用户名: 密码: 验证码:
三种相思树人工林凋落物养分归还功能及碳平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相思树种是世界广泛引种的重要速生树种,在我国南方短周期工业原料林建设、林地可持续经营和丰富林木种质资源等方面具有重要的作用和地位。人工林凋落物养分归还是林分有机物产生的首要过程,养分的利用、循环和流动是有机物和土壤系统内部及其相互之间的枢纽,养分元素循环在维持人工林生态系统格局及形成最大生产力及生物量产出的过程中具有极其重要作用。鉴于有关相思人工林凋落物养分归还功能和碳平衡的研究缺乏系统性,相关报道亦较少。本研究选择位于福建省漳州市平和天马国有林场的6.5a生卷荚相思(Acaciaconcinnatai)、黑木相思(Acacia melanoxylon)和马占相思(Acacia mangiun)为研究对象,从2006年8月起,进行为期一年的生态定位研究,开展凋落物收集、凋落物分解和土壤表面CO_2释放量等数据采集等野外作业,并结合土壤和植株养分等室内分析,掌握相思人工林生物量分配格局,探讨相思人工林凋落物养分(N、P、K和C)的归还规律,评估相思人工林碳汇能力,为指导相思人工林科学经营管理和闽南山地的可持续经营提供科学依据,为我国应对未来的国际气候变化谈判提供基础数据。主要得出以下结论:
     (1)卷荚相思单株生物量最高,分别是黑木相思和马占相思单株生物量的1.34和1.59倍。3种相思单株各器官所占比例大小顺序均为树干>树根>树皮>树枝>树叶。卷荚相思林分生物量最大,明显高于黑木相思和马占相思。在林分生物量组成中,乔木层所占的比例均最大,在87.06%~91.11%之间,凋落物的贡献仅次于乔木层,在6.48%~6.97%之间;
     (2)卷荚相思、黑木相思和马占相思年凋落物量分别为6171.49、7338.28和6102.16kg·hm~(-2),凋落叶在凋落物中占绝对优势,分别占总凋落物量的65.32%、83.71%和68.10%。3种相思人工林总凋落物量的月变化均呈双峰模式;
     (3)卷荚相思和马占相思凋落物的N、P的年归还量相近,但均显著低于黑木相思(p<0.05),与总凋落物量的大小顺序相似。而3种相思人工林K的年归还量大小排序表现为马占相思(22.28kg·hm~(-2)·a~(-1))>卷荚相思(19.96kg·hm~(-2)·a~(-1))>黑木相思(17.76kg·hm~(-2)·a~(-1))。3种相思人工林凋落物的养分年归还量大小顺序均表现为:N>K>P。黑木相思凋落物碳的年归还量最大,分别是卷荚相思和马占相思的1.27和1.23倍。卷荚相思凋落物碳归还季节变化的大小顺序表现为秋季>夏季>冬季>春季,黑木相思凋落物碳归还的季节变化表现为春、夏和秋三个季节凋落物碳的归还量较大,马占相思凋落物碳归还的季节变化表现为夏季和秋季有较大的归还量,在春季和冬季有较小的归还量。;
     (4)分解1a后凋落叶的干重残留率从小至大依次为马占相思、黑木相思、卷荚相思和木荷(Schima Superba)(当地的地带性植被木荷(作为对照))。与凋落叶相比,凋落枝在分解过程表现更为平稳,不过其分解动态与凋落叶相似。凋落枝分解1a后,它们干重残留率从小至大依次为马占相思、黑木相思、卷荚相思和木荷;
     (5)3种相思人工林和木荷凋落叶在分解过程中C、K浓度均表现为递减的趋势,P浓度则表现为递增趋势,而N浓度表现为无规则的波动,波动幅度不大;凋落枝在分解过程中除C表现为明显的下降趋势,N、P、K浓度的变化均远较凋落叶复杂,可能是由于器官的差异引起的;
     (6)3种相思人工林和木荷凋落叶和凋落枝在分解过程中的C、N均表现为明显的净释放。在所有林分中,马占相思凋落叶的K的释放量最大,而其凋落枝K释放量小,表现为净吸存。卷荚相思和木荷凋落叶、枝在分解过程中P的释放与分解时间相关性较弱,没有达到显著水平(p<0.05),甚至表现为净吸存。除了马占相思凋落枝外,各养分的释放速率的大小顺序为:k_K>k_C>k_N;
     (7)黑木相思凋落物C的释放量高于卷荚相思和马占相思。黑木相思凋落物N的释放量最高,而卷荚相思最低。3种相思人工林K释放量的大小顺序为:马占相思、卷荚相思和黑木相思。卷荚相思凋落物P则表现为净吸存,每年吸收0.45 kg·hm~(-2),黑木相思和马占相思均表现为净释放,每年分别释放2.27kg·hm~(-2)和1.65 kg·hm~(-2);
     (8)对凋落物的初始养分与土壤养分进行相关分析,发现土壤容重与凋落叶的初始养分存在负相关,土壤有机碳与凋落叶的初始养分正相关。凋落叶初始N含量与土壤全N、土壤水解性N以及土壤速效K存在正相关;凋落叶初始P与土壤全P存在紧密的正相关;初始钾含量与土壤全钾存在正相关,均达到显著水平(p<0.05)。表明在一定程度上,土壤的养分水平决定了凋落叶的初始养分水平。凋落枝初始N、P含量与土壤表层全N和全P含量存在正相关,均达到显著水平(p<0.05);然而凋落枝初始K含量与土壤全K和速效钾含量表现为弱的负相关,可能由于植物生理功能的差异决定了凋落枝有较低的K初始含量;
     (9)选用凋落物质量指标和生境质量指标等14个与凋落物分解速率关系较为密切的变量,进行PCA分类排列。结果发现,对第一主成分贡献率最大的是初始N含量,其次为土壤有机碳、土壤水解性N、土壤全N含量、初始C/N、初始P含量和土壤有效K;对第二主成分贡献率最大的是初始K含量,其次为土壤全K含量、土壤全P含量、土壤C/N、土壤速效P和初始C含量;
     (10)3种相思人工林各器官的含碳量均在45%~50%之间。卷荚相思和黑木相思各器官碳贮量的大小顺序均为:树干>树根>树皮>树枝>树叶,马占相思则为树干>树根>树皮>树叶>树枝。卷荚相思、黑木相思和马占相思林下植被层平均的含碳量分别为42.29%、42.78%和41.26%,明显低于其乔木层相应组分的碳含量。卷荚相思、黑木相思和马占相思枯枝落叶层碳贮量分别为2.27t·hm~(-2)、1.61t·hm~(-2)和1.63t·hm~(-2)。卷荚相思、黑木相思和马占相思生态系统碳贮量分别为93.63t·hm~(-2)、109.50t·hm~(-2)和77.37t·hm~(-2);
