光纤Bragg光栅传感技术及其生化传感应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤Bragg光栅(Fiber Bragg Grating,FBG)以其抗干扰能力强、波长解调、绝对测量、便于复用等优点,已广泛应用于大型建筑结构、电力系统、石油化工等领域的温度、应变、压力的监测,其应用中的多参数交叉敏感问题的研究是一个重要课题。最近十年来,随着生物化学、医学、生命科学等学科的快速发展,各类光纤光栅折射率传感器,也逐渐成为光纤传感技术与这些学科的交叉领域的研究热点之一。本文以FBG为对象,主要针对目前FBG折射率传感器研究中的一些基本问题进行更深入的研究和讨论,并研究FBG传感器的多参数交叉敏感特性,将其应用于生物膜反应器内的热物理参数的传感。论文的主要内容可概括如下:
     1.详细介绍和对比了近十年的各类光纤光栅折射率传感器技术,总结和分析了它们在生化传感领域的研究、应用现状及发展趋势;总结了目前FBG的交叉敏感问题的研究现状。
     2.在现有的单端腐蚀型FBG折射率传感器的研究基础上,提出更加完善的单端腐蚀型FBG对折射率与温度同时测量的理论模型,深入分析其主要结构参数对折射率灵敏度和线性度的影响,仿真结果表明:可通过减小FBG腐蚀区域的直径或选择光栅周期较大的FBG制作单端腐蚀型FBG来增加其折射率灵敏度,但这同时会降低传感器的线性度及增大其折射率灵敏度的理论误差。基于此理论结论,建立单端腐蚀型FBG在低折射率区(1.333~约1.360)对折射率测量的线性近似和理论误差分析方法。然后,制作单端腐蚀型FBG用于简易生物膜反应器内生物膜厚度(或膜折射率)及其温度的同时测量。实验结果表明:传感器具有较好的线性度,且折射率灵敏度为6.894nm/RIU,若采用波长分辨率为1pm的光谱分析仪,则其对生物膜厚度和温度的分辨率分别为15.36±0.85μm和0.12oC。
     3.研究腐蚀型FBG在折射率为线性分布的非均匀液相介质下的响应特性,仿真结果表明:腐蚀型FBG的反射谱的带宽、微谐振峰个数、非对称程度等都随折射率沿FBG轴向的分布梯度、折射率在FBG两端的差值的增大而增大;特别在低折射率区(1.330~1.360),腐蚀型FBG反射谱的最大微谐峰与最小微谐振峰之间的波长差与折射率梯度之间可近似为线性关系。基于此理论结论,建立了相应的折射率梯度传感的线性近似理论模型;同时,制作剩余直径为5.73μm的腐蚀型FBG,通过实验研究验证理论仿真和分析的合理性及基于腐蚀型FBG的折射率梯度传感器在现实应用中的潜在可行性。
     4.研究腐蚀型高斯切趾FBG的Bragg波长、谐振峰幅值、3dB带宽对折射率的响应特性,与腐蚀型均匀FBG折射率传感器的特性进行比较。实验结果表明:腐蚀型高斯切趾FBG的Bragg波长和谐振峰幅值随折射率的变化规律,与由均匀FBG制成的腐蚀型FBG的一致,但前者的3dB带宽随折射率的增大并逐渐接近包层折射率或纤芯折射率时而越来越小,且反射谱也逐渐趋于平滑。
     5.从普通FBG传感器的物理机理角度推导其在“温度-横向压力”及“温度-轴向应力-横向压力”作用下的交叉敏感的理论模型。仿真结果表明:随着外界参数、光纤材料参数及Bragg波长的变化,交叉敏感项的值也以一定规律变化。基于此理论结论,提出一些如何在实际测量中减少系统误差和提高测量精度的有效方法。此外,设计和制作三维FBG温度传感阵列用于生物膜反应器内温度场的准分布式测量,并分析了其传感单元的“温度-横向压力”交叉敏感效应对温度测量误差的影响程度,实验结果表明:三维FBG温度传感阵列应用于工业中生物膜反应器内温度场的准分布式监测是可行和有效的,而且,较传统的热电偶阵列测量的方法能够获得更多的温度数据、更高的温度灵敏度和分辨率,其中的传感单元的温度灵敏度在12.11pm/oC~13.55pm/oC之间,当使用波长分辨率为1pm的光谱分析仪时,温度灵敏度最大的FBG传感单元的温度分辨率可达0.074oC。
Thanks to the advantages of immunity to strong interference, wavelengthdemodulation, absolute measurement and multiplexed sensing capability, fiber Bragggrating (FBG) sensors have been widely applied in the monitoring of temperature, strain,and pressure in the fields of large building structure, electric power system,petrochemical industry, and so on. In these fields, the study on its cross-sensing problemof multi-parameters is an important subject. In the past decade, as the rapiddevelopment of the biochemistry, medical science and life science, the refractive index(RI) sensors based on the fiber gratings have been gradually become one of theresearching focuses in the crossing fields between the fiber sensors and these subjects.In this dissertation, some basic problems of the FBG RI sensors are researched anddiscussed in detail, and the cross-sensing characteristics of multi-parameters of the FBGsensor are researched as well, and then the FBG sensors are applied in the measurementof the thermo-physical parameters in the bio-film reactor. The main contents of thedissertation are given as follows:
     1. Various RI sensors based on fiber gratings developed in the past decade aresummarized and compared. Their current research status, current applications status andtrend of development in the biochemical fields are summarized and analyzed in detail aswell. Then, the current research status of the cross-sensing problem of multi-parametersof the FBG sensor is summarized.
