玉米抗粗缩病及灰斑病基因的初步定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是世界上重要的粮食、饲料及工业原料作物。玉米粗缩病和灰斑病是影响产量高低的重要因素,培育和种植抗病品种是防治病害的经济有效途径,而抗病育种的成效取决于对抗源和抗病遗传规律的认识。本论文拟开展抗玉米粗缩病及灰斑病基因定位研究,为抗病育种技术创新及种质改良提供理论依据。主要研究结果如下:
     (一)以黄早4×掖107组合衍生的179个F8代株系为供试群体,在玉米粗缩病的重病区(山西临汾与河北保定)两年种植,获得三个环境下的田间统计数据(05临汾、06年临汾及06年保定);并应用此群体构建了相应的玉米分子图谱,包括74个SSR分子标记,覆盖10条玉米染色体;运行WinQTLCart2.5软件进行QTL定位。采用三种病情指标,病株率(BZL)、病指(BZ)、校正病指(JZBZ),综合三个环境共检测出4个抗病QTL位点,分别位于第1、2、5、9染色体上,可解释的表型变异率介于4.9%~43.5%。其中,第1、2、5染色体上的等位基因来自黄早4;第9染色体上的等位基因来自掖107。对三个环境的病情指标进行联合QTL分析,共检测到2个抗病QTL,位于第1染色体和第5染色体上。
     (二)采用生物信息学手段,收集已定位的57个玉米抗灰斑病QTL,构建用于抗病QTL定位和分子标记发掘的整合图谱,确定出7个一致性QTL。分别位于染色体1.06(1个)、2.06(1个)、3.04(1个)、4.06(1个)、4.08(1个)、5.03(1个)与8.06(1个)区域,图距分别为552.53cM、425.72cM、279.2cM、368.97cM、583.21cM、308.68cM和446.14cM。从Gramene网站收集95个水稻和33个玉米抗性相关基因序列,基于水稻和玉米基因组间同源片断的共线性关系,构建了抗性基因整合图谱。通过拟合玉米抗灰斑病QTL和抗性基因整合图谱,在染色体2.06、3.04和8.06三个热点抗病QTL区间内,分别确定2个(Rgene-32、ht1)、4个(Rgene-5、rp3、scmv2及wsm2)和4个(ht2、Rgene-6、Rgene-8和Rgene-7)位置候选基因,为精细定位和克隆抗病基因创造了条件。
Maize is one of the most important crops in China, and both maize rough dwarf virus (MRDV) and gray leaf spot (GLS) are two sever disease limiting yeild production annually. Developing and cultivating resistant hybrids is an effective approach to control the maize diseases, while breeding efforts for resistance rely largely on good understanding of the genetic mechanism. In this study, QTL identification for MRDV and GLS resistance were characterized. The results are follows:
     (1) The population consisting of 179 F8 families derived from a cross between Ye107 (susceptible parent) and Huangzao4 (resistance) was evolutated for MRDV resistance in replicated field trials in two 'hot spots', Linfen Shanxi province and Baoding Hebei province in China over two years. Genotypic and and G×E variances for disease incidence were highly significant in the population. Composite interval mapping on a linkage map constructed with 74 SSR markers, identified four QTL using three disease index (disease percentage, disease index and modified index), one earch on chromosome 1, 2, 5 and 9,which signification influenced resistance to MRDV. Individual QTL accounted for 4.9% to 43.5% of the phenotypic variance. The resistance alleles of QTL on chromosome 1, 2 and 5 originated from Huangzao4, while the resistance allele of QTL on chromosome 9 derived from Ye107.These QTL have protential use in molecular marker-assisted selection for MRDV resistance in maize.
     (2) Wide differences were investigated for GLS resistance among maize germplasm sources, and most of the sources of resistance to GLS identified inherited in a quantitative manner, and a number of QTL for GLS resistance have been found using molecular markers. In this paper, the integration QTL map for GLS resistance in maize was constructed by compiling a total of 57 QTL available with Genetic Map IBM2 2005 neighbors as reference. Twenty-six "real QTL" and seven "consensus QTL" were identified by refining these 57 QTL using overview and meta-analysis approaches. Seven "consensus QTL" were found on chromosome 1.06, 2.06, 4.06, 4.08, 5.03 and 8.06, and the map coordinates were 552.53cM, 425.72cM, 279.20cM, 368.97cM, 583.21cM, 308.68cM and 446.14cM, respectively. Using a synteny conservation approach based on comparative mapping between maize genetic map and rice physical map, a total of 69 rice and maize resistance genes collected from websites Gramine and Maize GDB were projected onto maize genetic map IBM2 2005 Neighbors, and 2 (Rgene32, ht1), 4 (Rgene5, rp3, scmv2, wsm2) and 4 (ht2, Rgene6, Rgene8 and Rgene7) positional candidate genes were found in three "consensus QTL" on chromosomes 2.06, 3.04 and 8.06, respectively. Results suggest that the combination of meta-analysis of gray leaf spot in maize and sequence homologous comparison between maize and rice can be an efficient strategy for identifying major QTL and corresponding candidate genes for gray leaf spot.
