灵芝深层发酵生产生物活性物质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵芝多糖和灵芝三萜是灵芝(Ganoderma)的主要生物活性成分。获得灵芝生物活性成分的途径有两种,一种是从子实体中提取,一种是从发酵产物中获取。子实体质量不稳定易受栽培环境影响,而且栽培周期长,一般需要2~3个月的时间,通过发酵获取的目标产物,可通过发酵条件的控制来保证质量稳定且生产周期短。
     本研究从22个国内主要栽培灵芝菌株中筛选出了胞内多糖产量高的菌株G21和G7,胞内三萜产量高的菌株GL31,并以胞内多糖或胞内三萜为目标产物进行了发酵工艺的优化,并研究了各种发酵产物的代谢规律。本论文首次通过HPLC分析和体外抗肿瘤细胞模型结合,研究了不同培养方式和不同发酵阶段菌丝三萜的变化与抗体外肿瘤细胞的相关性,并优化了生产有效抑制体外肿瘤细胞三萜组分的培养方式与培养时间;并研究了用于制备灵芝发酵菌种的有效方法。首次采用比色法,HPLC图谱及体外细胞模型实验比较了最优发酵条件下发酵的菌丝体与对应菌株的子实体的活性成分含量、组分差异和体外细胞的活性,提出在灵芝药用资源开发中菌丝体替代子实体的依据。
     在高产菌株的筛选中发现,在本实验条件下无法获得胞内多糖产量、胞内三萜产量及胞外多糖产量同时很高的菌株,且菌株菌丝平板生长速度与液体培养菌丝生物量无直接相关性。高产菌株G21、G7在优化(单因子,正交实验)的发酵条件下最高胞内多糖产量分别为0.288g/100ml,0.533g/100ml,GL31胞内总三萜最高产量为41.5mg/100ml,而在最适摇床培养时间时胞内总三萜的产量为35.1mg/100ml。摇床培养一段时间后进行静置培养的方式有利于菌株GL31胞内总三萜含量及产量的提高,胞内总三萜最高产量为49.1mg/100ml。G21于3L发酵罐中最优发酵条件是温度为28℃,转速为180rpm,通气量为1.5v/v/m,其它发酵条件同摇瓶,胞内多糖产量2.43g/L,生物量为18g/L。
     本研究通过高产菌株的代谢曲线研究发现胞内多糖是初级代谢产物,胞内三萜是次级代谢产物,而以胞外多糖为目标产物时,发酵后期才可收获,前期的胞外多糖主要为培养基本身的多糖;胞外三萜总产量很低只有胞内三萜总产量的三分之一左右,因此以胞内多糖与胞内三萜为目标产物进行发酵研究比以胞外多糖、胞外三萜为目标
    
    灵芝深层发酵生产生物活性物质的研究
    产物进行发酵研究更具有工业化生产意义;不同的菌株发酵过程中pH变化趋势不同,
    但pH4.o可作为部分目标产物的发酵终点指示。另外在本实验条件下很难获得各种代
    谢产物同时高产的菌株的原因是各种发酵产物主要合成的时期不同。
     不同发酵阶段的灵芝菌丝体中三菇类成分与抑制体外肿瘤细胞生长的相关性研
    究表明,不同生长阶段菌丝中的三菇在组分、相对含量及各组分间的比例都有所变化,
    有6个组分峰的增高与抗肿瘤作用呈正相关,有2个组分峰的增高与抗肿瘤作用呈负
    相关。本研究确定了生产有效抗肿瘤三菇组分最佳培养方式是摇床培养,最佳培养时
    间是132小时。
     本研究首次提出连续液体传代培养有利于获得完全利用培养基基质的菌种形态,
    提高菌种活性,是制备灵芝发酵菌种有效方法。此研究揭示了灵芝通过倒种法发酵有
    利于提高生物量,本研究中菌株G21传代到第6代时生物量达3.504留loonil,高于已
    有报道。同时还提出可通过终胞外液体积与初始培养液体积的比值来指示生物量的高
    低。
     GL31菌丝三菇的含量及对肿瘤细胞K562的抑制作用均高于该菌株三个地点栽
    培的子实体三菇,因此对三菇指标而言用发酵菌丝体来替代子实体是可行的。G21胞
    内多糖含量高于该菌株三个地点栽培子实体的多糖含量,且在一定的发酵条件下菌丝
    多糖与该菌株的子实体多糖对巨噬细胞的激活作用相当。因此对多糖指标而言用发酵
    菌丝体来替代子实体是可行的。
Polysaccharides and triterpenes are main bioactive compounds of Ganoderma sp..There are two ways to obtain these bioactive compounds. One is to extracte bioactive compounds from fruitingbodys, the other is to obtain them from the fermentation products. But the quality of fruitingbody isn't stable which is easy to be affected by environmental conditions and the cycle culture time of fruitingbodys needs several months. The quality of fermentation product can be controlled by controlling the fermentation conditions and the cycle culture time is short.
