β-聚糖酶的诱导合成及玉米芯半纤维素酶水解物木糖醇发酵酵母菌的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以富含木聚糖的植物纤维为原料,经酶水解和发酵是生产木糖醇的重要途径之一。本文以绿色木霉(Trichoderma viride)LH-011为产酶菌株,以经适当预处理的玉米芯为产酶碳源和诱导物,对β-聚糖酶的诱导合成的影响因素进行了系统研究。论文还对玉米芯半纤维素的酶水解及利用酶水解物直接发酵产生木糖醇的酵母菌进行了初步筛选。
     β-聚糖酶诱导合成研究表明:碳源种类、浓度,氮源及碳氮比,初始pH值和培养温度等因素对β-聚糖酶合成都有一定的影响。以经适当预处理的玉米芯为主要碳源和诱导物,碳源浓度15g/L(以绝干料中碳元素含量计),利用硫酸铵+尿素+蛋白胨为复合氮源,当控制碳氮比为6.4,初始pH值为4.8时,通过变温调控培养96小时(前24小时32±1℃,后期28±1℃),纤维素酶活力(以CMC酶活计)和木聚糖酶活力分别达到了3.76U/ml和13.95U/ml。
     利用自制β-聚糖酶对玉米芯粗木聚糖进行酶水解,当底物浓度25g/L,pH值4.8左右,酶用量为10%(v/v),50℃恒温水浴,80r/min水解12小时以后还原糖浓度达到15.24g/L并趋于恒定,水解物中葡萄糖占3.13%,木糖占为19.17%,木低聚糖占45.75%。
     以商品木糖为底物,从收集到的7株木糖发酵酵母菌中选出热带假丝酵母(Candida tropicalis)AY91009作为出发菌株。CandidatropicalisAY 91009在含有50g/L木糖和10g/L酵母浸膏的筛选培养基中,28℃摇瓶培养72小时木糖醇浓度达到了28.7g/L,木糖消耗量98.1%,转化率达到了0.59g/g。利用玉米芯半纤维素酶水解物对Candida tropicalis AY 91009经8代驯化培养,结合木糖平板筛选到一株较好的木糖醇产生菌热带假丝酵母(Candida tropicalis)LH-081,并用其进行了250ml摇瓶发酵生产木糖醇的初步试验,当培养基中还原糖浓度为15.24g/L,装料量为100ml,初始pH值5.4,温度28±1℃培养72小时(转速前24小时160r/min,后48小时100r/min),木糖醇浓度为2.19g/L,还原糖利用率为28.7%,转化率0.50g/g。
     论文研究结果表明,以预处理玉米芯诱导合成β-聚糖水解酶,用β-聚糖水解酶降解玉米芯半纤维素,利用玉米芯半纤维素酶水解物直接发酵制备木糖醇,路线上是行得通的,如果结合分离水解物中的未转化低聚糖,或者制备成富含木糖醇的木低聚糖类功能性食品,将能获得高附加值产品,使得整个过程获得较高的经济利益和社会效益。这为半纤维素的生物转化利用开辟了一条新的途径,同时也为今后发酵工艺参数的优化、水解酶的制备、木糖醇高产菌种的选育以及后续研究同步糖化与发酵工艺提供了参考。
Enzymatical hydrolysis of xylan-rich lignocellulosics followed by fermentation is one of the most important paths to produce xylitol. With pretreated com cob as carbon source and inducer, impacting factors of β-glycanase production by Trichoderma viride LH-011 were systematically studied in this thesis. Moreover, enzymatical hydrolysis of corn cob hemicellulose and screening of xylitol-producing yeast for fermentation of the hydrolysate to xylitol were primarily explored.
    The experimental results show that the kind and concerntration of carbon source, the kind of nitrogen source and the C/N , the initial pH value and the culture temperature all have some effects on the biosynthesis of β -glycanase. When 15g/L pretreated com cob used as the main corbon source and inducer, mixed (NHU^SQj and urea and peptone as nitrogen source,regulating C/N 6. 4, initial pH value 4. 8, volume charge 50mL in 250 mL flask, 150 r/min, 32±1 ℃ the first 24 hours and 28±1℃ the rear, the CMC-ase activity and the xylanase activity respectively reached 3.76 U/ml and 13.95 U/ml after 96 hours cultivation.