引文
[1] Liu Y G, Tsunewaki K.Restriction fragment length polymorphism (RFLP) analysis in wheat.Ⅱ.Linkage maps of the RFLP sites in common wheat. Japn J Genet, 1991,66(5):617-633
    [2] Roder M S, Plaschke J, Konig S U,et al. Abundance, variability and chromosomal location of microsatellites in wheat.Mol Gen Genet 1995,246(3):327-333
    [3] McCouch S R, Kochert, Yu Z H, et al. Molecular mapping of rice chromosomes. Theor Appl Genet, 1998,78:815-829
    [4] Cho R J, Campbell M J, Winzeler E A, et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol.Cell 1998,2:65-73
    [5] Temnykh S, Park W D, Ayres N, et al. Mapping and genome organization of microsatellate sequence in rice (Oryza sativa L.).Theor Appl Genet,2000,100:697-712
    [6] Tanksley S D, Ganal M W, Prince J P, et al. High density molecular linkage maps of the tomato and potato genomes.Genetics,1992,132:1141-1160
    [7] Michelmore R W, Paran I and Kesseli R V. Identification of Markers Linked to Disease-Resistance Genes by Bulked Segregant Analysis: A Rapid Method to Detect Markers in Specific Genomic Regions by Using Segregating Populations. National Acad Sciences, 1991,88(21):9823-9832
    [8] Conde M F, Pring D R, Levings C S Ⅲ. Maternal inheritance of organelle DNAs in Zea mays—Zea perermis reciprocal crosses.J Hered, 1979,70:2-4
    [9] 王秀娥,陈佩度,周波,等.小麦—大赖草易位系的RELP分析.遗传学,2001,28(12):1142-1150
    [10] 姚方印,李广贤.水稻香味的遗传分析.山东农业科学,2001,2:28-28
    [11] 秦泰辰,邓德祥.利用遗传突变基因改良特用玉米.玉米科学,2001,9(4):18-20
    [12] Welsh J, McClelland M, Fingerprinting genomes using PCR with arbitrary primers.Nucleic Acids Res., 1990,18(24):7213-7218
    [13] Martin G B, Brommonschenkel S H, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993,262:1432-1436
    [14] Song W Y, Wang G L, Chen L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21 .Science, 1995,270(5243): 1172-1173
    [15] Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application number: 92402629.7, Publication number 0 534 858 A1, 1993
    [16] Maheswaran M, Subudhi P K, Nandi S, et al. Polymorphism, distribution, and segregation of AF1. P markers in a doubled haploid rice population. Theor Appl Genet,1997,94:39-45
    [17] Boivin, J. and M. Watson, "Time-Varying Parameter Estimation in a Linear IV Frame-work".1999,mimeo, Columbia University
    [18] Cnops G, Den Boer B, Gerats A, et al. Chromosome landing at the Arabidopsis TORNADO1 locus using an AFLP-based strategy.Molecular and General Genetics, 1996,253:32-41
    [19] Lahaye T, Shirasu K, Schulze-Lefert P. Chromosome landing at the barley Rar1 locus. Mol Gen Genet 1998, 260:92-101
    [20] Thomas D W. Hibernating bats are sensitive to nontactile human disturbance.Journal of Mammalogy, 1995, 76(3):940-946
    [21] Miftahudin G J, Scoles G, Gustafson J. AFLP Markers Tightly Linked to the Aluminum Tolerance Gene Alt3 in Rye (Secale Cereale L). Theoretical and Applied Genetics,2002,104(4):626-631
    [22] Subudhi P K, Nandi S, Casal C, et al. Classification of rice germplasm:Ⅲ. High-resolution fingerprinting of cytoplasmic genetic male-sterile (CMS) lines with AFLP.Theor Appl Genet, 1998, 96:941-949
    [23] Barrett S. "Political Economy of the Kyoto Protocol",Oxford Review of Economic Policy,1998a, 14 (4):20-39
    [24] Barrett S. "On the Theory and Diplomacy of Environmental Treaty-Making",Environmental and Resource Economics,1998b, 11:317-333
    [25] Russell J R, Fuller J D, Macaulay M, et al. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs.Theoretical and Applied Genetics,1997,95(4): 714-722
    [26] Hill M, Witsenboer H, Zabeau M, et al. PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp.Theoretical and Applied Genetics,1996,93(8): 1202-1210
    [27] Paul S, Wachira F N, Powell W, et al. Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theoretical and Applied Genetics, 1997,94:55-263