    Strains for high yield of intracellular polysaccharide - G21, G7 and intracellular triterpenes - GL31 were screened out. The fermentation conditions of these strains are optimized according to the object products and the metabolic laws of these strains are also investigated; This thesis shows the correlation between intracellular triterpenes from different stage mycelia of Ganoderma lucidum and the inhibition effect on the tumor cells by HPLC analysis and cell model in vitro, and optimized fermentation method and fermentation time for high yield of the effective intracellular triterpenes; We also obtain the effective method to prepare the seeds for fermentation; The bioactive compounds of mycelia and those of corresponding fruitingbody were firstly compared on the content, HPLC curve and bioactivity on the cell model in vitro, to ensure whether the fruitingbody can be substitued by mycelia or not.
    It is difficult to obtain the strain simultaneously for high production of intracellular polysaccharide, intracellular triterpenes and extracellular polysaccharide.There is no direct correlation between growth rate on the solid medium and the biomass in the liquid culture. The highest yield of intracellular polysaccharide for G21 is 0.288g/100ml.The highest yield of intracellular polysaccharide for G7 is 0.533g/100ml.The highest yield of total intracellular triterpenes for GL31 is 41.5mg/100ml and the yield of total intracellular triterpenes for GL31 at the optimum culture time using shaking flask culture method is 35.1mg/100ml.It is good for improving total intracellular triterpenes using static culture
    
    
    method after cultured some time in shaking flask, and the highest yield of total intracellular triterpenes is up to 49.1 mg/100ml. We also optimized the fermentation conditions for G21 in 3L vessel.
    According to the metabolic curves, it is found that intracellular polysaccharide is primary metabolites, intracellular triterpene is secondary metabolites, and extracellular polysaccharide can only be harvested in the later period. The yield of total extracellular triterpenes is very low,only one third of the yield of total intracellular triterpenes.Thus, it is of more importance to study the fermention for producing intracellular polysaccharide and intracellular triterpenes than to study the fermentation for producing extracellular polysaccharide and extracellular triterpenes. The pH curves are different from different strains, but pH 4.0 can be the harvesting indication for some fermentation product. We also can find it is difficult to obtain the strain simultaneous for high yield of different fermentation products .The reason is that those products are mainly synthesized in different period.
    Correlation between intracellular triterpenes from mycelia grown for different time of Ganoderma lucidum and inhibition effect on tumor cells shows the intracellular triterpenes of mycelia grown for different time vary in types, quantity, and relative proportion. It was also found that the height of six peaks was positively correlated to inhibition rate. The height of two peaks was negatively correlated to inhibition rate. The optimum culture method is the style of shaking flask culture and optimum culture time is 132 hours according to the object product-the effective intracellular triterpenes.
    The study shows that the method transferring the seed from generation to generation is good for obtaining pellet with suitable morphology to absolutely consume the medium nutrition. The
引文
[1] 邵力平,沈瑞祥,张素轩等.真菌分类学,北京:中国林业出版社,1983.
    [2] 神农本草经,卷上.群联出版社,1955.
    [3] 李时珍.本草纲目,第三册,二十八卷.北京:人民卫生出版社,1978.
