收获和贮存时间对玉米秸秆营养物质产量和营养价值的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过2个试验对不同品种不同收获和贮存时间的玉米的生物学产量和秸秆的化学成分、有机物体外降解率(IVOMD)进行了综合评定。实验室分析了不同收获时间(生长期92—104天)6个普通品种玉米秸秆和2个整株处理的饲用玉米植株的化学组成,并对前者的不同时间(1-125天)的化学组成进行分析,用24小时连续培养的体外法测定实验样品的IVOMD。比较了不同收获时间的可消化有机物产量和各种营养物质产量。探讨收获时间对玉米生物学产量、可消化有机物产量以及营养品质的影响。贮存试验则探讨了贮存时间对玉米秸秆在反刍动物中利用率的影响。结果表明:
     试验一,随着收获时间的延长,6个普通品种玉米籽粒产量、秸秆的营养物质产量和可消化有机物产量增加线性(P<0.05),但收获第100天后,无显著变化。整株处理的饲用玉米科多4号和辽原1号的可降解有机物产量、和营养物质产量也表现为相同的规律,但是有机物的增加以中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)为主。普通品种秸秆和饲用品种植株的粗蛋白(CP)、可溶性碳水化合物(WSC)的含量和IVOMD随着收获时间的延长而线性下降(P<0.05),NDF、ADF、随着收获时间的延长而上升(P<0.05)。这说明,在生长后期延长收获时间并不能获得更高的秸秆生物学产量(籽粒产量和可消化有机物产量),但秸秆的营养品质下降。
     试验二,贮存试验表明,随着贮存时间的延长,秸秆中WSC、IVOMD二次曲线下降(P<0.05),NDF、ADF含量二次曲线增加(P<0.05),且各个品种的营养组分的变化以贮存前期的变化为主;在贮存后期,秸秆的营养成分变化缓慢且在统计上无显著变化。
Nutritional evaluation of corn stalk harvested and stored at different time was conducted through two trials. In trial l,six kinds of cornmon corn stalks and two kinds of entire plants of forage corn were collected in Hebei province and its chemical cornponent at different harvest time (growing time from 92-104 days) were analyzed, including biomass, wet chemical value, in vitro organic matter digestibility (IVOMD) and digestible organic matter and the chemical cornponents of six cornmon corn stalks at different storage time from 1 to 125 days was analyzed in trial 2.The results show that:
    In trial 1,grain yield, nutritional cornposition and the digestible organic matter of six kinds of cornmon corn (Nongda108, Gaoyou115, Zhongyuandan32, Gaoyou298, Jifeng58, Zhengdan958) and two kinds of forage corn (Keduo4 and Liaoyuanl) linearly increased with harvest time extending., but there were no significant difference when harvested after day 100 and day 104 (P<0.05). It means that extending harvest time cannot result in the yield of above items increasing. Its water solute carbohydrate (WSC) and IVOMD linearly decreased with harvest time extending (P,0.05). whereas neutral detergent fiber (NDF), acid detergent fiber (ADF) increased (P<0.05).
    In trial 2.IVOMD and WSC in stalks decreased quadratically with storage time, but the changing trend of NDF and ADF is the reverse of WSC (P<0.05). The major changing occurred in the early storage time. It indicated that corn stalks at early stage have good nutrition, and should be used as soon as possible.
引文
[1] 陈怀亮,张雪芬.玉米生产农业气象服务指南.北京:气象出版社,1999.
    [2] 刁其玉,张乃锋.“秸秆饲料的饲用价值”有多大.农村养殖技术,2003 (15):33-34.
    [3] 范华,董宽虎,裴彩霞.不同保存方法对玉米秸秆营养价值的影响.山西农业大学学报,2002,22 (2):106-108.
    [4] 郭庭双.秸秆畜牧业.上海:上海科学技术出版社,1999.
    [5] 郝玉兰,潘金豹,张秋芝,张露.玉米穗位叶蛋白质含量等生理性状的变化研究.玉米科学,2002,10(4):32-34。
    [6] 霍仕平.玉米籽粒含油量的研究及其育种近展.玉米科学,1994(3):75~77.