    [28] Senior M L, Chin E C L, Lee M, et al. Simple sequence repeat markers developed from maize sequences found in the GENBANK database: Map construction. 1996,36(6): 1676-1683
    [29] Tautz D. Hypervariability of simple sequences as a general source for polymorphic markers. Nucleic Acids Res, 1989,17:6463-6471
    [30] Murigneux A, Bentolila S, Hardy T, et al. Genotypic variation of quantitative trait loci controlling in vitro androgenesis in maize.Genome, 1994, 37:970-976
    [31] Oliver J P. Modeling physical adsorption on porous and nonporous solids using desity functional theory.J Porous Mater,1995,2:9-17
    [32] Senior M L, Heun M. Mapping mzize microsatellites and polymerase chain reaction comfirmation of the targeted repeats using a CT primer.Genome, 1993,36(5): 884-889
    [33] Taramino G, Tarchini R, Ferrado S, et al.Characterization and mapping of simple sequence repeat(SSR)in Sorghum bicolor. Theor Appl Genet, 1997,95(1-2):66-72
    [34] Wang R Y, Riskin E A, Ladner R. Codebook organization to enhance map detection of weighted universal vector quantized image transmission over noisy channels.In proceeding Data Compression Conference,page 463,March 1994
    [35] Lander E S, Green P, Abrahamson J, et al. MAPMARKER:an interaction computer package for constructing primary genetic linkage maps of experimental and natural populations.Genomics, 1987, 1:174-181
    [36] Cowen N M. The use of replication progenies in marker-base mapping of QTLs, Theor Appl Genet,1988,75:857-862
    [37] 庄杰云.水稻杂种优势遗传机理与分子标记辅助高产育种研究.浙江大学博士学位论文.2001
    [38] Tanksley S D, Nelson J C. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92 (2): 191-203
    [39] Bernacchi D, Beck-Bunn T, Eshed Y, et al., Advance backcross QTL analysis in tomato.Ⅰ.Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet, 1998a, 97:381-397
    [40] Bernacchi D, Beck-Bunn T, Emmatty D, et al. Advance backcross QTL analysis .in tomato.Ⅱ.Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wile QTL-alleles derived from Lycopersicon hirsutum.Theor Appl Genet, 1998b, 97:170-180
    [41] Ohno Y H, Tanase T, Nabika, et al. Selective genotyping with epistasis can beutilized'for a major quantitative trait locus mapping in hypertension in rats. Genetics. 2000, 155:785-792
    [42] 沈圣泉.水稻(Oryza sativa L.)若干重要性状的QTL主效应、上位性效应及GE互作效应分析.[浙江大学 博士学位论文].浙江大学2003
    [43] Burr B, Burr F A. Recombinant inbreds for molecular mapping in maize:theoretical and practical consideration. Trends Genet, 1991, 7:55-60
    [44] Austin D F, Lee M. Comparative mapping in F_(2:3) and F_(6:7) generation of quantitative trait loci for grain yield components in mauze. Theor Appl Genet. 1996, 92:817-826
    [45] 庄杰云,樊叶扬,吴建利,等.应用两种定位法比较不同世代水稻产量性状QTL的检测结果.遗传学报, 2001.28(5):458-464
    [46] Monforte A J, Tanksley S D, Fine mapping of a qunantitative trait locus(QTL)from lycopersicon hirsute chromosome 1 affecting fruit characteristics and agronomic traits:breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet. 2000, 100:471-479
    [47] Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigation of quantitative-trait loci in maize.Ⅰ.Numbers,genomic distribution and types of geneaction. Genetics. 1987, 116:113-125;
    [48] Stuber C W, Lincoln S E, Wolff D W. Identification of genetic factors contribution to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132:823-839;
    [49] Weller J I, Soller M, Bordy T. Likage analysis of quantitative traits in an interspecific cross of tomato (L.esculentum x L.pimpinellifolium)by means of genetic markers. Genetics, 1988, 118:329-339
    [50] 高用明,朱军.植物QTL定位方法的研究进展.遗传,2000,22(3):175-179
    [51] Lander E S, Bostein S. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121:185-199