    [4] Dong-Hyun Kim, Sang-Bum Shim, Nam-Jae Kim, and Il-Sung Jang. B-glucuronidase-inhibitory activity and hepatoprotective effect of Ganoderma lucidum. Biol Pharm. Bull, 1999,22(2):162-164.
    [5] Ming-Shi Shiao. Triterpenoid natural products in the fungus Ganoderma lucidum. Journal of the Chinese chemical society, 1992, 39: 669-674.
    [6] Mizushina Y., Takahashi N., Hanashima L., Koshino H., et al. Lucidenic acid O and lactone, new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete, Ganoderma lueidum. Bioorg. Med. Chem, 1999,7(9): 2047-2052.
    [7] Min Byung-Sun, Nakamura Norio, Miyashiro hirotsugu, Bae Ki-Whan, et al. Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem. Pharm. Bull, 1998,46(10): 1697-1612.
    [8] Ohno N., Miura N., Sugawara N., Tokunaka K., Kirigaya N., et al. Immunomodulation by hot water and ethanol extracts of Ganoderma lucidum. Pharm. Pharmacol. Lett., 1998, 8(4): 174-177.
    [9] Kim HaWon, Shim Mi Ja, Choi Eung Chil, Kim Byong Kak. Inhibition of cytopathic effect of human immunodefieiency virus-1 by water-solubaie extract of Ganoderma lucidum. Arch. Pharmacal Res. , 1997,20(5):425-431.
    [10] Wang, Sheng-Yuan; Hsu, Ming-ling; Hsu, Hui-Chi; Tzeng, Cheng-Hwai; Lee, Shiuh-Sheng; et al. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macropHages and T lympHocytes. Int. J. Cancer, 1997,70(6):699-705.
    [11] Hou Guihua, Cao Ronghua, Xu Xing. Study of Ganoderma lucidum polysaccharides (GLP) on the antitumor activities and immunoregulation mechanisms. Saengyak Hakhoechi, 1995,26(2): 187-192 (English).
    [12] 胡映辉,林志彬,何云庆,赵长家.灵芝菌丝体多糖通过增强小鼠巨噬细胞功能诱导HL-60细胞凋亡.中国药理学通报,1999,15(1):27-30.
    [13] 刘克明,李怡岚,张明月,郑爱英,李新.破壳灵芝孢子粉对昆明小鼠免疫功能的影响.医学动物防制,1999,15(2):74-76.
    [14] 徐月清,曹志然.灵芝对小鼠免疫功能调节作用的研究.实验动物科学与管理,1999,16(1):
    
    18-21.
    [15] 梁荣能,彭康.灵芝孢子粉提取物降血糖作用及机制的实验研究.中药药理与临床,1998,14(5):17-19.
    [16] 雷林生,王庆彪,孙莉莎,杨淑琴.灵芝多糖对小鼠脾细胞白细胞介素1、肿瘤坏死因子的产生及其mRNA表达的影响.中药药理与临床,1998,14(2):16-18.
    [17] 章灵华,王会贤,王力为,肖培根.灵芝孢子粉提取物在体内外的免疫效应.中国免疫学杂志,1994,10(3):169-172.
    [18] 国家药典委员会.中华人民共和国药典2000年版.北京:化学工业出版社,2000.
    [19] 林志彬.灵芝的现代研究.北京:北京医科大学中国协和医科大学联合出版社,1999.
    [20] Miyazaki,T.and M. Nishijima, Chem.Pharm.Bull., 1981, 29, 9611.
    [21] 方积年等,生物化学与生物物理学报,1980,12(4),365.
    [22] Hirotani T, et al. Phytochemistry, 1985, 24:2055.
    [23] Method in Carbohydrate Chemistry, Volume Ⅷ, General Methods (Roy L. Whistler and James N. BeMiller eds), Academic Press,Inc.(London)Ltd.,1980.
    [24] 张惟杰.复合多糖生化研究技术.上海科学技术出版社,1987.
    [25] 吴东儒.糖类的生物化学.高等教育出版社,第一版,1987.