    [7] 贾从生,姚月霞.“科多4号”青贮玉米在新垦河滩地上的示范种植观察.中国草食家畜,2000 (3):26.
    [8] 李胜利.肉牛VFA能量转化规律及营养调控的研究,[博士学位论文] .北京:中国农业大学,1996.
    [9] 刘树堂等.胁迫对夏玉米生长发育和产量形成的影响.莱阳农学院学报,2003,20 (2):98-100.
    [10] 粮农组织.秸秆养畜-中国的经验.联合国粮食及农业组织交换材料,2002.
    [11] 金平.有机肥对水分胁迫下大豆几种生理指标和茎叶组织超微结构的影响.大豆科学,1997,16 (1):78-82.
    [12] 薛卫东主编.果蔬贮藏与保鲜.成都:电子科技出版社,1996.
    [13] 娄成后,王学臣主编.作物产量形成的生理学基础.北京:中国农业出版社,2000.
    [14] 卢纹岱,朱一立,沙捷,朱红兵编著.SPSS for Windows 从入门到精通.北京:电子工业出版社,1997.
    [15] 潘瑞知,董愚得主编.植物生理学.北京:高等教育出版社,1995.
    [16] 祁宏伟,苏秀侠,于秀芳,生群,朱赛男.玉米粮饲用技术的研究Ⅱ不同收获时间玉米秸秆及其青贮饲料在牛瘤胃内干物质降解率的研究.吉林农业科学.,2000,25(3):34-38.
    [17] 任和平等.玉米最适收获期的研究.河南农业大学学报.1986 (2):127-134.
    [18] 史小丽,潘锋,杨树林.固态发酵秸秆生产单细胞蛋白的初步研究.粮食与饲料工业,2000 (12):27-28.
    [19] 宋金昌,范莉.利用微生物提高秸秆粗蛋白质的试验.动物科学与动物医学,2002.19 (1):46-49.
    [20] 孙彩霞,刘志刚.水分胁迫对玉米关键防御酶系活性及其同工酶的影响.玉米科学,2003,11 (1):63-66.
    [21] 孙雅琴.浅议植物性饲料蛋白质的开发.湖南畜牧兽医,1995 (4):5—7.
    [22] 王国峰等.高油115引进研究与种植.玉米科学,2001 (1):54~56.
    [23] 王伟东,王璞.高油玉米的发展状况及其栽培研究.黑龙江八一农垦大学学报,2002,14 (1):
    
    9-12.
    [24] 吴建宇,徐翠莲,任和平,苏祯禄,台国琴.玉米不同收获期的籽粒品质研究.河南农业大学学报,1994,28 (1):92-94.
    [25] 吴毓群.体外短期发酵法评定蛋白质降解率的研究.[硕士学位论文] .北京:中国农业大学,1988.
    [26] 武得礼,葛文华.何世炜.甘肃景泰灌区玉米收籽与收割青贮临届适期的研究.草业学报,1999,8(2):65-70.
    [27] 徐廷荣,白生平,邢梅兰.科多八号多穗玉米青饲品质比较试验 (一).草与畜杂志,1996(3):31—32.
    [28] 颜季琼.高等植物细胞壁的结构和功能.生物学通报,1999,34 (1):6-7.
    [29] 杨胜主编.饲料分析及饲料质量检测技术.北京:北京农业大学出版社,1993.
    [30] 于秀芳,苏秀侠,陈自胜,杨国银,宋景芬.玉米粮饲兼用技术的研究Ⅰ商品粮玉米秸秆青贮适宜收获期的探讨.吉林农业科学,1999,24 (1):50-53.
    [31] 余汝华,赵丽华,莫放,张晓明.玉米秸秆青贮饲料中NDF与ADF含量变化规律的研究.饲料工业,2003,24 (10):19-20.
    [32] 余汝华,赵丽华,莫放,张晓明.玉米秸秆青贮饲料中水溶性碳水化合物的测定.饲料工业,2003,24 (9):34-35.
    [33] 张吉旺,胡昌浩,王空军.收获期对不同类型玉米品种饲用营养价值的影响.王志敏,赵明主编.作物栽培与生理学研究进展.北京:中国农业大学出版社.,2002.