    [52] Zeng Z B. Precision mapping of quantitative trait loci.Genetics, 1994, 136:1457-1468
    [53] Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics, 1993, 135:205-211
    [54] Jansen R C. Controlling the type Ⅰ and type Ⅱ errors in mapping quantitative trait loci. Genetics, 1994, 138:871-881
    [55] Femando R L, Grossman M. Marker-assisted selection using best linear unbiased prediction. Genet Sel Evol, 1989, 21:467-477
    [56] Goddard M E. A mixed model for analysis of data on multiple genetic markers. Theor Appl Gene. 1992, 83:878-886
    [57] XU S, ATCHLEY W R. A random model approach to interval mapping of quantitative trait loci. Genetics, 1995, 141:1189-1197
    [58] Grignola F E, Hoeschele I, Tier B. Mapping quantitative trait loci in outcross populations via Residual Maximum Likelihood. Ⅰ. Methodology. Genet. Sel. Evol, 1996a, 28:479-490
    [59] Grignola F E, Hoeschele I, Zhang Q, et al. Mapping quantitative trait loci in outcross populations via Residual Maximum Likelihood. Ⅱ. A simulation study. Genet. Sel. Evol, 1996b, 28:491-504
    [60] Lander E, Kruglyak L. Genetic dissection of complex trait:guidelines for interpreting and reporting linkage results. Nature Genetics. 1995, 11:241-247
    [61] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138:963-971
    [62] Visscher P M, Thompson R, Haley C S. Confidence intervals for QTL locations using bootstrapping. Genetics, 1996, 143:1013-1020
    [63] Satagopan J M, Yandell B S, Newton M A, et al. A Bayesian approach to detect quantitative trait loci using Markov Chain Monte Carlo. Genetics, 1996, 144:805-816
    [64] Uimari P, Hoeschele I. Mapping-linked quantiative trait loci using Bayesian analysis and markov chain monte carlo algorithms. Genetics, 1997, 146:735-743
    [65] Stephens D A, Fish R D.Bayesian analysis of quantiative trait locus data using reversible jump markov chain monte carlo.Biomestrics, 1998,54(4): 1334-1347
    [66] Sillanpaa M J, Arjas E. Bayesian mapping of multiple quantiative trait loci from incomplete inbred line cross data. Genetics, 1998, 148:1373-1388
    [67] Sillanppa M J,Arjas E.Bayesian mapping of multiple quantitative trait loci fron incomplete outbred offspring data.Genetics, 1999,151:1605-1619
    [68] Soller M, Beckmann J S. Marker-based mapping of quantitative trait loci using replicated progenies. Theor Appl Genet. 1990, 80(2):205-208
    [69] Keightley P D, Bulfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet Res. 1993, 62(3): 195-203
    [70] Darvasi A, Soller M. Selective DNA Pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics, 1994, 138:1365-1373
    [71] Mansur L M, Orf J, Lark K G. Determining the linkage of quantative trait loci to RFLP marker using extreme phenotype of recombinant inbreds of Soybean(Glycine max L,Merr.). Theor Appl Genet, 1993, 86:914-918
    [72] 胡会庆,李子银.分子标记在植物遗传研究中的应用进展.生物学杂志,1997,14:32-34
    [73] Ahn S, Tanksley S D. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA, 1993, 90:7980-7984
    [74] Ahn I Y. Enhaced particle flux through the biodeposition by the Antarctic suspension feeding bivalve Laternular ellitica in Marian Cove, King George Island.J Exp Mar Biol Ecol, 1993, 171:75-90
    [75] Kilian L. Small sample comfidemce intervals for impulse response funcetion,Discussion Paper, University of Pennsylvania, Department of Economics.
    [76] Lin F. Embracing causality in specifying the indirect effects of actions. In IJCAI, 1995, 95:1985-1993
    [77] Kurata K. Site of origin of projections from the thalamus to dorsal versus ventral aspects of the premotor cortex of monkeys. Neurosci Res. 1994, 21:71-76
    [78] Paterson D M. Biogenic structure of early sediment fabric visualized by low temperature scanning electron microscopy. Journal of the Geological Society, 1995, 152:131-140.