     (11)在3种相思人工林和木荷林中,其土壤呼吸、无根土壤呼吸和根呼吸的季节动态与土壤温度的季节动态变化基本一致,呈明显的单峰曲线;而枯枝落叶层呼吸季节变化较为复杂,不过总体上仍表现为夏季较高而冬季较低;
     (12)在3种相思人工林和木荷林中,土壤呼吸α值的大小顺序为黑木相思、卷荚相思、木荷和马占相思。土壤呼吸的Q_(10)值的大小顺序为马占相思、卷荚相思、木荷和黑木相思;3种相思人工林和木荷林在冬季基本上表现为最小的残差值,在春季表现出较大的负残差值,而在秋季表现出较大的正残差值。在黑木相思林和木荷林其根呼吸的温度敏感系数Q_(10)值高于其它组分呼吸;而在卷荚相思和马占相思林其根呼吸的温度敏感系数Q_(10)值则明显低于其它组分呼吸;
     (13)对凋落物的月输入量与土壤呼吸速率进行相关性分析,发现它分别能解释卷荚相思、黑木相思和马占相思土壤呼吸速率变化的47.91%、36.57%和29.69%;而对降雨量与土壤呼吸速率进行相关分析,发现降雨量对土壤呼吸速率的贡献相当有限(均小于20%);
     (14)木荷林土壤呼吸的年释放量最小,分别是卷荚相思、黑木相思和马占相思林的68.66%、88.63%和73.44%。卷荚相思、黑木相思和马占相思无根土壤呼吸的年释放量分别为5.21、5.05和5.24tC·ha~(-1)·a~(-1),它们之间差异不显著(p>0.05),但均显著高于木荷林。木荷林根呼吸的年释放量最大,分别是卷荚相思、黑木相思和马占相思的1.47、1.51和1.23倍。卷荚相思林有最大的凋落物呼吸年释放量,明显高于其它林分;
     (15)卷荚相思、黑木相思和马占相思人工林C年净吸存量分别为14.01,10.31和11.57t·hm~(-2)·a~(-1),其中乔木层C年积累量分别为4.98、4.06和3.03t·hm~(-2)·a~(-1),枯落物C年归还量分别为8.63、6.08和7.48t·hm~(-2)·a~(-1)。不同林分碳年净吸存量中林分生物量的C年积累量和枯落物C年归还量分别约占40%和60%。卷荚相思、黑木相思和马占相思人工林净生态系统生产量分别为4.46,3.62和3.59t·hm~(-2)·a~(-1),均表现为“碳汇功能”,相当于每年可从大气中分别固定CO_2 16.36、13.27和13.15t·hm~(-2)·a~(-1)。
Acacia spp.is an important fast-growing tree and has been introduced all over the world.It plays vital roles on the forests construction of short-period industrial raw material,sustainable forest management and germplasm resources of forest trees in South China.The nutrient return from litter layers is the initial process of organics production in the forest.Nutrient utilization,recycling and flowing was the hub between the organic matter and the soil system interior.The circulation of nutrient elements significantly maintains the ecosystem pattern and forms the considerable productivity and biomass outputs.However,the study on functions of nutrient returns from litter layers and carbon balance has been rarely reported.The location of research was chose at Dongxi work area of Tianma national forest station in Zhangzhou,Fujian,from August 2006 for one year.Three tree species including Acacia concinnatai,Acacia melanoxylon and Acacia mangiun were chose as the treatments and the subtropical species Schima Superba as the control.Our field work covers litter collection,litter decomposition experiment and CO_2 release from soil surface,the plants and soil nutrient were analyzed as well.Our purposes were studying the allocation patterns of biomass of Acacia spp.,exploring the rules of nutrient recycling including C、N、P、K returns from litter layers and assessing carbon source/sink status in Acacia plantations.This research provides the scientific foundation for guiding scientific management of Acacia plantations and sustainable management on Minnan mountainous region and basic database for dealing with future climate negotiations of our country.The conclusions were as follows:
     (1)The highest individual plant biomass was found in Acacia concinnatai which was 1.34 and 1.59 times as heavy as Acacia melanoxylon and Acacia mangiun,respectively.The order of organ proportion for each plant was stems>root>the bark>branch>leaf.Significantly higher stand biomass was found in Acacia concinnatai than in Acacia melanoxylon and Acacia mangiun species.In the composition of stand biomass,higher proportion was found in tree layers(87.06%~91.11%)as compared litter layers(6.48%~6.97%).
     (2)The annual litter-fall of Acacia concinnatai,Acacia melanoxylon and Acacia mangiun were 6171.49, 7338.28 and 6102.16 kg·hm~(-2),respectively.Of these,the percentages of leaf litter of Acacia concinnatai,Acacia melanoxylon and Acacia mangiun were 65.32%,83.71%and 68.10%,respectively.The monthly dynamics of total litter-fall showed the double-peak modes.
     (3)The annual nitrogen and phosphorus returns from litter layers of Acacia concinnatai and Acacia mangiun were similar,but they were significantly(p<0.05)lower than that of Acacia melanoxylon.The order of annual potassium returns from litter layers were Acacia mangiun(22.28 kg·hm~(-2)a~(-1))>Acacia concinnata i(19.96 kg·hm~(-2)a~(-1))>Acacia melanoxylon(17.76 kg·hm~(-2)a~(-1)).The order of annual nutrient returns from litter layers were nitrogen(N)>potassium(K)>phosphorus(P).The highest carbon returns was found in Acacia melanoxylon than in Acacia concinnatai(1.27 times)and Acacia mangiun(1.23times).The seasonal changes of carbon returns from litter layers in Acacia concinnatai were autumn>summer>winter>spring;Similar higher carbon returns were found in Acacia melanoxylon between spring,summer and autumn than in winter.Higher carbon returns in Acacia mangiun were found on summer and the autumn than that in spring and winter.
     (4)The residue rates of dry weight of leaf litter and litter branches were Acacia mangiun>Acacia melanoxylon>Acacia concinnatai>Schima Superba by decomposing for one year.The decomposition process of litter branches was more stable than that of leaf litter,but decomposition dynamics were similar to leaf litter.
     (5)The concentration of carbon(C)and potassium(K)from leaf litter decreased with the litter decomposed, whereas phosphorus concentration increased.The nitrogenous concentration represented ruleless fluctuation with indistinct amplitude.The change of other nutrient concentrations(such as nitrogen、phosphorus and potassium) were complexity except that carbon concentration decreased during the decomposition process owing to discrepancy of plant organs.