    [34] 张文举,王加启等.秸秆资源利用研究进展.国外畜牧科技,2000(2):16~18.
    [35] 张英普,何武权,韩健.水分胁迫对玉米生理生态特性的影响.西北水资源与水工程,1999,10 (3):18-20.
    [36] 赵可夫.玉米生理.山东:山东科学技术出版社,1982.
    [37] 赵遵阳.高油玉米品种与成熟期的互作对青贮发酵品质和生长牛饲喂价值的研究.[硕士学位论文] .北京:中国农业大学,2003.
    [38] Akin, D. E. and D. Burdick. Percent of tissue types in Tropical and temperate grass leaf blades and degradation of tissues by rumen microorganisms. Crop Sci. 1975. 15: 661.
    [39] Akin, D. E. Biological structure of ligninocellulose and its degradation in the rumen. Animal feed Science and Technology. 1988. 21: 295-310.
    [40] Akin, D. E., J. R. Wilson and W. R. Windham. Site and rate of tissue digestion in leaves of C_3, C_4, and C_3/C_4 intermediate panicum species. Crop Sci. 1983. 23: 147.
    [41] Akin. D. E. Forage cell wall degradation and β -coumaric, fermulie, and sinapic acids. Agron J. 1982. 74: 424-428.
    [42] Allison, D. W. and D. F. Osboum. The cellulose-lignin complex in forages and its relationship to forage nutritive value. J. Agr. Sci. 1970. 74: 23-28.
    [43] Aman, P. and Nordkvist, E. Chemical composition and in vitro degradability of botanical fractions of cereal straw. Swed. J. Agroc. Res., 1983. 13: 61-67.
    [44] Andrieu, J. Factor affecting the composition and nutritive value of ensiled whole-crop maize.
    
    Aninmal Feed Science and Technology. 19761: 381-392.
    [45] Atkin, C. A. Nitrogen assimilation and translation in relation to plant growth. In: Buxton. D. R., R. Shible, R. A. Forsberg (eds). International Crop Science Ⅰ. Crop Science Society of America, Madison, Wisconsin. 1993. pp 807-811
    [46] Azuma, J., T. Nomura and T. Koshijima. Lignin-carbohydrate complexes containing phenolic acids isolated from the culm of bamboo. Agric. Biol. Chem. 1985. 49: 2661-2669.
    [47] Bacon, J. S. D. Plant cell wall digestibility and chemical structure. Rep. Rower Inst. 1979. 35: 99-108.
    [48] Berger, L. L., Paterson, J. H., Sall, J. P. and Britton, R. A., Effect of harvest date and chemical treatment on the feeding value of corn stalklage. J. Anim. Sci., 1979. 49: 1312-1317.
    [49] Bunting, E. S. Effect of grain formation on dry matter distribution and forage quality in maize. Experimental Agriculture 1976. 12: 417-428.
    [50] Burrit, E. A., A. S. Bittner, J. C. Street, and Anderson. Correlations of phenolic acids and xylose content of cell wall with in vitro dry matter digestibility of three maturing grasses. J. Dairy Sci. 1984. 67: 1209-1213.
    [51] Buxton, D. R., and M. D. Casler. Environemntal and genetic effects on cell-wall composition and digestibility. In H. G. Jung et al (ed) Forage cell-wall structure and digestibility. ASA, CSSA, and, Madison, WI. 1993. p 685-714.
    [52] Buxton, D. R. In vitro digestion kinetics of temperate perennial forage legume and grass stems. Crop Sci. 1989. 29: 213-219.
    [53] Buxton, D. R.. Cell-wall Components in divergent germplasms of four perennial forage grass species. Crop Sci. 1990. 30: 402-408.
    [54] Buxton, D. R. and J. R. Russell. Lignin constituents and cell wall digestibility of grass and legume stems. Crop Sci. 1988. 28: 553-558.
    [55] Buxton. D. R. Cell-wall components in divergent germplasms of four perennial forage grass species. Crop Sci. 1990. 30: 402-408.
    [56] Calser, M. D. Causal effects among forage yield and quality measure of smooth bromegrass. Can. J. Plant Sci. 1986. 66: 591-600.