    [79] 黄益勤.玉米杂种优势群与杂种优势及其与薏苡比较基因组研究.华中农业大学博士学位论文.2004
    [80] Tanksley S D. Mapping polygenes. Annu Rev Genet, 1993, 27:205- 233
    [81] Causse M, Rocher J P, Henry A M, et al, Genetic dissection of the relationship between carbon metabolism ans early growth in maize with wmphasis on key-enzymeloci. Molecular breeding, 1995, 1(3):259-272
    [82] Hyne V, Kearsey M J, Pike D J, et al., QTL analysis: unreliability and bias in estimation procedures. Molecular Breeding, 1995, 1:273-282
    [83] Yano Masahiro, Sasaki Takuji. Genetic and molecular dissection of quantitative traits in rice. Plant Molecular Biology, 1997, 35:145-153
    [84] 庄杰云,樊叶扬,吴建利,等.水稻CMS-WA育性恢复基因的定位.遗传学报,2001a,28(2):129-134
    [85] Xu Y. Quantitative trait loci: Separating,pyramiding, and cloning. Plant Breed Rev, 1997, 15:85-139
    [86] 毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析.农业生物技术学报,1999,7(4):386-395
    [87] Yu S B, Li J X, Gao Y F, Importance of epistasis as the genetic basis of heterosis in. an elite rice hybrid. Proc Natl Acad, USA, 1997, 94:9226-9231
    [88] Ladizinsky G. Founder effect in crop-plant evolution, Econbot, 1985, 39:191-199
    [89] DeVicente M C ,Tanksley S D, QTL analysis of transgressive segregation in an interspecific tomoto cross. Genetics, 1993,134:585-596
    [90] Dunford R P, Kurata N, Laurie D A, et al. Conservation of fine-scale DNA marker order in the genomes of rice and Triticeae. Necleic Acid Res, 1995, 23:2724-2728
    [91] Pereira M E. Deveopment and social domainance among group living primates. Am J Primatol, 1995, 37: 143-176
    [92] Lagercrantz H. Stress,arousal, and gene activation at birth. News in Physiological Sciences, 1996, 11:214-218
    [93] Umehara Y A, Inagaki H T, et al., Construction and characterization of a rice YAC library for physical mapping. Mol Breed, 1995, 1:79-89
    [94] Wang G L, Holsten T E, Song W Y, et al. Construction of a rice bacterial artificial chromosome library and identification of clones linked to Xa2 disease resistance locus. The Plant J. 1995, 7(3):525-533
    [95] Yang D, Parco A, et al. Construction of a bacterial artificialchromosome(BCA) library and identification of overlapping BAC clones with chromosome 4 specific RFLP markers in rice. Theor Appl Genet. 1997, 95: 1147-1154
    [96] 傅彬英,杨代常,朱英国,等.水稻抗稻瘟病基因Pi-2(t)物理图谱的构建.2000,27(9):787-791
    [97] Foote M. The evolution of morphological diverdity. A.Rev Ecol Syst. 1997, 28:129-152
    [98] Kole C, Quijada P, Michaels S D, et al. Evdience for homology of flowering time genes VFR2 from Brassica rapa and FLC from Arabidipsis thaliana. Theor Appl Genet, 2001,102(2-3):425-430
    [99] 张祖新,刘纪.分子标记在作物育种中的应用.湖北农学院学报.1998,13(3):228-234
    [100] 危文亮,赵应忠.分子标记在作物育种中的应用.生物技术通报,2000,2:12-16
    [101] 田清震,李新海,李明顺等.优质蛋白玉米的分子标记辅助选择.玉米科学.2004,12(2):108-110,113
    [102] Cho Y C, Darvasi A. Optimu spacing of genetic markers for detemining linkage between markers loci and quantitative trait loci. Theor Appl Genet, 1994, 89:54-55
    [103] 李仕贵,何平.水稻剑叶性状的遗传分析和基因定位.作物学报,2000,26(3):261-265
    [104] Huangn N, et al. Pyramiding of bacterial bright resistance genes in rice:marker-acid selection using RFLP and PCR. Theor Appl Genet, 1997, 95:313-320
    [105] Cheng S, Lin H X, Xu C G.et al. Improvement of bacterial blight resistance of "Minghui63",an elite restorer lines of hybrid rice,by molecular-asisted selection. Crop Sci, 2000, 40:239-244
    [106] 王忠华,舒庆尧,水稻分子标记《水稻生物技术育种》李梅芳主编,2001
    [107] Fulton T M, Berk-Bunn T, Emmatty D, et al. QTL analysis of an advanced backcross of lycoperslcan peruianum to the cultivated tomato and comparisons with QTLs found in other elite species. Theor Appl Genet, 1997, 95:881-894