     2. Based on the existing researches of the single-end etched FBG RI sensor, amore completely theoretical model of its simultaneous measurement for the RI andtemperature is proposed, and the impact of its structured parameters on its RI sensitivityand linearity is analyzed in detail. The simulated results show that the RI sensitivity of asingle-end etched FBG can be enhanced by decreasing the diameter of its etching regionor by selecting a FBG with a relatively bigger grating pitch for its fabrication, but thesemethods will lower the linearity of the sensor and increase the theoretical error of thesensor in the RI measurement. Based on these theoretical results, the correspondingmethodology of linear approximation and error analysis of the sensor for RI measurement at the low RI area (1.333~about1.360) are established. In addition, asingle-end etched FBG sensor is fabricated and used in the simultaneous monitoring forthe bio-film thickness (or bio-film RI) and temperature in a simple bio-film reactor.Experimental results show that the sensor has a good linearity and RI sensitivity of6.894nm/RIU, and its resolution for the bio-film thickness and temperature is15.36±0.85μm and0.12oC, respectively, in the condition of the spectrum analyzer withwavelength resolution of1pm being used.
     3. The responsive characteristics of the etched FBG under uneven liquid mediumwith the RI distribution being linear are analyzed. The simulated results show that theband-width, the number of the micro-resonant peaks and the asymmetric degreed of thereflection spectrum of the etched FBG will increase as the increase of the RI gradientalong its axis and the D-value of the RI at both of its ends. In particular, the D-value ofthe wavelength between the maximum and the minimum micro-resonant peaks isapproximately linear related to the RI gradient at the low RI area (1.330~1.360). Basedon these theoretical results, the theoretical model for the linear-approximationmeasurement of the RI gradient by the etched FBG is established. And then, an etchedFBG with residual diameter of5.73μm is fabricated. Through the experimentalresearch, the rationality of the theoretical simulation and analyses and the potentialapplication of the RI gradient sensor based on the etched FBG are verified.
     4. The responsive characteristics of the Bragg wavelength, resonant-peakamplitude and3dB bandwidth of the etched Gaussian-apodized FBG to the RI areresearched and compared to that of the etched uniform FBG RI sensor. Experimentalresults show that the changing regulations of Bragg wavelength and resonant-peakamplitude of the etched Gaussian-apodized FBG with the RI are in accord with that ofthe etched uniform FBG. However, the3dB bandwidth of the etched Gaussian-apodizedFBG will become more and more narrow as the RI increase to the cladding or coreindex, at the same time, its reflection spectrum will become more and more smooth aswell.
     5. The theoretical cross-sensing model of the normal FBG affected by“temperature-pressure” and “temperature-strain-pressure” are deduced and analyzedfrom the perspective of its physical mechanism. The simulated results show that thevalues of cross-sensing term of the “temperature-pressure” and “temperature-strain- pressure” will change in a certain regulation with the changes of external parameters,fiber parameters and Bragg wavelength. Based on these theoretical results, somevaluable suggestions about how to reduce the systematic error and improve themeasurement accuracy in the practical applications are put forward as well. In addition,a three-dimensional temperature sensing array based on FBG sensors is designed andfabricated to measure the temperature distribution field in an industrial bio-film reactor,and the impact induced by the cross-sensing effect of the “temperature-pressure” of itssensing unit on the error of temperature measurement is analyzed. Experimental resultsshow that the three-dimensional temperature sensing array based on FBG sensors usedto measure the temperature distribution field in the industrial bio-film reactor is feasibleand effective. Compared to the traditional methods of thermocouple array, thethree-dimensional temperature sensing array based on FBG sensors can gain moretemperature data, higher temperature sensitivity and resolution. The temperaturesensitivities of these sensing units are from12.11pm/oC to13.55pm/oC, and thetemperature resolution of the FBG sensing unit of the maximum temperature sensitivitycan reach0.074oC, by using the spectrum analyzer with wavelength resolution of1pm.
引文
[1] K. O. Hill, Y. Fujii, D. C. Johnson, et al.. Photosensitivity in optical fiber waveguide:aplication to reflection filter fabrication [J]. Appl. Phys. Lett.,1978,32(10):647-649.
    [2] F. Ouellette. Dispersion cancellation using linearly chirped Bragg grating filters in opticalwaveguides [J]. Opt. Lett.,1987,12(10):847-849.
    [3]贾维国,史培明,杨性愉,等.高斯变迹布拉格光纤光栅中的调制不稳定性[J].物理学报,2007,59(9):5281-5286.
    [4] C. R. Giles. Lightwave application of fiber Bragg gratings [J]. J. Lightwave Technol.,1997,15(8):1391-1404.
    [5] G. P. Agrawal and S. Radic. Phase-shifted fiber Bragg gratings and their applications forwavelength demultiplexing [J]. IEEE Photon. Technol. Lett.,1994,6(8):995-997.