    [26] 梁忠岩,张翼伸.长白山松杉灵芝子实体水溶多糖的分离鉴定与结构研究.生物化学与生物物理学报,1993,25(1):59-62.
    [27] 梁忠岩,张翼伸,苗春艳.松杉灵芝发酵菌丝体中水溶多糖的分离纯化与结构的比较研究.真菌学报,1993,13:211-214.
    [28] 李荣芷,何云庆.灵芝抗衰老机理与活性成分灵芝多糖的化学与构效研究.北京医科大学学报,1991,23(6):485-487.
    [29] Chaijumrus, Sirilux; Panichajakul, Sanha; Picha, Pomtipa. Purification and characterization of polysaccharides isolated from fruiting body and mycelium of Ganoderma lucidum. Microb. Util. Renewable Resour. 1995, 9: 271-281.
    [30] Chen Jinghua, Zhou Jinping; Zhang lina, et al. Chemical structure of the water-insoluble polysacchadde isolated from the fruiting body of Ganoderma lucidum. Polym. J.(Tokyo). 1998,30(10):838-842 (English).
    [31] Cheong J, Jung W, Park W. Characterization of an alkali-extracted peptidoglycan from Korean Ganoderma lucidum. Arch Pharm Res. 1999,22(5):515-519.
    
    
    [32] Eo SK, Kim YS, Lee CK, Han SS. Antiherpetic activities of various protein bound polysaccharides isolated from Ganoderma lucidum. J Ethnop Harmacol. 1999,68 (1-3): 175-181.
    [33] 李平作,章克昌.灵芝胞外多糖的分离纯化及生物活性.微生物学报,2000,40(2):217-220.
    [34] 闵三第等.灵芝多糖的抗肿瘤活性及免疫效应.食用菌学报,1996,3(1):21.
    [35] 曹容华等.灵芝多糖抗肿瘤作用的机理研究.山东医科大学学报,1992,30(3):203.
    [36] 林志彬.灵芝多糖的免疫药理学研究及其意义.北京医科大学学报,1992,24(4):271-273.
    [37] 陈奇中.药药理研究方法.人民卫生出版社,1993年第一版.
    [38] 张群豪,林志彬.灵芝多糖GL-B的抗瘤作用机制研究.中国药理学会通讯,1998,15(4):18.
    [39] 林志彬.灵芝的抗肿瘤作用及免疫调节作用.中国药理学报,1997,11(5):15.
    [40] 何云庆,李荣芷,邹明,林志彬,马莉.泰山赤灵芝免疫活性多糖的化学研究.北京医科大学学报,1995,27(1):58-59.
    [41] 陈书明等.灵芝含氮多糖对动物机体红细胞内SOD活性的影响.中国食用菌,1994,13(3)26.
    [42] 金春花等.灵芝多糖活血化淤作用实验研究.中草药,1998,29(7):470.
    [43] 雷林生,林志彬.灵芝多糖对老年小鼠脾细胞DNA多聚酶α活性及免疫功能的影响.药学学报,1993,28(8):77.
    [44] Kohda H., et al. Chem. Parm. Bull, 1985, 33:1367.
    [45] Morigiwa A., et al. Chem. Pharm. Bull, 1986, 34:3025.
    [46] Nishitoba T., et al. Agr, Biol.Chem, 1985, 49:1793.
    [47] Kikuchi T., et al. Chem.Parm.Bull, 1985, 33:2624.
    [48] Nishitoba T., et al. Agr, Biol.Chem, 1985, 49:1547.
    [49] Nishitoba T., et al. Agr, Biol. Chem, 1985, 49:3637.
    [50] Nishitoba T., et al. Agr, Biol.Chem, 1984, 48:2905.
    [51] Kubota T., et al. Helvetica Chimiea Acta, 1982, 2(65),611.
    [52] Lin J.-T. and Xu C.-J, J Chromatogr., 1984, 287:105.
    [53] Hirotani T., et al. Phytoehemistry, 1985, 24:2055.
    [54] Chen RY, Yu DQ.Progress of studies On chemical constituents of Ganoderma lucidum. Acta Pharm Sin (药学学报), 1990, 25 (12): 940-953.