    [1] Biraghi A. Histological observations on maize plants affected by dwarfing. Notiz Malatt Piante, 1949, (7): 1-3
    [2] Harpaz I. Needle transmission of a new maize virus. Nature, 1959, 184:77-78
    [3] Dovas C I, Eythymiou K, Katis N I. First report of maize rough dwarf virus(MRDV)on maize crops in Greece. Plant Pathology, 2004, 53(2):238
    [4] Louie R, Abt J J. Mechanical transmission of maize rough dwarf virus. Maydica, 2004, 49:231-240
    [5] 郭启唐,李钊敏,董哲生.晋南玉米粗缩病发生与品种抗病性的关系,山西农业科学,1995,23(2):40-44
    [6] 吉贞芳,王安乐,李建勋,等.玉米粗缩病发生危害与播期和品种的关系.植物保护,1998,24(4):27-29
    [7] Luisoni E, Lovisolo O, Kitagawa Y, et al. Serological relationship between maize rough dwarf virus and rice black streaked dwarf virus. Virolog, 1973, 52:281-283
    [8] Azuhata F, Uyeda I, Kimura I, et al. Close similarity between genome structures of rice black stresked dwarf and maize rough virus. Journal of General Virology, 1993, 74:1227-1232
    [9] Joel D A, Eugenis L, Irma G, et al. Gytopathological characterization of mal de cuarto virus in cron,wheat and barly. Fitopatologia Brasileire, 2002, 27:289-302
    [10] 方守国,于嘉林,冯继东,等.我国玉米粗缩病株上发现的水稻黑条矮缩病毒.农业生物技术学报,2000, 8(1):12
    [11] Fang S, Yu J L, Feng J, et al. Indentification of rice black streaked dwarf fijivirus in maize with rough dwarf disease in China. Archives of Virology, 2001, 146:167-170
    [12] Zhang H, Chen J, Lei J, et al. Sequence analysis shows that a dwarfing disease on rice,wheat and maize in China is caused by rice black streaked dwarf virus. European Journal of Plant Pathology, 2001, 107(5):563-567
    [13] 张恒木,雷娟利,陈剑平,等.浙江和河北发生的一种水稻、小麦、玉米矮缩病是水稻黑条矮缩病毒引起的.中国病毒学,2001,16(3):246-251
    [14] Bai F W, Yah J, Qu Z C, et al. Phylogenetic analysis reveals that a dwarfing disease on different cereal crops in china is due to rice black streaked dwarf virus(RBSDV). Virus Genes, 2002, 25(2):201-206
    [15] 郑巧兮,沈菊英,陈巽祯.一种新的纯化玉米粗缩病的方法及病毒形态的研究.生物化学与生物物理学报,1984,16(5):571-576
    [16] 龚祖勋,沈菊英,陈巽祯,等.我国禾谷类病毒的病原问题.玉米粗缩病病原的研究.生物化学与生物物理学报,1981,13(1):55-60
    [17] 颜谨,朱亚峰,丸山稚子,等.植物呼肠孤病毒外壳蛋白与昆虫传毒机制的研究进展.中国科协第三届青年学术年会学术论文.1998,182-183
    [18] 邓先明,刘光珍.玉米粗缩病(MRDV)和鼠耳病(MWEV)的发生和研究进展.国外农学.植物保护.1994,7:15-20
    [19] Guido B, Robert G M. The maize rough dwarf virion.Ⅰ.protein composition and diatribution of RNA in different viral fractions. Virology, 1975, 68:79-85
    [20] 邓文生,杨希才,张玉满等.玉米粗缩病病毒基因第七组份的cDNA克隆及序列分析.微生物学报,2000,40(5):488-494
    [21] 吴淑华,汪朝晖,范永坚,等.江苏省玉米粗缩病病原病毒RT-PCTR检测.农业生物技术学报,2000,8(4):369-372
    [22] 陈巽祯,杨满昌,刘信义.玉米粗缩病发病规律及综合防治研究.华北农学报,1986,1:90-97
    [23] 钱幼亭,刘国钧.不同播种期对玉米粗缩病发生的影响.植物保护,1999,25(3):23-24
    [24] 苗洪芹,陈巽祯,曹克强,等.玉米播期与玉米粗缩病病株率的关系.植物保护,2001,27(4):9-12
    [25] 张仲恺,李毅.云南植物病毒.北京:科技出版社,2001
    [26] 李怀方,丁占生.玉米粗缩病的发生及防治.植保技术与推广,1997,17(3):16-18
    [27] 李芳贤.玉米粗缩病(MRDV)的发生危于防治对策.玉米科学.2000,8(4):75-78
    [28] Bar-Tsur A, Saadi H, Antignus Y. Resistance of corn genotypes to maize rough dwarf virus. Maydica, 1998, 33:189-200
    [29] 郭启唐,李钊敏,董哲生.玉米粗缩病及自交系抗病性观察与分析.植物保护,1995,1:21-223
    [30] 刘志增,迟书敏,宋古权,等.玉米自交系及杂交种抗粗缩病性鉴定与分析.玉米科学,1996,4(4):68-71
    [31] 苏智宗,仝岗山,王邦文,等.玉米抗粗缩病品种的探讨.玉米科学,2000,8:73-74
    [32] 尚佑芬,赵玖华,都森烈,等.玉米推广品种与品种资源抗病毒苗期鉴定初报.山东农业科学,2001,11:3-5
    [33] 陈永坤.玉米抗粗缩病种质鉴定与基因定位初步研究.新疆农业大学硕士学位论文,2006
    [34] 杨本荣.玉米粗缩病发生与作物抗性的关系.河北农学报,1983,8(3):29-35
    [35] 石正太,石他山,贾惊涛.玉米粗缩病发生与防治的调查研究.莱阳农学院学报,1997,14(3):181-183
    [36] 梁琼,燕永亮,侯明生.不同玉米品种抗MRDV与防御酶活性的关系.华中农业大学学报.2003,22(2):114-116
    [37] 梁琼.玉米不同品种(系)抗玉米粗缩病毒与生理生化关系的研究.华中农业大学硕士学位论文,2003
    [38] 梁琼,侯明生.玉米品种抗感粗缩病病毒与过氧化物酶关系的研究.云南农业大学学报,2004,19(5):546-549
    [39] 王安乐,陈朝晖,王娇娟,等.玉米自交系抗粗缩病特性的遗传基础及轮回选择效应研究.山西农业科学,1998,26(4):64-67