    [6] H. Ishii, Y. Tohmori, M. Yamamoto, et al.. Modified multiple-phase-shift super-structuregrating DBR lasers forbroad wavelength tuning [J]. Electron. Lett.,1994,30(14):1141-1142.
    [7] T Erdogan and J. E. Sipe. Tilted fiber phase gratings [J]. J. Opt. Soc. Am. A.,1996,13(2):296-313.
    [8] D. K. W. Lam and B. K. Garside. Characterization of single-mode optical fiber filters [J].Appl. Opt.,1981,20(3):440-445.
    [9] J. X. Zhao, X. Zhang, Y. Q. Huang, et al.. Experimental analysis of birefringence effects onfiber Bragg gratings induced by lateral compression [J]. Opt. Commun.,2004,229(1):203-207.
    [10] A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, et al.. Long-period fiber-grating-based gainequalizers [J]. Opt. Lett.,1996,21(5):336-338.
    [11]王文华,宋世德,王晓旭,等.光纤布拉格光栅的高温特性研究[J].光电子·激光,2005,16(7):806-808.
    [12] C. R. Dennison and P. M. Wild. Enhanced sensitivity of an in-fibre Bragg grating pressuresensor achieved through fibre diameter reduction [J]. Meas. Sci. Technol.,2008,19(12):1253-01~1253-06.
    [13] Y. J. Rao, A. B. L. Ribeiro, D. A. Jackson, et al.. Combined spatial-and time-division-multiplexing scheme for fibre grating sensors with drift-compensated phase-sensitivedetection [J]. Opt. Lett.,1995,20(20):2149-2151.
    [14] J. Echevattia, A. Quintela, C. Jauregui, et al.. Uniform fiber Bragg grating first-andsecond-order diffraction wavelength experimental characterization for strain-temperaturediscrimination [J]. IEEE Photon. Technol. Lett.,2001,13(7):696-698.
    [15] G. Duck and M. M. Ohn. Distributed Bragg grating sensing with a direct group-delaymeasurement technique [J]. Opt. Lett.,2000,25(2):90-92.
    [16] Y. Zhao and Y. B. Liao. Discrimination methods and demodulation techniques for fiberBragg grating sensors [J]. Opt. Commun.,2004,41(1):1-18.
    [17] E. B. María, A. J. R. Sánchez, F. S. Rojas, et al.. Recent development in optical fiberbiosensors [J]. Sensors,2007,7(6):797-859.
    [18] J. H. Chong, P. Shum, H. Haryono, et al.. Measurements of refractive index sensitivity usinglong-period grating refractometer [J]. Opt. Commun.,2004,229(1):65-69.
    [19] Y. F. Yang, Y. Cao, Z. R. Tong, et al.. Experimental study on etched micro-structured fiberBragg [J]. Appl. Mechanics and Materials,2011,130:4061-4064.
    [20] C. F. Chan, C. K. Chen, A. Jafari, et al.. Optical fiber refractometer using narrowbandcladding-mode resonance shifts [J]. Appl. Opt.,2007,46(7):1142-1149.
    [21] K. M. Zhou, X. F. Chen, L. Zhang, et al.. Implementation of optical chemsensors based onHF-etched fibre Bragg grating structures [J]. Meas. Sci. Technol.,2006,17(5):1140-1145.
    [22] B. B. Luo, X. J. Zhou, M. F. Zhao, et al.. Recent developments in microstructured fiberBragg grating refractive index sensors [J]. SPIE Reviews,2010,1:018002-1~018002-12.
    [23] Z. Y. Wang, J. R. Heflin, H. S. Rogers et al.. Highly sensitive optical response of optical fiberlong period gratings to nanometer-thick ionic self-assembled multilayers [J]. Appl. Phys.Lett.,2005,86(22):223104-1~223104-3.
    [24] D. W. Kim, Y. Zhang, K. L. Cooper, et al.. Fibre-optic interferometric immuno-sensor usinglong period grating [J]. Electron. Lett.,2006,42(6):324-325.
    [25] M. Dagenais, A. N. Chryssis, S. S. Simarjeet et al.. High sensitivity bio-sensor based on anEtched Core Fiber Bragg Grating [C]. OSA Conference on Integrated Photonics Research andApplications,2005,4: IWD3.
    [26] F. G. Edwards and N. Nirmalakhandan. Biological treatment of airstreams contaminated withVOCs: an overview [J]. Wat. Sci. Technol.,1996,34(3-4):565-571.
    [27]恽斌峰.布拉格光纤光栅传感器理论与实验研究:[博士学位论文],南京:东南大学,2006,77-85.
    [28]丁金妃.光纤光栅折射率传感技术研究:[博士学位论文],杭州:浙江大学,2006,48-124.
    [29]刘云启.布拉格与长周期光纤光栅及其传感特性研究:[博士学位论文],天津:南开大学,2000,97-101.
    [30]毛凯.光纤光栅折射率传感器的研究:[硕士学位论文],长春:吉林大学,2010,35-53.
    [31]李杰.新型D型少模光纤Bragg光栅的特性及其在折射率测量中的应用:[硕士学位论文],厦门:厦门大学,2006,21-40.