    [57] Chanh Ta, T., A. Chrissl, and R. J. Allan Englesham. Change in maize-stalk proteins during ear development. Physologia Plantarum. 1993. 87: 21-24.
    [58] Cliquet, J. B., E. Dleens, B. Bousser, M. Martin., J. C. Leseure. Estimation of carbonhydrate and nitrogen allocation during stalk elongation by ~(13)C and ~(15)N tracing in Zea mays. Plant Physiology. 1992: 79-87.
    [59] Colenbrander, V. F., Muler, L. D., Wasson, J. A. and Cunningham, M. D., Corn stover silage supplemented with varying increments of energy for growing dairy herifers. J. Anima. Sci., 1971. 33: 1306-1309.
    [60] Crawford, T. W., Rending, V. V & Broadbent. F. E. Source, fluxes, and sinks of nitrogen during early reproductive growth of maize. Plant Physiol. 1982. 70: 1654-1660.
    
    
    [61] Danley, M. M. and R. L. Vetter. Artifically altered corn grain harvested at three moisture level, Ⅲ. In vitro utilization of the carbohydrate and nitrogen fractions. J. Anim. Sci. 1974. 38: 430
    [62] Daynard, T. B. & Hunter, R. B. Relationships among whole plant moisture, grain moisture, dry matter yield and quality of whole crop silage. Canadian Journal of Plant Science. 1975. 55: 77-84.
    [63] Deinum: B. and J. J. Baker. Genetic different in digestibility of forage maize hybrids. Neth. J. Agric. Sci. 1989. 29: 93-98.
    [64] Dolstra, O., J. H. Medema and De Jong. An effective screening method for genetic improvement of cell-wall digestibility in forage maize. In: Proceedings of the ⅩⅤth Congress of the Maize and Sorghum Section Eucarpia. ed Hinterholzer J. European Association for Research on plant breeding. Baden, Austria. 1990. pp: 258-270.
    [65] Dolstra, O., J. H. Medema and De Jong. Genetic improvement of cell-wall digestibility in forage maize. Performance of inbred lines and hybrids. Euphytica. 1993. 65: 187-194.
    [66] Duncan, W. J. Maize in crop physiology. In: Evans. L. T. (eds) Crop physiology: some case histories, Cambridge University Press, Cambridge: 1975. 23-50
    [67] Duncan, W. L, A. L. Hatifield. The growth and yield of corn. Ⅱ. daily growth of corn kernels. Agron. J. 1975. 57: 221-223.
    [68] Faivey, N. A., T. B. Daynard. quantitative distribution of assimilates in component organs of maize during reproductive growth. Can. J. Plant. Sci. 1978. 58: 709-717
    [69] Faivey, N. A.. Yield, quality and development of forage maize as influenced by dates of planting and harvesting. Can. J. Plant Sci. 1983. 63: 157-168.
    [70] Farrar. J. F. Temperature and the partitioning and translocation of carbon. In: Long SP, Woodward FI (eds) Symposia of the Society for experimental biology. No ⅩⅩⅩⅫ. Plants and temperature, Essex, UK. 7-9. Sept. 1987, 203-236.
    [71] Flachowsky, G.. , Schneider, M., Ochrimenko. Methodische Hinweise zur Anwendung der Nylonbeutel-Technik beim Wiederaner. Leipzig University Press. 1988. pp: 52-69.
    [72] Gallais, A., M. Pollacsek, and L. Huguel. Possibilities de selection du masis en rant qu plante foragere, Ann. Amelior Plantes 1976. 26: 591-605.
    [73] Giardini, A., Gaspari, F., Vecchiettini, M. Schennoni, p. Effect of maize silage harvest stage on yield, plant composition and fermentation losses. Animal Feed Science and Technology. 1976. 1: 381-392.
    [74] Goering, H. K., and P. J. Van Soest. Forage fiber analysis (apparatus, reagents, procedures and some application). In: Agriculture Handbook, ARS, USDA, Washington, DC. 1970.
    [75] Gordon, C. H., J. C. Derbyshire, and P. J. Van Soest. Normal and late harvest of corn for silage. J. Dairy Sci. 1968. 51: 1258-1262.