    [40] 王安乐,赵德发,陈朝晖等.玉米自交系抗粗缩病特性的遗传基础及轮回选择效应研究.玉米科学,2000,8(1):80-82
    [41] 李常保,宋建成,姜丽君,等.玉米抗粗缩病(MRDV)基因的RAPD标记及其辅助选择效果研究.作物学报,2002,28(4):564-568
    [42] 吴国栋.玉米粗缩病抗性基因分子标记和定位的初步研究.山东大学硕士学位论文,2000
    [43] Zhu J(朱军). Mixed model approaches of mapping genes for complex quantitative traits. Journal of Zhejiang University (Natural Science Edition)(浙江大学学报·自然科学版), 1999, 33(3):327-335
    [44] Wang D L, Zhu J, Li Z K. Mapping QTLs with epistatic effects and QTL~xenvironment interactions by mixed linear model approaches. TheorAppl Genet, 1999, 99:1256-1264
    [45] 方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2002
    [1] Wang E T, van Berkum P, Beyene D, et al. Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium alegae. Int J Syst Bacteriol, 1998, 48, 687-699
    [2] Ward D M, Leslie J D, Kaplan J. Homotypic lysosome fusion in macrophages: analysis using an in vitro assay. J Cell Biol, 1997, 139:665-673
    [3] 吴纪昌,马丽君.玉米抗尾孢菌叶斑病鉴定与抗病材料利用.辽宁农业科学,1997(5):25-28
    [4] 吕国忠,王芳,王翠萍,等.玉米灰斑病研究进展.沈阳农业大学学报,1998,10,29(4):346-349
    [5] Beckman P M, Payne G A. External Growth, Penetration and Development of Cercospora zeae-maydis in Corn Leaves. Phytopathology, 1982(7):810-815
    [6] Payne G A, Waldron J K.Overwintering and Spore Release of Cercospora zeae-maydis in Corn Debris. Plant Disease, 1983(1):87-89
    [7] 吕国忠,张益先,梁景颐,等.玉米灰斑病发生流行规律及品种抗病性.植物病理学报,2003,33(5):462-467
    [8] Lehmensiek A, Esterhuizen A M, van Staden D, et al.Genetic mapping of gray leaf spot(GLS)resistance genes in maize. Theor Appl Genet, 2001, 103(5):797-803
    [9] 刘志恒.玉米灰斑病和叶斑病.新农业,2002,6:38-39
    [10] 高增贵,陈捷,薛春生等.玉米灰斑病发生和流行规律及其其发病条件的研究.沈阳农业大学学报,2000,10,31(5):460-464
    [11] Nazareno N E X D E, Lipps P E, Madden L V. Effect of Levels of Corn Residue on the Epidemiology of Gray Leaf Spot of Corn in Ohio. Plant Disease, 1993, (1):67-70
    [12] Latterell F M, Rossi A E.Stenocarpella macrospore(=Diplodia macrospore) and S. maydis(=D.maydis) compared as pathogens of cron. Plant Disease, 1983, 67:725-729
    [13] Coats S T, White D G.Inheritance of resistance to gray leaf spot in crosses involving selected resistant inbred lines of cron. Genetics and Resistance, 1998, 88(9):972-982
    [14] Elwinger G F, Johnson M W, Hill R R, et al. Inheritance of resistance to gray leaf spot of corn. Crop Science, 1990, 30(2):350-358
    [15] DeVries J, Toenniessen G. Securing the.Havest:Biotechnology, breeding and seed systems for African crops.CAB International, Wollingofrd, UK, 2001
    [16] 吴纪昌,白金凯.玉米上一种新病害—尾孢菌叶斑病大发生.玉米科学,1992(创刊号):67-28
    [17] 董怀玉,姜钰,王丽娟,等.玉米种质资源抗灰斑病鉴定定与评价.植物遗传资源学报,2005,6(4):441-443
    [18] Latterell F M, Gray leaf spot of corn: a disease on the move. Plant Disease, 1983, 67 (8):842-847
    [19] Roane C W, Harrison R L, Geneter C F. Observations on gray leaf spot of maize in Virginia. Plant Disease, 1974, 58:456-459
    [20] Hilty J W, et al. Response of maize hybrids inbred lines to gray leaf spot disease and the effects on yield in Tennessee[J] Plant Disease, 1979, 63 (6): 515-518
    [21] Ayers J E, et al. Identifying resistance to gray leaf spot. 39th Annual corn & sorghum research conferrence. 1980.157-175
    [22] Graham M J, et al. Evaluation of Iowa stiff stalk synthetic for resistance to gray leaf spot. Plant Disease, 1993, 77(4)382-385
    [23] Couatest S T. Sources of resistance to gray leaf spot of corn. Plant Disease. 1994, 78:1153-1155
    [24] Gevers H O, Lake J K, Hohls T. Diallel cross analysis of resistance to gray leaf spot in maize. Plant Disease, 1994, 78:379-382
    [25] Hohls T, Shanahan P E, Clarke G P Y, et al. Genetic analysis of gray leaf spot infection of maize in a single location 12×12 deallel. S Afr J Plant Soil, 1995, 12:133-139