    The corn-cob hemicellulose hydrolysation has been done under the following conditions: the substrate concerntration was 25g/L, the pH value 4.8, self-made β -glycanases dosage 10% (v/v), 50± water bath,80r/min. As a result, the reducing sugars concentration reached 15.24 g/L after 12 hours and almost kept constantly, and glucose accouting for 3.13%, xylose 19.17% and xylo-oligomers 45.75% o
    Candida tropicalis AY 91009 was selected by commercial xylose culture medium from the seven xylose-fermenting yeast strains bought from Institute of Microbilogy of Chinese Academy of Science and China Center for Type Culture Collection, which was then adapted to the corn-cob hemicellulose enzymatic hydrolysate (CCHEH) .Through eight-generation gradient CCHEH medium culturing, Candida tropicalis LH-081, a good xylitol-producing strain ,was screened and isolated by high concerntration xylose plate,, Primary study on bioconverting CCHEH into xylitol was carried out using Candida tropicalis LH-081 by 250ml flask batch fermentation process.The best results, a xylitol yield of 0.50g/g reducing sugar with an reducing sugar utilization efficiency of 28.7% , were achieved under the following conditions: reducing sugars concentration of CCHEH 15.24g/L, loading volume 100ml, nitrogen source 1.5g/L yeast extract and 1.5g/L peptone, initial pH value 5.4, inoculum size 10%(volume ratio), the first 24 hours, 160 r/min and
    the later 48 hours, 100r/min , culture temperature 28±1 ℃ .
    The result show that bioconversion the CCHEH into xylitol is not a very efficient but a very promising way. in order to realize the simultaneous saccharification and fermentation of the corn-cob hemicellulose for xylitol production, some more things must be done.
引文
1. Priya Chandrant, et al. Simutaneous bioconvension of cellulose and hemicellulose to ethanol[J]. Critical Reviews in Biotechnology, 1998, 18(4):295~331
    2. Bisaria,V.S. et al. Bioprocessing of agroresidues to value added products[M]. In:Martin, A.M.,ed. Bioconversion of waste materials to industrial products. Chapman And Hall, London, UK, 1998:197~246
    3. 张净.木糖醇及其应用[J].四川化工,1988,2:45~47
    4. http://www.sdyucheng.com/5/1-1.htm
    5. 任鸿均.新兴的木糖醇工业及展望[J].化工科技市场,2001,7:7~9
    6. 郑建仙.功能性食品甜味剂[M].北京:中国轻工业出版社,1997
    7. Juan Carlos Parajo, et al. Biotechnological production of xylitol part Ⅲ:Operation in culture media made from lignocellulose hydrolyzates, Bioresonrce Technology, 1998,66(1):25~40
    8. Denise C.G.A.Rodrigues, et al. Biotechnological production of xylitol from agroindustrial residues[J]. Applied Biochemistry and Biotechnology, 1998,70-72:869~875
    9. L. Pourceui, et al. Xylitol production from rice straw hemicellulose hydrolyzate using different yeast strains [J]., Biotechnology Letter, 1997, 19(5): 407~409
    10. L.Preziosi Belloy, et al. Fermentation of hemicellulosic sugars and sugar mixtures to xylitol by Candida parapsilosis[J]. Enzyme and Microbial Technology, 1997, 21(2):124~129
    11. 章克昌,吴星用酵母转化木糖为木糖醇[J].食品与发酵工业,1989,4:20~23
    12. 张厚瑞,何成新,梁小燕,等.半纤维素水解物生物转化生产木糖醇[J].生物工程学报,2000,16(3):304~307
    13. 怀文辉,何秀萍,张博润.微生物产木糖醇的研究进展及应用前景[J].微生物学通报,2000,27(1):66~69
    14. 张利平,吴继标.木糖发酵生产木糖醇的酵母菌筛选初报[J].应用与环境生物学报,1997,3(3):273~275