    [76] Griffin, J. L. and G. A. Jung. Leaf and stem forage quality of big bluestem and switchgrass. Agron. J. 1983. 75: 723-728.
    [77] Hahlbrock, k. and H. Grisebach. Emzymic control in biosynthesis of lignin and flabonoids. Ann.
    
    Rev. Plant Physiol. 1979. 30: 105-130.
    [78] Hartley, P. J. β-coumaric, fermulic acid components of cell walls of ryegrass and their relation with ligin and digestibility. J. Sci. Food Agdc. 1972. 35: 14-20.
    [79] Hatfield, R. D. Cell-wall polysaccharide interactions and degradability p. 285-313 H. G. Jung et al (ed) Forage cell-wall structure and digestibility. ASA, CSSA, and, Madison, WI.. 1993.
    [80] Hay, R. E., E. B. Earley. &E. E. Deturk. Concentration and translocation of nitrogen compounds in the com plant(Zea mays) during grain development. Plant Physiol. 1953. 28: 606-621.
    [81] Heinrichsl, J. and Paul KnonoffSilage fermentation: substrates and their end products. Herb Health Memo. 1999.
    [82] Hume, D. J., D. K. Campbell. Accumulation and translocation of soluble solids in corn Plant PhysioL 1972. 71: 818-821
    [83] Hunt, C. W., Kezar and R. Vinande. Yiele, chemical composition and ruminal fermentability of corn whole plant, ear and stover as affected by maturity. J. Prod. Agric. 1989. 2: 357.
    [84] Johnson, R, R., Tikam L. Balwani, L. J. Johnson and et alCorn plant maturity. Ⅰ. Changes in dry matter and protein distribution in corn plants. Agron. J 1968. 58: 151.
    [85] Johnson, R. R., Mccluire, K. E., Klosterman, E. W. Johoson, L. J. Corn plant maturity. 3 Distribution of nitrogen in corn silage treated with limestone, urea and diammonium phosphate. Journal of Animal Science. 1967. 26: 394-399.
    [86] Johnson, R. R. and K. E. McClure. Corn plant maturity, Ⅳ. Effects on digestibility of corn silage in sheep. J. Anim. Sci. 1968. 27: 535-539.
    [87] Johnson. L. M. and J. H. Harrison, D. Davison, and et al Corn silage management: effect of maturity, inoculation, and mechanical processing on pack density and aerobic stability. J. Dairy Sci.. 2002. 85: 434-455
    [88] Johnson. L. M. and J. H. Harrison. Nutrition value of com silage as affected by maturity and mechanical processing: a contemporary review. J. Dairy Sci. 1999. 82: 2813-2821.
    [89] Jung, H. G and M. D. Casler. Relationship of lignin and esterified phenolies to fermentation of smooth bromegrass fiber. Animal Feed Science and Technology. 1991. 32: 63-68.
    [90] Jung, H. G. and D. R. Buxton. Forage quality variation among maize inbreds: Relationships of cell-wall composition and in vitro degradability for stem internodes. J. Sci. Food. Agric. 1994. 66: 313-322.
    [91] Jung, H. G. and G.. C. Jr. Fahey. Interaction among phenolic monomers and in vitro fermentation. J. Dairy Sci. 1983. 66: 1255-1263.
    [92] Jung, H. G. and M. P. Russel. Light source and nutrient regime effects on fiber composition and digestibility of forage. Crop Sci. 1991. 31: 1065-1070.
    [93] Jung, H. G.. and D. A. Deetz. Cell-wall ligninfication and degradation and detestability. ASA,
    [94] Jung, H. G. 1989. Forage lignin and their effect on fiber digestibility Agron. J. 1994. 81: 33-38.
    [95] Jung. H. G., K. P. Vogel. Influence of lignin on digestibility of forage cell wall material. J. Anim. Sci. 1986. 62: 1703-1712.
    
    
    [96] Jung, H. G. and D. A. Deetz. Cell-wall ligninfication and degradability. In: Forage Cell Wall Structure and Digestibility. eds Jung. H. G, D. R. Buxton, R. D. Hatfield. Amedcan Society of Agronomy, Madison, WI. USA, 1993. pp 315-346
    [97] Leask, W. C. and T. B. Daynard. Dry matter yield, in vitro grain digestibility, percent protein, and moisture of corn stover following grain maturity. Can. J. Plant Sci. 1973. 53: 545-552.