    [26] Gevers H O, Lake J K. Hohls T. Diallel Cross Analysis of Resistance to Gray Leaf Spot in Maize, Plant Disease, 1994, (4): 379-383
    [27] Gevers H O, Lake J K. GLSI—a Major Gene for Resistance to Grey Leaf Spot in Maize. South African Journal of Science, 1994(7):377-379
    [28] Thompson D L, Berguist R R, Payne G A, et al., Inheritance of resistance to Gray Leaf Spotin Maize. Crop Science, 1987(2):243-246
    [29] Gwinn K D, Stelzig D A, Brooks J L. Effects of Corn Plant Age and Cultivaron Resistance to Cercospora zeae-maydis and Sensitivity to Cercosporin. Plant Diosease, 1987(7):603-606
    [30] Chardon F, Virlon B, Moreau L, et al. Genetic architecture of flowering time inmaize as inferred from quantitative tiait loci meta-analysis and synteny conservation with the rive genome. Genetics, 2004, 168:2169-2185
    [31] Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet, 1997, 27:125-132
    [32] Lee M, Sharopova N, Beavis WD, et al. Expanding the genetic map of maize with the intermated B73×Mo17 (IBM) population. Plant Mol Biol. 2002, 48(5-6):453-461
    [33] Sharopova N, McMullen MD, Schultz L, et al. Development and mapping of SSR markers for maize. Plant Mol Biol. 2002, 48(5-6):463~481
    [34] Polacco M L, Sanchez-Villeda H, Ed Coe. IBM Neighbors-Mutual Enhancement of Genetic and Physical Maps.Maize Genetics Conference Abstracts.46:P110
    [35] Lynch M and Walsh B. Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA. 1998
    [36] Rudner, Lawrence, Glass G V, et al. A user's guide to the meta-analysis of research studies.2002. ERIC Clearinghouse on Assessment and Evaluation, University of Maryland, College Park
    [37] Archde A, Labourdette A, Chardon F, et al. BioMercator intergrating genetic map and QTL towards discovery of candidate genes. Bioinformatics. 2004, 20:2324-2326
    [38] 刘卫东,王石平.水稻中大麦Mlo和玉米Hml抗病基因同源序列的分析和定位.遗传学报,2002, 29(10):875—879
    [39] 韦朝领,江昌俊.茶树紫黄素脱环氧化酶的cDNA克隆及其生物信息学分析.南京农业大学学报,2003,26(1):14-19
    [40] Fenillet C, Schachermayr G, Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the LrlO disease resistance locus of wheat. The Plant Journal, 1997, 11:45-52
    [41] Xiao S Y, Ellwood S, Calis O, et al. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8 [J]. Science, 2001, 291(5501):118-120
    [42] Leister D, Ballvora A, Salamini F, et al. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics, 1996, 14:421-428
    [43] Kruijt M, Brandwagt B F, de Wit P J. Rearrangements in the Cf-9 disease resistance gene cluster of wild tomato have resulted in three genes that mediate Avr9 responsiveness. Genetics, 2004, 168(3): 1655-63
    [44] Liu X M, Gill B S, Chen M S. Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6DS of wheat. Theor Appl Genet, 2005, 11 (2):243-249
    [45] Qu S, Liu G, Zhou B, et al. The broad-spectrum blast resistance gene p~(i9) encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172(3): 1901-1914
    [46] Yan J B, Tang H, Huang Y Q, et al. Comparative analyses of QTL for important agronomic traits between maize and rice. Acta Genetica Sinica, 2004, 31(12): 1401-1407
    [47] Wang X, Paigen B. Quantitative trait loci and candidate genes regulating HDL cholesterol: a murine chromosome map. Arterioscler Thromb Vasc Biol, 2002, 22(9): 1390-1401
    [48] Wong J C, Lambert R J, Wurtzel E T, et al. QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize. Theor Appl Genet, 2004, 108(2):349-359
    [49] Zhang P, Wang Y, Zhang J, et al. A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis. Plant Mol Biol, 2003, 52(1): 1-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700