    [32] A. Asseh, S. Sandgren, H. Ahlfeldt, et al.. Fiber Optical Bragg grating refractometer [J]. Fiberand Integrated Optics,1998,17(1):51-62.
    [33] A. Iadicicco, A. Cusano, A. Cutolo, et al.. Thinned fiber Bragg gratings as high sensitivityrefractive index sensor [J]. IEEE Photon. Technol. Lett.,2004,16(4):1149-1151.
    [34]徐俊娇,李杰,戎华北,等.少模光纤布拉格光栅折射率传感的分析与测量[J].光学学报,2008,28(3):565-568.
    [35] N. Chen, B. F. Yun, Y. P. Wang, et al.. Theoretical and experimental study on etched fiberBragg grating cladding mode resonances for ambient refractive index sensing [J]. J. Opt. Soc.Am. B,2007,24(3):439-445.
    [36] N. Chen, B. F. Yun, and Y. P. Wang. Cladding mode resonances of etch-eroded fiber Bragggrating for ambient refractive index sensing [J]. Appl. Phys. Lett.,2006,88(13):1339-1342.
    [37]恽斌峰,陈娜,崔一平.基于包层模的光纤布拉格光栅折射率传感特性[J].光学学报,2006,26(7):1013-1015.
    [38] W. Liang, Y. Y. Huang, Y. Xu, et al.. Highly sensitive fiber Bragg grating refractive indexsensors [J]. Appl. Phys. Lett.,2005,86(15):221-223.
    [39] A. N. Chryssis, S.M. Lee, S.B. Lee, et al.. High sensitivity evanescent field fiber Bragggrating sensor [J]. IEEE Photon. Technol. Lett.,2005,17(6):1253-1255.
    [40] A. N. Chryssis, S. S. Saini, S. M. Lee, et al.. Increased sensitivity and parametricdiscrimination using higher order modes of etched-Core fiber Bragg grating sensors [J]. IEEEPhoton. Technol. Lett.,2006,18(1):178-180.
    [41] A. Iadicicco, S. Campopiano, A. Cutolo, et al.. Nonuniform thinned fiber Bragg gratings forsimultaneous refractive index and temperature measurements [J]. IEEE Photon. Technol.Lett.,2005,17(7):1495-1497.
    [42] X. F. Huang, Z. M. Chen, L. Y. Shao, et al.. Design and characteristics of refractive indexsensor based on thinned and microstructure fiber Bragg grating [J]. Appl. Opt.,2008,47(4):504-511.
    [43] A. Iadicicco, A. Cutolo, S. Campopiano, et al.. Advanced fiber optical refract meters based onpartially etched fiber Bragg gratings [C]. Proc. IEEE Sens.,2004,3:1218-1221.
    [44] A. Iadicicco, S. Campopiano, A. Cutolo, et al.. Refractive index sensor based onmicrostructured fiber Bragg grating [J]. IEEE Photon. Technol. Lett.,2005,17(6):1250-1252.
    [45] A. Iadicicco, S. Campopiano, D. Paladino, et al.. Micro-structured fiber Bragg gratings:optimization of the fabrication process [J]. Opt. Exp.,2007,15(23):15011-15021.
    [46] L. Wei and J. W. Y. Lit. Phase shifted Bragg grating filters with symmetrical structures [J]. J.Lightwave Technol.,1997,15(8):1405-1410.
    [47] R. Zengerle and O. Leminger. Phase shifted Bragg-grating filters with improved transmissioncharacteristics [J]. J. Lightwave Technol.,1995,13(12):2354-2358.
    [48] A. Iadicicco, A. Cusano, S. Campopiano, et al.. Thinned fiber Bragg gratings as refractiveindex sensors [J]. IEEE Sens. J.,2005,5(6):1288-1295.
    [49] A. Cusano, A. Iadicicco, S. Campopiano, et al.. Thinned and micro-structured fibre Bragggratings: towards new all-fibre high-sensitivity chemical sensors [J]. J. of Opt. A: Pure andAppl. Opt.,2005,7(12):734-741.
    [50] A. Iadicicco, D. Paladino, S. Campopiano, et al.. Dual Refractive Index Measurements by aSingle Multi-Defect Structured Fiber Bragg Grating [C]. OSA Conference on Optical FiberSensors,2006: TuE18.
    [51] C. G. Lv and Y. P. Cui. Bragg grating spectra in a multimode optical fiber [J]. Chinese Opt.Lett.,2005,3(S1): S348-S349.
    [52] T. Mizunami, T. V. Djambova, T. Niiho, et al.. Bragg gratings in multimode and few-modeoptical fibers [J]. J. Lightwave Technol.,2000,18(2):230-235.
    [53] K. Zhou, X. Chen, L. Zhang, et al.. Optical chemsensor based on etched tilted Bragg gratingstructures in multimode fiber [C].17thInternational Conference on Optical Fibre Sensors,Proc. SPIE,2005,5855:158-161.
    [54] K. Zhou, X. Chen, L. Zhang, et al.. High-sensitivity optical chemsensor based on etchedD-fibre Bragg gratings [J]. Electron. Lett.,2004,40(4):232-234.
    [55]沈乐,郑史烈,章献民.侧面研磨光纤Bragg光栅的外部折射率敏感特性研究[J].光子学报,2005,34(7):1036-1038.