    [55] 罗俊,林志彬,灵芝三萜类化合物药理作用研究进展.药学学报,2002,37(7):574~578.
    [56] Hirotani M.,et al. Phytochemistry, 1987,26, 2797.
    
    
    [57] Wang MY et al. Effects of triterpenoids from Ganoderma lucidum (leyss, Ex, fr) Karst on three different experimental liver injury models in mice. Acta Pharm sin, 2000, 35(5):326~329.
    [58] Toth JO et al. Les acides ganoderiques T Z :triterpenes cytotoxiques de Ganoderma lucidum(Polyporacée). Tetrahedron Lett,, 1983, 24(10): 1081.
    [59] Lin CN,Tomp WP Novel cytotoxic principles of Formosan Ganoderma lucidum. J Nat Prod, 1991,54(4):998~1002.
    [60] Kohda H,Tokumoto W, Sakamoto K,et al. The biologically active constituents of Ganoderma lucidum(Fr.) Karst. Histamine release-inhibitory triterpenes. Chem Pharm Bull, 1985,33(4): 1367-1374.
    [61] Morigiwa A, Kitabatake K, et a.l. Angiotensin converting enzyes-inhibitory triterpenese from Ganoderraa lucidura, Chem Pharm Bull,1986, 34(7): 3025~3028.
    [62] Komoda Y, Shmizu M, Sonoda Y, et al. Ganoderic acid and its derivatives as cholesterol synthesis inhibitors. Chem Pharm Bull, 1989, 37(2):531~533.
    [63] Shiao MS, Lee KR, Lin L J, et al. Natural products and biological activities of chenise medicinal fungus Ganoderma lucidum. Ho CT, Osawa T, Huang MT, et al. Food Phytochemicals for cancer Prevention Ⅱ. Washington, DC: Arnerican Chemical Society,1994, 342~354.
    [64] Min BS, et al. Triterpenes from spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem Pharm Bull, 1998, 46(10):1607-1612.
    [65] EI-Mekkawy S, Meselhy MR,Nakamura N, et al .Anti-HIV-1 and anti-HIV-1 protease substances from Ganoderma lucidura. Phytochemistry, 1998, 49960:1651~1657.
    [66] Koyama K,Imaizumi T, Akiba M, et al.Antinoeieeptive compinents of Ganoderma lucidum. Planta Med, 1997, 63(3):224-227.
    [67] Su CY, Shiao MS, Wang CT. Differential effects of ganodermic acid S on the thromboxane A2-signaling pathways in human platelets. Biochem Pharmacol, 1999,58(4):587-595.
    [68] Su CY, Shiao MS, Wang CT. Potentiation of ganodermie acids on prostaglandin El-induced cyclic AMP elevation in human platelets. Yhromb Res,2000,99(2): 135~145.
    [69] Zhu M, Chang Q,Wong LK, et al. Triterpene antioxidants from Ganoderma lucidum. Phytother Res, 1999,13(6):529-531.
    [70] Mizushina Y, Takahashi N,Hanashima L, et al. Lucidenic acid O and lactone, new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete,Ganodema lucidum. Bioorg Med Chem, 1999,7(9):2047~2052.
    [71] 贺红.灵芝液体深层发酵技术研究进展及展望.基层中药杂志,2000,14(2):83-85.
    
    
    [72] 朱戎,陈向东,兰进.药用真菌液体发酵研究进展,中药材,2003,26(1):55-57.
    [73] 李艳.发酵工业概论,中国轻工业出版社.1999,1.
    [74] 潘继红,曹霞,李峰等.灵芝液体培养营养需求的探讨.食用菌学报,1997,4(1):31-34.
    [75] 王淑华,孙翠焕,朱万琴等.灵芝液体深层发酵工艺研究初报.微生物杂志,1995,14(5):29-32.
    [76] 宋淑敏,王大鹏,李新华等.深层发酵灵芝生物工程技术与产品研究.食品科学,1999,12:40-43.