    15. 曾健智,方宏,何成新,等.产木糖醇酵母——耐糖菌株的筛选[J].食品与发酵工业,2001,27(3):13~15
    16. 王普,钟卫鸿,虞炳钧.木糖还原酶产酶菌株的筛选[J].药物生物技术,2001,8(3):156~159
    17. 吴星,张涛,朱文昌,等.用玉米芯水解液发酵木糖醇的研究[J].无锡轻工业学院学报,1993,12(1):23~26
    18. Jose M. Dominguez, et al. Dilute acid hemicellulose hydrolyzates from com-cobs for xylitol production by yeast[J]. Bioresource Technology, 1997, 61(1):85~90
    19. 孙昆山,夏黎明.玉米芯水解液发酵生产木糖醇的研究[J].林产化学与工业,2002,22(2):26~30
    20. M.J. Vázquez, et al. Production of xylose-containing fermentation media by enzymatic post-hydrolysis of oligomers produced by corn cob autohydrolysis[J].W. J. Microbiol. & Biotechnol., 2001,17:817~822
    21. 南京林业大学主编.木材化学[M].北京:中国林业出版社,1990
    22. 邬义明.植物纤维化学[M].北京:中国轻工业出版社,1991
    23. 邹永龙,王国强.木聚糖降解酶系统[J].植物生理学通讯,1999,35(5):404~410
    24. 邵蔚蓝,薛业敏.以基因重组技术开发木聚糖类半纤维素资源[J].食品与生物技术,2002,21(1):88~93
    25. 勇强.植物纤维资源生物转化制取酒精的研究[D].南京:南京林业大学博士学位论文,1998
    26. J. Pourquie, et al. Cellulase production by Trichoderma reesei[J]. In:Saddler J ed. Bioconversion of forest and agriculture plant residue,CAB International, walling ford, UK, 1993, 107~116
    27. Ingrid Persson, et al. Fungal cellulolitic enzyme production:a review[J]. Process Biochemistry, 1991, 26:65~74
    28. T. Kent Kirk, et al. Enzymology and Molecular Ceneties of Wood Degradation by White-Rot Fungi In:Raymond A. Young and Masood Akhtar ed. Environmentally Friendly Technologies for the Pulp and Paper Industry s[M], John Wiley & Sons, Inc. Canada, 1998,273~299
    
    
    29. 刘超纲.里氏木霉木聚糖酶的选择性合成及其应用基础研究[D].南京:南京林业大学博士学位论文,1999
    30. Neeta Kuikarni, et al. Molecular and biotechnological aspects of xylanases[J], FEMS Microbiology Reviews,1999, 23:411~456
    31. 欧凯.产优良木聚糖酶菌株的选育及产酶条件的研究[D].株洲:中南林学院硕士学位论文,1999
    32. Ken K.Y. Wong et al. Trichoderma xylanases,their properties and application[J].Critic review in biotechnology, 1992, 12(5/6):413~435
    33. Vivkaril, et at, Hemicellulases for industrial applications In:Saddler J ed. Bioconversion of forest and agriculture plant residues [M].CAB International, walling ford, UK, 1993, 231~290
    34. 孙东平,庞延军,李兆兰.绿色木霉产纤维素酶的提取分离及其性质[J],徐州师范学院学报,1996,14(2):62~66
    35. 周津,阮宏,孙连魁.绿色木酶A10纤维素酶的分离纯化及理化性质研究[J].西北大学学报,1994,24(5):465~469
    36. 邹永龙,桑月婵,彭建新,等.β-1,4-内切木聚糖酶的分离纯化及其性质[J].植物学报,1999,41(11):1212~1216
    37. 潘锋,杨树林,史小丽,等.黑曲霉纤维素酶的纯化及酶学性质研究[J].生物技术,2001,11(3):7~9
    38. 洪洞,黄秀梨.黑曲霉变种2281-C纤维素酶的纯化和性质[J].北京师范大学学报,1998,34(3):403~408
    39. 吴克,蔡敬民,张洁,等.黑曲霉A3木聚糖酶的纯化和性质[J].安徽机电学院学报,1998,13(3):68~70
    40. 刘穗,高培基.半纤维素的分子生物学[J].纤维素科学与技术,1998,6(1):9~15
    41. 岑沛霖,蔡谨.工业微生物学[M].北京:化学工业出版社,2000
    42. 张树政.酶制剂工业[M].北京:科学出版社,1984
    43. 诸葛健.工业微生物实验技术手册[M].北京:中国轻工业出版社,1994
    44. 屈维均.制浆造纸实验[M].北京:中国轻工业出版社,1990
    45. 张龙翔,张庭芳,李令嫒.生化实验方法和技术[M](第2版).北京:高等教育出版社,1997
    46. T.K. Ghose. Measurement of cellulase activities[J]. Pure&Appl. Chem, 1987, 59(2):257~268
    47. 王昉杰,余家鸾,高扬,等.碱性过氧化氢预处理对杨木机械浆化学成分及性质的影响[J].中国造纸,1997,3:33~37
    48. 陈育如.植物纤维原料预处理及酶水解和乳酸发酵的研究[D].杭州:浙江大学博士学位论文,2000
    49. 韩峰,孙彩云,宋小焱,等.拟康氏木酶(Trichoderma pseudokoningii)UⅧ纤维素酶合成的诱导与阻遏[J].工业微生物,2003,33(1):23~26
    50. Robert E H. dekker, et al. Bioconversion of hemicellose:Aspects of hemicellulase production by Trichoderma reesei QM9414 and enzymic saccharification of homicellulose [J].Biotechnol. Bioeng., 1983, 25(5): 1127~1146