    [56] Z. Chen, J. Y. Tang, R. Y. Fan, et al.. Side polished fiber Bragg Grating sensor forsimultaneous measurement of refractive index and temperature [C]. Proc. of SPIE,2011,7753:77538K-1~77538K-4.
    [57] X. W. Shu, L. Zhang, and I. Bennion. Sensitivity characteristics of long-period fiber gratings[J]. J. Lightwave Technol.,2002,20(2):255-266.
    [58]刘云启,郭转运,张爱玲,等.长周期光纤光栅折射率敏感特性研究[J].量子电子学,1999,16(6):507-510.
    [59] J. P. Heather, D. K. Alan, and B. Frank. Analysis of the response of long period fiber gratingsto external index of refraction [J]. J. Lightwave Technol.,1998,16(9):1606-1612.
    [60] K. S. Chiang, Y. Q. Liu, M. N. Ng, et al.. Analysis of etched long-period fibre grating and itsresponse to external refractive index [J]. Electron. Lett.,2000,36(11):966-967.
    [61] G. Laffont and P. Ferdinand. Tilted short-period fiber-Bragg-grating induced coupling tocladding modes for accurate refractometry [J]. Meas. Sci. Technol.,2001,12(7):765-770.
    [62]张键,刘波,金龙,等.基于闪耀光纤光栅的折射率传感技术实验研究[J].光子学报,2008,37(5):910-913.
    [63] T. Guo, C. K. Chen, A. Laronche, et al.. Power-referenced and temperature-calibrated opticalfiber refractometer [J]. IEEE Photon. Technol. Lett.,2008,20(8):635-637.
    [64]苗银萍,刘波,赵启大.不同包层直径的倾斜光纤光栅折射率传感特性[J].光学学报,2008,28(11):2072-2076.
    [65] X. F. Chen, K. M. Zhou, L. Zhang, et al.. Optical chemsensor based on etched tilted Bragggrating structures in multimode Fiber [J]. IEEE Photon. Technol. Lett.,2005,17(4):864-866.
    [66] C. L. Zhao, X. F. Yang, M. S. Demokan, et al.. Simultaneous temperature and refractive indexmeasurements using a3oslanted multimode fiber Bragg grating [J]. J. Lightwave Technol.,2006,24(2):879-883.
    [67] C. Caucheteur, S. Bette, C. Chen, et al.. Tilted fiber Bragg grating refractometer usingpolarization-dependent loss measurement [J]. IEEE Photon. Technol. Lett.,2008,20(24):2153-2155.
    [68] Y. Y. Lu, R. G, C. C. Wang, et al.. Polarization effects in tilted fiber Bragg gratingrefractometers [J]. J. Lightwave Technol.,2010,28(11):1677-1684.
    [69] X. W. Shu, B. A. L. Gwandu, Y. Liu, et al.. Sampled fiber Bragg grating for simultaneousrefractive-index and temperature measurement [J]. Opt. Lett.,2001,26(11):774-776.
    [70] X. F. Chen, K. M. Zhou, L. Zhang, et al.. Simultaneous measurement of temperature andexternal refractive index by use of a hybrid grating in D fiber with enhanced sensitivity byHF etching [J]. Appl. Opt.,2005,44(2):178-182.
    [71] M. Han, F. W. Guo, and Y. F. Lu. Optical fiber refractometer based on cladding-mode Bragggrating [J]. Opt. Lett.,2010,35(3):399-401.
    [72] L. Mosquera, D. Sáez-Rodriguez, J. L. Cruz, et al.. In-fiber Fabry-Perot refractometerassisted by a long-period grating [J]. Opt. Lett.,2010,35(4):613-615.
    [73] L. Rindorf and O. Bang. Highly sensitive refractometer with a photonic crystal-fiberlong-period grating [J]. Opt. Lett.,2008,33(6):563-565.
    [74] R. Hou, Z. Ghassemlooy, A. Hassan, et al.. Modelling of long-period fibre grating responseto refractive index higher than that of cladding [J]. Meas. Sci. Technol.,2001,12(10):1709-1713.
    [75] M. C. P. Huy, G. Laffont, V. Dewynter-Marty, et al.. Fiber Bragg grating photowriting inmicrostructured optical fibers for sensing application based on refractive index measurement
    [C]. Proc.17th Int. Conf. on Optical Fibre Sensors (OFS17), Bruges,23May,2005,5855:130.
    [76] M. C. P. Huy, G. Laffont, Y. Frignac, et al.. Fibre Bragg grating photowriting inmicrostructured optical fibres for refractive index measurement [J]. Meas. Sci. Technol.,2006,17(5):992-997.
    [77] M. Chau, P. Huy, G. Laffont, et al.. Three-hole microstructured optical fiber for efficient fiberBragg grating refractometer [J]. Opt. Lett.,2007,32(16):2390-2392.
    [78] M. C. P. Huy, G. Laffont, V. Dewynter et al.. Tilted fiber Bragg grating photowritten inmicrostructured optical fiber for improved refractive index measurement [J]. Opt. Exp.,2006,22(14):10359-10370.
    [79] G. J. Wang, J. H. Liu, Z. Zheng, et al.. A fast response tilted fiber Bragg grating fluidrefractometer using an exposed-hole microstructured optical fiber [C]. Proc. of SPIE,2011,7753:77537S-1~77537S-4.