    [77] 王谦,冀宏,汪虹等.灵芝营养液的发酵法制备及分析.河北大学学报,1999,19(1):50-53.
    [78] 孙东平,潘锋,史小丽等.灵芝菌发酵培养的优化及灵芝胞外多糖的分离纯化.中草药,2000,31(12):941-943.
    [79] 刘冬,李世敏,许柏球等.灵芝菌丝体深层发酵培养基研究.微生物杂志,2001,21(2):15-17.
    [80] 赵萍.影响灵芝深层发酵因素的探讨.食品科学,2002,23(11):88-92.
    [81] Ya-Jie Tang, Jian-Jiang Zhong. Fed-batch fermentation of Ganaderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme and Microbial Technology, 2002,31:20-28.
    [82] Fan-Ching Yang, Chun-Bun Liau. The influence of environmental conditions on polysaccharide formation by Ganoderma lucidium in submerged cultures. Process Biochemistry, 1998,33(5):547-553.
    [83] Qing-Hua Fang, Jian-Jiang Zhong. Effect of initial PH on production of ganaderic acid and polysaccaride by submerged fermentation of Ganoderma lucidium. Process Biochemistry, 2002,37:769-774.
    [84] Ya-Jie Tang, Jian-Jiang Zhong. Role of oxygen supply in submerged fermentation of Ganoderma lucidium for production of Ganoderma polysaccharide and ganoderic acid. Enzyme and Microbial Technology, 2003,32:478-484.
    [85] Qing-Hua Fang, Ya-Jie Tang, Jian-Jiang Zhong. Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganaderma lucidum. Process Biochemistry 2002, 37:1375-1379.
    [86] 国家药品监督管理局.中药注射剂指纹图谱研究的技术要求(暂行).中成药,2000,22(10):671-675.
    [87] 聂晶,田颂九,王国荣.中药指纹图谱的研究现状.中草药,2000,31(3):881-884.
    [88] 李克,王曙东,宋炳生.中药指纹图谱及其对中药发展的影响.中草药,2002,33(11):961-963.
    [89] 罗国安,王义明.中药指纹图谱的分类和发展.中国新药杂志,2002,11(1):46-51.
    
    
    [90] 宋国跃,尹小英,罗永明.中药指纹图谱的研究进展.江西中医药,2002,33(6):49-51.
    [91] 郑颖,吴凤锷.中药指纹图谱的研究进展.天然产物研究与开发,2003,15(1):55-60.
    [92] 袁敏,张铭光,曾志.裂解色谱法测定中药指纹图谱.华南师范大学学报(自然科学版),2003,(1):75-79.
    [93] 王少坤,燕兰英.中药指纹图谱应用于中药质量控制的局限性.药学进展,2001,25(6):352-353.
    [94] 张惟杰.糖复合物生化研究技术,第二版,浙江:浙江大学出版社,1999.
    [95] Zhang JS, Tang QJ. Martin Zimmerman-Kordmann, Wemer Reutter, Hua Fan. Activation of B lymphocytes by GLIS, a bioactive proteoglycan from Ganoderma lucidum. Life science, 2002, 71,623-638
    [96] Stanley ER. Murine bone marrow-derived macrophages..Method Mol Biol, 1997,75:301-304.
    [97] 唐庆九,张劲松.几种药用真菌初提物免疫调节和肿瘤抑制作用的筛选.食用菌学报,2003,10(3):1~6
    [98] 李平作,徐柔,章克昌.灵芝发酵过程中胞外多糖快速测定模型的建立.无锡轻工大学学报,1999,18(3):62-65.
    [99] Fang QH, Zhong JJ. Two-stage culture process for improved production of ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum. Biotcchnol Prog, 2002, 18(1):51-54.
    [100] 马礼金,姚汝华.红芝酸性物质的HPLC和薄层层析分析.中国食用菌,1998,17(1),3~4.
    [101] 马林,吴丰,陈若芸.灵芝三萜成分分析.药学学报,2003,38(1):50~52.
    [102] 李刚.发酵灵芝菌粉和灵芝子实体中灵芝多糖含量的比较.中国食用菌,1999,19(1):35~36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700