    51. 徐勇,陈牧,余世袁,等.木聚糖酶水解制取低聚木糖的研究[J].林产化学与工业,2002,22(2):58~60
    52. Juan Carlos Parajo, el al. Biotechnological production of xylitol part Ⅰ:Interest of xylitol and fundamentals of its biosynthesis[J]. Bioresource Technology, 1998, 65(3):191~201
    53. 张矢.植物原料水解工艺学[M].北京:中国林业出版社,1993
    54. Gong Cheng-Shang, et al. Conversion of pentoses by yeasts[J]. Biotech. Bioeng., 1983, 25:85~102
    55. Horitsu,H., et al. Production of xylitol from D-xylose by Candida tropicalis:optimization of production rate[J],Biotech. Bioeng., 1992, 40:1085~1091
    56. Z.D.V. L.Mayerhoff, et al. Production of xylitol by Candida mogii from rice straw hydrolyzate[J]. Applied Biochemistry and Biotechnology, 1998,70-72:149~159
    
    
    57. Maria F. S. Barbosa, et al. Screening of yeasts for production of xylitol from D-xylose and some factors which affect xylitol yield in Candida guillermondii[J]. Journal of Industrial Microbiology, 1988,3:241~251
    58. 沈同,王镜岩.生物化学[M](第2版),北京:高等教育出版社,1991
    59. Myriam Elseviers, et al. Process for the production of xylitol [P].US 6,458,570 B1,2002-10-01
    60. Roberto,I.C., et al. Utilization of sugar cane bagasse hemicellulosic hydrolysate by Candida guilliermondii for xylitol production [J]. Bioresource technol., 1991,36:271~275
    61. Roberto,I.C., et al. Evaluation of rice straw hemicellulosic hydrolysate in the production of xylitol by Candida guilliermondii [J].Biotechnol. Lett.,1994,16:1211~1216
    62. Lourdes A. Alves, et al. Pretreatment of sugarcane bagasse hemicellulose hydrolyzate for xylitol production by Candida guilliermondii[J]. Applied Biochemistry and Biotechnology, 1998, 70-72:89~98
    63. J.C.Parajó, et al. Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolysates [J]. Enzyme and Microbial Technol. 1997,21(7): 18~24
    64. Kim, Song-Yong, et al. Evaluation of xylitol production from corn cob hemicellulose hydrolysate by Candida parapsilosis[J]. Biotech. Lett., 1999, 21:891~895
    65. Touru suzuki,et al. Expression of xyrA gene encoding for D-xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli [J].Journal of Bioscience and Bioengineering, 1999,87(3):280~284
    66. C.Handumrongkul, et al. Cloning and expression of Candida guilliermondii xylose reductase gene (xyll) in Pichia pastoris [J]. Appl. Microbiol. Biotechnol., 1998, 49(4):399~404
    67. R_ Govinden, et al. Xylitol production by recombinant Saccharomyces cerevisiae expressing the Pichia stipitis and Candida shehatae XYL1 genes [J]. Appl. Microbiol. Biotechnol.,2001,55(4):76~80
    68. 鲍晓明,郑华军,秦玉静,等.酿酒酵母Saccharamyces Cerevisiae重组菌株木糖醇发酵的初步研究[J].工业微生物,2000,30(2):13~17
    69. D.-K. Oh, et al. Increase of xylitol yield from by feeding xylose and glucose in Candida tropicalis[J]. Applied Microbiology and Biotechnology, 1998,50(4):419~425
    70. Poonam Nigam, et al. Process for fermentative production of xylitol-- a sugar substitute[J]. Process Biochemistry, 1995,30(2):117~124
    71. Silvio S. Silva. et al. Factors that affect the biosynthesis of xylitol by xylose-fermentation yeasts: a review[J]. Applied Biochemistry and Biotechnology, 1998, 70-72:331~339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700