    [80]饶云江,王义平,朱涛.光纤光栅原理及应用[M].北京:科学出版社,2005.
    [81]桑新柱,余重秀,颜玢玢,等.基于光纤布拉格光栅的化学传感器[J].光学精密工程,2006,14(5):771-774.
    [82] D. A. Pereira, O. Frazao, and J. L. Santos. Fiber Bragg grating sensing system forsimultaneous measurement of salinity and temperature [J]. Opt. Eng.,2004,43(2):299-304.
    [83] K. Schroeder, W. Ecke, R. Mueller, et al.. A fibre Bragg grating refractometer [J]. Meas. Sci.Technol.,2001,12(7):757-764.
    [84] S. Luo, Y. Liu, A. Sucheta et al.. Application of LPG fiber optical sensors for relativehumidity and chemical warfare agents monitoring [C]. Proc. Of SPIE,2002,4920:193-204.
    [85] J. X. Dai, M. H. Yang, Y. Chen, et al.. Side-polished fiber Bragg grating hydrogen sensor withWO3-Pd composite film as sensing materials [J]. Opt. Exp.,2011,19(7):6141-6148.
    [86] B. Sutapun, M. Tabib-Azar, and A. Kazemi. Pd-coated elastooptic fiber optic Bragg gratingsensors for multiplexed hydrogen sensing [J]. Sensors and Actuators B.,1999,60(1):27-34.
    [87]庄其仁,龚冬梅,张渭滨,等.长周期光纤光栅生物膜传感器[J].激光生物学报,2006,15(1):106-110.
    [88] P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, et al.. Compact microfluidic refractometer.In Conference on Lasers and Electro-Optics/Quantum Electronics and Laser ScienceConference and Photonic Applications Systems Technologies, Technical Digest (CD)(OSA,2006),2006:JThC88.
    [89] F. Baldinia, M. Brencia, F. Chiavaiolib, et al.. Flow cell with hybrid LPG and FBG opticalfiber sensor for refractometric measurements [C]. Proc. of SPIE,2011,7753:775392-1~775392-4.
    [90] S. M. Lee, M. Y. Jeong, and S. S. Saini. Etched core fiber Bragg grating sensor integratedwith microfluidic channel [C]. Proc. of SPIE,2011,7753:77530G-1~77530G-4.
    [91] N. J. Alberto, A. M. Carlos, F. A. Paulo, et al.. Three parameters simultaneous measurementwith a single TFBG [C]. Proc. of SPIE,2011,7753:77537Z-1~77537Z-4.
    [92] C. Caucheteur, P. Mégret, and A. Cusano. Tilted Bragg grating multipoint sensor based onwavelength-gated cladding-modes coupling [J]. Appl. Opt.,2009,48(20):3915-3920.
    [93] C. Caucheteur, M.Wuilpart, C. Chen, et al.. Quasi distributed refractometer using tilted Bragggratings and time domain reflectometry [J]. Opt. Exp.,2008,16(22):17882-17890.
    [94] P. Saffari, Z. Yan, K. Zhou, et al.. Liquid core fibre Bragg grating based refractive indexsensor formed by femtosecond assisted chemical etching technique [C]. Proc. of SPIE,2011,7753:77538P-1~77538P-4.
    [95] K. M. Zhou, Y. C. Lai, X. F. Chen, et al.. A refractometer based on a micro-slot in a fiberBragg grating formed by chemically assisted femtosecond laser processing [J]. Opt. Exp.,15(24):15848-15853.
    [96] Y. Y. Shevchenko and J. Albert. Plasmon resonances in gold-coated tilted fiber Bragg gratings[J]. Opt. Lett.,2007,32(3):211-213.
    [97] Y. Shevchenko, C. Chen, M. A. Dakka, et al.. Polarization selective grating excitation ofplasmons in cylindrical optical fibers [J]. Opt. Lett.,2010,35(5):637-639.
    [98]梁瑞冰,孙琪真,沃江海,等.微纳尺度光纤布拉格光栅折射率传感的理论研究[J].物理学报,2011,60(10):104221-1~104221-4.
    [99]吕且妮,张以谟,刘铁根,等.光纤光栅传感测量中的交叉敏感研究[J].天津大学学报,2002,35(4):425-428.
    [100]张博,严高师,邓义君.光纤光栅传感器交叉敏感问题研究[J].应用光学,2007,28(5):614-618.
    [101] W. W. Morey, G. Meltz, and W. H. Glenn. Fibre optic Bragg grating sensors [C]. Proc. SPIE.1989,1169:98-107.
    [102] M. G. Xu, J. L. Archambault, L. Reekie, et al.. Thermally-compensated bending gauge usingsurface-mounted fibre gratings [J]. J. Optoelectronics,1994,9:281-283.
    [103] M. G. Xu, J. L. Archambault, L. Reekie, et al.. Discrimination between strain and temperatureeffects using dual-wavelength fibre grating sensors [J]. Electron. Lett.,1994,30(13):1085-1087.
    [104] G. P. Brady, K. Kalli, D. J. Webb, et al.. Simultaneous measurement of strain and temperatureusing the first and second-order diffraction wavelengths of Bragg gratings [J].Optoelectronics IEE Proceedings,1997,144(3):156-161.