    [98] Lundvall, J, P., D. R. Buxton, A. R. Hallauer, J. R. George. Forage quality variation among maize inbreds: In vitro digestibility and cell-wall component. Crop Sci. 1994. 34: 1672-1678.
    [99] Marten, G. C., R. D. Goodrich, A. R. Schmid. J. C. Meiske and R. M. Jordan. Evaluation of laboratory methods for determining quality o corn and sorghum silage. Ⅱ. Chemical methods for predicating in vivo digestibility. Agron. J. 1976. 68: 243.
    [100] Minson, D. J. Influence of lignin and silicon on a summative system for assessing the organic matter digestibility of panicum. Australian J. Agr. Res.. 197122: 589—594.
    [101] Morrision, T. A. and hD. R. Buxton. Cell-wall phenolic content in tissue types of developing maize internodes. Crop. Sci. 1993. 33: 1264-1268.
    [102] Mordsion, T. A., H. G. Jung, D. R. Buxton and R. D. Hatifield. Cell-wall composition of maize internodes of Varying Maturity. Crop. Sci. 1998. 38: 455-460.
    [103] Morrison, I. M. Carbohydrate chemistry and rumen digestion Proc. Nutr. Soc. 1979. 38: 269-225.
    [104] Morrison, I. M. Changes in the lignin and hemicellulose concentrations of ten varieties of temperate grasses with increasing maturity. Grass and Forage Science. 1980. 35: 287-393.
    [105] Morrison. T. A, Jung. H. G., Buxton. D. R, and Hatfield. R. D. Crop quality& utilization: cell-wall composition of maize internodes of varying maturity. Crop Science. 1998. 38: 455-460.
    [106] Mowat, D. N., M. L. Kwain and J. E. Winch. Ligninfication and in vitro cell wall digestibility of plant parts. Can. J. Plant Sci. 1969. 49: 499—504.
    [107] Orskov, E. R., Kay, M. and Rein, G. W. and flachowsky, G., Effect of straw quality and annonia treatment on voluntary intake, milk yield and degradation characteristics of faceal fiber, Anim. prod., 1987. 46: 23-27.
    [108] Phipps, F. H., Weller, R. F. The development of plant components and their effect on the composition and fresh and ensiled forage maize. 3The effect of grain content on milk production. Journal of agricultural Science. Campbridge 1979. 92. 493-498.
    [109] Phipps. R. H and R. F. Weller The development of plant components and their effects on the composition of fresh and ensiled forage maize 1. The Accumulation of dry matter, chemical composition and nutritive value of fresh maize. J. Agdc. Sci., Carnb.. 1979. 92: 471-483.
    [110] Pinter, L., R. B. Hunter, and J. Szabo. Near infrared technique as a tool for investigating corn silage quality. Maydica. 1986. 31: 295-305.
    [111] Rizzi, E., C. Balconi, C. Manusardi, E. Gentinetta&M. Motto. Genetic variation for traits relating to nitrogen content of maize stalks. -Euphytica. 1991. 52: 91-98.
    [112] Rocher, J. P. Comparison of carbohydrate compartmentation in relation to photosynthesis assimilates export and growth in a range f maize genotypes. Aust. J. Plant
    
    Physiology. 1988. 15: 677-686.
    [113] Russell, J. R. Influence of harvest date on the nutritive value and ensiling characters of maize stover. Anim. Feed Sci. Tech. 1986. 14: 11~27.
    [114] Struik, P. C. Physilogy of forage maize. In relation to its production and quality. PHD. thesis, Agricultral University Wageningen, The Netherlands. 1983.
    [115] Swank. J. C., F. E. Below, R. J. Lambert&R. H. Hageman. Interaction of carbon and nitrogen metabolism in the productivity of maize. Plant Physiol. 1982. 70: 1185-1190.
    [116] Ta. T. C. Nitrogen metabolism in the stalk of maize. -Plant Physiol. 1991. 97: 1375-1380.
