DNA methylation-dependent epigenetic regulation of gene expression in MCF-7 breast cancer cells.Epigenetics,2006,1:32-44
    74.Ryder C D,Smith L B,Teakle G R,King G J.Contrasting genome organization:two regions of the Brassica oleracea genome compared with collinear regions of the Arabidopsis thaliana genome.Genome,2001,44:808-817
    75.Schranz M E,WindsorA J,Song B H,Lawton-Rauh A,Mitchell-Olds T.Comparative genetic mapping of Boechera stricta,a close relative of Arabidopsis.Plant Physiology,2007,144:286-298
    76.Sibov S T,Souza Jr C L,Garcia A A F,Gareia A F,Silva A R,Man golin C A,Benchimol L, Landde Souza A P. Molecular mapping in tropical maize(Zea mays L.) using microsatellite markers. Map construction and localization of loci showing distorted segregation. Hereditas, 2003, 139: 96-106
    77. Simon R E, Huyen T T P, Megan J, James H, Anna M T, Carmen M A, Seraf C I, Richard P O. Construction of a comparative genetic map in faba bean (Vicia faba L.): conservation of genome structure with Lens culinaris. BMC Genomics, 2008, 9: 380
    78. Smith J S C, Chin E C L, Shu H, Smith O S, WlaU S J, Senior M L, Mitchell S E, Kresovich S , Ziegle J. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): Comparisons with data from RFLPs and pedigree. Theor Appl Genet, 1997, 95: 163-173
    79. Stuber C W, Edwards M D, Wendel J F. Molecular marker facilitated investigations of quantitative trait loci in maize: Factors influencing yield and its component traits. Crop Sci, 1987, 27: 639-648
    80. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics, 2006, 173: 309-319
    81. Suwabe K, Morgan C, Bancroft I. Integration of Brassica A genome genetic linkage map between Brassica napus and B. rapa. Genome, 2008, 51(3): 169-76
    82. Taketa S, Arrison H G, Eslop-harrisonj S H. Comparative physical mapping of the 5S and 18s-25sI-DNA in nine wild Hordeum Species and cgtotypes. Theor Appl Genet, 1999, 98: 1-9
    83. Tanksley S D, Ganal M W, Prince J P et al. High density molecular linkage maps of the tomato and potato genomes. Genetics, 1992, 132: 1141-1160
    84. Teutonico R A, Osborn T C. Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of B.napus, B.oleracea, and Arabidopsis thaliana. Theor Appl Genet, 1994, 89: 885-894
    85. Truco M J, Hu J, Sadowski J, Quiros C F. Inter- and intra-genomic homology of the Brassica genomes: implications for their origin and evolution. Theor Appl Genet, 1996, 93: 1225-1233
    86. Tuinstra M R. Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci, 1996, 36: 1337-1344
    87. U N. Genome analysis in Brassica with special reference to the experimental formation of B.napus and peculiar mode of fertilization. Japan, J.Bot, 1935, 7: 389-452
    88. Vaillant I, Paszkowski J. Role of histone and DNA methylation in gene regulation. Curr Opin Plant Biol, 2007, 10: 528-533
    89. Van Ooijen J W, Maliepaard C, 2004. MapQTLR 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B V, Wageningen, Netherlands
    90. Veyrieras J, Goffinet B, Charcosset A. MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics, 2007,8:49
    91. Weller J I, Soller M, Brody T. Linkage analysis of quantitative traits in an interspecific cross of tomato(L.vcoperdicon esculentum×Lycopersicon pimpinellifolium) by means of genetic markers.Genetics,1988,118:329-339
    92.Xu Y,Zhu L,Xiao J,Huang N,McCouch S R.Chromosomal regions associated with segregation distortion of molecular markers in F2,backcross,double haploid,and recombinant inbred populations in rice(Oryza sativa L.).Molecular and General Genetics,1997,253:535-545
    93.Yano M,Sasaki T.Genetic and molecular dissection of quantitative traits in rice.Plant Mol Biol,1997,35:145-153
    94.Yogeeswaran K,Frary A,York T L,Amenta A,Lesser A H,Nasrallah J B,Tanksley S D,Nasrallah M E.Comparative genome analyses of Arabidopsis spp.inferring chromosomal rearrangement events in the evolutionary history of A.thaliana.Genome Res,2005,15:505-515
    95.Yu S B,Zhang Q F,Saghai Maroof M A.Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid.Proc Natl Acad Sci USA,1997,94:9226-9231
    96.Zeng Z B.Precision mapping of quantitative trait loci.Genetics,1994,136:1457-1468
    97.Ziolkowski P A,Kaczmarek M,Babula D,Sadowski J.Genome evolution in Arabidopsis/Brassica:conservation and divergence of ancient rearranged segments and their breakpoints.Plant J,2006,47:63-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700