    [105] R. H. Stolen, A. Ashkin, W. Pleibel, et al.. In-line fiber-polarization-rocking rotator and filter[J]. Opt. Lett.,1984,9(7):300-303.
    [106] K. O. Hill, F. Bilodeau, B. Malo, et al.. Birefringent photosensitivity in monomode opticalfibre: application to external writing of rocking filters [J]. Electron. Lett.,1991,27(17):1548-1550.
    [107] S. E. Kanellopoulos, V. A. Handerek, and A. J. Rogers. Simultaneous strain and temperaturesensing with photogenerated in-fiber gratings [J]. Opt. Lett.,1995,20(3):333-335.
    [108] V. Bhatia and A. M. Vengsarkar. Optical fibre long-period grating sensors [J]. Opt. Lett.,1996,21(9):692-694.
    [109] O. Frazao, R. Romero, G. Rego, et al.. Sampled fibre Bragg grating sensors for simultaneousstrain and temperature measurement [J]. Electron. Lett.,2002,38(14):693-695.
    [110] J. S. Sirkis, D. D. Brennan, M. A. Putman, et al.. In-line fibre etalon for strain measurement[J]. Opt. Lett.,1993,18(22):1973-1975.
    [111] H. Singh and J. Sirkis. Simultaneous measurement of strain and temperature using opticalfibre sensors: two novel configurations [C]. Proc.11th Inter. Conf. on Optical Fibre Sensors,Sapporo, Japan,21May1996: Tu5.
    [112] S. W. James, M. L. Dockney, and R. P. Tatam. Simultaneous independent temperature andstrain measurement using in-fibre grating sensors [J]. Electron. Lett.,1996,32(12):1133-1134.
    [113] M. Song, B. Lee, S. B. Lee, et al.. Interferometric temperature-insensitive strain measurementwith different-diameter fiber Bragg gratings [J]. Opt. Lett.,1997,22(11):790-792.
    [114] M. G. Xu, L. Dong, L. Reekie, et al.. Temperature-independent strain sensor using opticalfiber Bragg gratings sensor [J]. Electron. Lett.,1995,31(10):823-825.
    [115] J. Z. Hao, C. M. Tag, C. Y. Liaw, et al.. A novel FBG pressure sensor with low temperaturesensitivity [C]. Lasers and Electro-Optics Society, the16thAnnual Meeting of the IEEE,2003,1:21-22.
    [116] M. G. Xu, L. Reekie, Y. T. Chow, et al.. Optical in-fibre grating high pressure sensor [J].Electron. Lett.,1993,29(4):398-399.
    [117] M. G. Xu, H. Geiger, and J. P. Dakin. Fibre grating pressure sensor with enhanced sensitivityusing a glass-bubble housing [J]. Electron. Lett.,1996,32(2):128-129.
    [118]刘云启,郭转运,刘志国,等.聚合物封装的高灵敏度光纤光栅压力传感器[J].中国激光,2000,27(3):211-214.
    [119]刘云启,郭转运,刘志国,等.光纤光栅的压力传感特性研究[J].光子学报,1999,28(5):443-445.
    [120]刘云启,郭转运,张颖,等.单个光纤光栅压力和温度的同时测量[J].中国激光,2000,27(11):1002-1006.
    [121] X. M. Liu, X. M. Zhang, J. Cong, et al.. Demonstration of etched cladding fiber Bragggrating-based sensors with hydrogel coating [J]. Sensors and Actuators B: Chemical,2003,96(1-2):468-472.
    [122]刘丽辉,赵启大,张昊,等.双波长高灵敏度Bragg光纤光栅压力传感器[J].光子学报,2005,34(2):319-320.
    [123]曹晔,刘波,刘丽辉,等.对温度不敏感的光纤光栅压力传感器[J].传感技术学报,2005,18(1):177-187.
    [124]曹晔,刘波,李红民,等.轮辅式光纤光栅压力传感器的研制[J].南开大学学报,2006,39(2):6-10.
    [125]张伟刚,李红民,开桂云,等.轮辐式温度自动补偿型光纤光栅测力传感器[J].中国激光,2005,32(7):956-960.
    [126] K. Li, Z. A. Zhou, and A. C. Liu. A high sensitive fiber Bragg grating cryogenic temperaturesensor [J]. Chinese Opt. Lett.,2009,7(2):121-123.
    [127] R. Aashia, K. V. Madhav, B. Srinivasan, et al.. Strain-temperature discrimination using asingle fiber Bragg grating [J]. IEEE Photon. Technol. Lett.,2010,11(1):778-780.
    [128] M. S. Müller, T. C. Buck, H. J. El-Khozondar, et al.. Shear strain influence on fiber Bragggrating measurement systems [J]. J. Lightwave Technol.,2009,27(23):5223-5229.
    [129] M. Marazuela and M. Moreno-Bondi. Fiber-optic biosensors-an overview [J]. Anal. Bioanal.Chem.,2002,372(5-6):664-682.
    [130] A. Yariv. Coupled-mode theory for guided-wave optics [J]. J. Quantum Electron.,1973,9(9):919-933.