    [117] Ta. T. C., R. T. Weiland. Nitrogen partitioning in maize during ear development. Crop Sci. 1992. 32: 443-451
    [118] Tollenaar. M. Physiology basis of the genetic improvement of maize hybrids in Ontario from 1989 to 1988. Crop Sci. 1991. 31: 119-124
    [119] Theander, O., E. A. Westerlund. Studies on dietary fiber. Inproved procedures for analysis of dietary fiber. J. Agronomy. Food Chem 1986 34: 330-336.
    [120] Van Reen, R., and W. R. Singleton. Sucrose content in the stalks of maize inbreds. Agron. J. 1952. 44: 451- 457.
    [121] Van Soest, P. J. Development of a comprehensive system of feed analyses and its application to forage. J. Anim. Sci. 1967. 26: 119-128.
    [122] Van Soest, P. J. Symposiun on factors influencing the voluntary intake of herbage by ruminants: voluntary intake in relation to chemical composition and digestibility. J. Animal. Sci. 1965. 24: 834-842.
    [123] Vattikonda, M. R. and R. B. Hunter. Comparison of grain yield and whole-plant silage production of recommended corn hybrids. Can. J. Plant. Sci. 1983. 63: 601-609.
    [124] Ventura. M., J. E. Moore. O. C. Ruelke and D. E. Franke. Effect of maturity and protein supplementation on voluntary intake and nutrient digestibility of pangola digitilbe hays. Journal of Animal Science. 1975. 40 (4): 769-774.
    [125] Weaver, D. E., C. E. Coppock and G. B. Lake. R. W. Everett Technical Notes. 1979. 1782~1788.
    [126] Weaver. D. E., C. E. Coppock, G. B. Lake and R. W. Everett. Effect of maturation on composition and in vitro dry matter digestibility of corn plant parts. Journal of Dairy Science. 1978. 61: 1782-1788.
    [127] Weiland, R. TNitrogen partitioning in maize during ear development. Crop Sci. 1992. 32: 443-451.
    [128] Weller, R. F., R. H. Phipps. and E. S. Griffith. The nutritive value of normal and brown midrib-3 maize. J. Agric. Sci. Camb. 1984. 103: 223-227.
    [129] White, R. P., Winter, K. A. and Kunelius, H. T., Yield and quality of silage corn as affected by frost and harvested date. Can. J. Plant. Sci., 1976. 56: 481-486.
    [130] Widstrom, N. W., M. E. Carr. M. O. Bagby., and L. T. Black. Distribution of sugar and soluble solids in the maize stalk. Crop. Sci. 1988. 28: 861-864.
    [131] Widstrom, N. W., M. O. Bagby., D. M. Palmer., et al. Relative stalk sugar yields among maize
    
    popoulations, cultifars, and hybrids.Crop. Sol. 1984. 24: 913-915.
    [132] Wilkinson, J. M. and R.H.Phipps. The development of plant component and their effect on the composition of fresh and ensiled forage maize.2.The effect of genotype plant density and date of harvest on the composition of maize silage. J. Agric. Sci. 1979. 92: 485-491.
    [133] Wilson, J. R. Organization of forage plant tissues H. G. Jung et al(ed) Forage cell-wall structure and digestibility. ASA, CSSA, and, Madison, WI. 1993.. p1-32
    [134] Wolf, D. R., J. G.Coors, K.A.Albrecht, D. J. Underander, P.R.Carer. Forage quality of maize genotypes selected for extreme fiber concentrations. Crop Sci. 1993. 33: 1353-1359.
    [135] Woody, H. D., D. G. Fox. and J. R. Black. Prediction net energy value of corn silage varying in grain content. Journal of Animal Science. 1983.57: 711-717.
    [136] Zimmer, E., P. A. Gurrath, Chr. Pau, B.S.Dhillon, W.G.Poller and D.Klein. Near infrared reflectance spectroscopy analysis of digestibility traits of maize stover. Euphytica. 1990. 48: 115-126.
    [137] Zimmer.E.,M.Wermke. Improving the nutritive value of maize. In: Proceeding of the 13th Congress of the Maize and Sorghum Section of Eucarpia.Breeding of Silage Maize Wageningen.The Netherlands. 1985. pp91-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700