    [131] D. Marcuse. Theory of dielectric optical waveguides [M]. New York: Academic Press,1974.
    [132] G. W. Chern and L. A. Wang. Transfer-matrix method based on perturbation expansion forperiodic and quasi-periodic binary long-period gratings [J]. J. Opt. Soc. Am. A.,1999,16(11):2675-2689.
    [133] M. Yamada and K. Sakuda. Analysis of almost-periodic distributed feedback slab waveguidesvia a fundamental matrix approach [J]. Appl. Opt.,1987,26(16):3474-3478.
    [134] L. Poldian. Graphical and WKB anlysis of nonuniform Bragg gratings [J]. Phys. Rev. E.,1993,48(6):4758-4767.
    [135] A. Bouzid and M. A. G. Abushagur. Scattering analysis of slanted fiber gratings [J]. Appl.Opt.,1997,36(3):558-562.
    [136] E. Peral and J. Capmany. Generalized Bloch wave analysis for fiber and waveguide gratings[J]. J. Lightwave Technol.,1997,15(8):1295-1302.
    [137] H. Kogelnick. Filter response of non uniform almost-periodic gratings [J]. Bellsystem. Tech.J.,1976,55(1):109-126.
    [138]曾祥凯,饶云江.Bragg光纤光栅傅里叶模式耦合理论[J].物理学报,2010,59(12):8597-8606.
    [139] T. Erdogan. Fiber grating spectra [J]. J. Lightwave Technol.,1997,15(8):1277-1294.
    [140] V. Mizrahi and J. E. Sipe. Optical properties of photosensitive fiber phase gratings [J]. J.Lightwave Technol.,1993,11(10):1513-1517.
    [141] H. Kogelnik. Theory of optical waveguides [M]. New York: Springer-Verlag,1990.
    [142]孙丽.光纤光栅传感技术与工程应用研究:[博士学位论文],大连:大连理工大学,2005,38-40.
    [143] M. Monerie. Propagation in doubly clad single-mode fibers [J]. J. Quantum Electron.,1982,18(4):535-542.
    [144]田鑫.净化低浓度有机废气生物膜滴滤塔传输及降解特性:[博士学位论文],重庆:重庆大学,2005,90-99.
    [145]孙宏伟.化学工程的发展趋势认识时空多尺度结构及其效应[J].化工进展,2003,22(3):224-227.
    [146]赵明富,罗彬彬,廖强,等.一种光纤布拉格光栅传感器在线测量微生物膜厚度的方法.中国,发明专利,ZL200810232890.3,2010-3.
    [147] B. C. Baltzis, C. J. Mpanias, and S. Bhattacharya. Modeling the removal of VOC mixtures inbiotrickling filters [J]. Biotechnol. and Bioeng.,2001,72(4):389-401.
    [148] C. Alonso, M. T. Suidan, B. R. Kim, et al.. Dynamical mathematical model for thebiodegradation of VOCs in a biofilter. Biomass accumulation study [J]. Environmental Sci.and Technol.,1998,32(20):3118-3123.
    [149] H. J. Lee, D.G. Han, S. H. Lee, et al.. On-line monitoring and quantitative analysis ofbiofouling in low velocity cooling water system [J]. Korean J. Chem. Eng.,1998,15(1):71-77.
    [150] G. J. Licina and G. Nekoksa. An electrochemical method for on-line monitoring of biofilmactivity [C]. Proc. NACE Int. Conf. Corrosion, Paper No.403, New Orleans, LA, March8-12,1993.
    [151] R. Philip-Chandy, P. J. Scully, P. Eldridge, et al.. An optical fiber sensor for biofilmmeasurement using intensity modulation and image analysis [J]. IEEE J. on Selected Topicsin Quantum Electron.,2000,6(5):764-772.
    [152]陈小粉,柳娴,李小明,等.微生物电解产氢新技术研究现状与进展[J].环境科学与技术,2010,33(9):82-86.
    [153]周文和,王良成,王良璧.PEM燃料电池气一液两相流水传递新模型[J].工程热物理学报,2010,31(7):1148-1150.
    [154]梁鹏,黄霞,范明志,等.双筒型微生物燃料电池产电及污水净化特性的研究[J].环境科学,2009,30(2):616-620.
    [155] T. Erdogan. Cladding-mode resonances in short-and long-period fiber grating filters [J]. Opt.Soc. Am. A.,1997,14(8):1760-1772.
    [156] D. Bredow, P. Jain, A. Wohlfeil, et al.. Heat and mass transfer characteristics of a horizontaltube absorber in a semi-commercial absorption chiller [J]. International J. of Refrigeration,2008,31(7):1273-1281.
    [157]刘海涛,陈建平,HSU Luke.光纤光栅原油压力传感器实验及其可靠性研究[J].中国激光,2006,33(9):1243-1246.
    [158]张向东,李育林,彭文达,等.光纤复合型油气井下压力温度测量系统[J].光子学报,2003,32(7):864-867.
    [159]禹大宽,乔学光,贾振安,等.应用在油气管线的光纤光栅温度压力传感系统[J].激光技术,2007,31(1):12-14.
    [160]钟年丙.基于FBG的生物膜式反应器内温度场测量方法研究:[硕士学位论文],重庆:重庆理工大学,2010,11-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700