     (6)Obviously net release amount of carbon and nitrogen were found from leaf litter and litter branch during decomposition process.However,net absorption of the potassium release was showed in Acacia mangiun with higher in leaf litter and lower in litter branches.There was not significant(p<0.05)relativity between release amount of phosphorus and decomposition time for Schima superba and Acacia concinnatai,even represented net sequestration.Except for Acacia mangiun's litter branch,the order of nutrient release rate was k_K>k_C>k_N.
     (7)The carbon release of Acacia melanoxylon was higher than that of Acacia concinnatai and Acacia mangiun.The highest nitrogen release amount was found in Acacia melanoxylon,but lowest was found in Acacia concinnatai.The order of potassium release amount was Acacia mangiun>Acacia concinnatai>Acacia melanoxylon.The annual phosphorous absorption in Acacia concinnatai was about 0.45 kg·hm~(-2),while net phosphorous release of Acacia melanoxylon and Acacia mangiun were 2.27 kg·hm~(-2)and 1.65 kg·hm~(-2),respectively.
     (8)There was negative correlation between initial nutrient of litter and the soil nutrient,but positive correlation was found between soil organic carbon and initial nutrient of leaf fitter.The initial nitrogen content of leaf litter was significantly positive correlation with soil total nitrogen content,soil hydrolysable nitrogen and soil available potassium.The initial potassium content of leaf litter was significantly positively related to soil total potassium.Thus,the soil nutrient level has influenced on the initial nutrient level of defoliation.The initial N and P content in litter branches was significantly(p<0.05)positively related to those in the surface soil.However,there was negative correlation between K content of branches,total K content in soil and available K possibly because the different physiological functions of plants induced the lower K content in branches.
     (9)Fourteen quality indices of litter and habitats were chose to analyze the decomposition rate using PCA classification.The results showed that the principal component was the initial N content that was followed by soil organic carbon,soil hydrolysis N,total soil N content,the ratio of C/N,the initial P content and soil available K. The second mian component was the initial K content which was followed by total K content and P content in soil, the ratio of C/N in soil,the available P in soil and the initial C content from litters.
     (10)The percentage of carbon content of each organ was about 45%~50%for the three Acacia plants.The order of carbon content of the Acacia concinnatai and the Acacia melanoxylon were the trunk>the root>the bark>the branch>the leave and carbon percentage in Acacia mangiun was the trunk>the tree root>the bark>the leaf>the branch.The average carbon contents in understory forest of the Acacia concinnatai,the Acacia melanoxylon and the Acacia mangiun were 42.29%,42.78%and 41.26%,respectively,which was obviously lower than those in tree layer.The carbon storage of litter in the Acacia concinnatai,the Acacia melanoxylon and the Acacia mangiun were 2.27t·hm~(-2),1.61t·hm~(-2)and 1.63t·hm~(-2),respectively.The carbon storage of the Acacia concinnatai,the Acacia melanoxylon and the Acacia mangiun in ecosystem was 93.63 t·hm~(-2),109.50 t·hm~(-2)and 77.37 t·hm~(-2);respectively.
     (11)The seasonal changes of soil respiration,non-root soil respiration and root respiration were consistent with the soil temperature with a single peak.However,the seasonal changes of litter respiration were complex, which higher in summer and lower in winter.
     (12)The order of a value of soil respiration was Acacia melanoxylon,Acacia melanoxylon,Schima superba and Acacia mangiun.The order of Q_(10)value of soil respiration was Acacia mangiun,Acacia melanoxylon, Schima superba and Acacia melanoxylon.The lowest residuals were found in the Schima superba forest and Acacia trees in winter,but negative residual was found in spring and positive in autumn.For Schima superba and Acacia melanoxylon,the temperature sensitive coefficient Q_(10)was higher in root respiration than that of other components.For the Acacia melanoxylon and Acacia mangiun,the temperature sensitive coefficient Q_(10)was lower in root respiration than that of other components.
     (13)The soil respiration velocity in the Acacia melanoxylon,Acacia melanoxylon,and Acacia mangiun was 47.91%,36.57%and 29.69%,respectively,using the relevant analysis between litters and soil respiration.The contribution rate of rainfall was less than 20%to the soil respiration using the relevant analysis.
     (14)The annual release amount of soil respiration was lowest in the schima superba,which was 68.66%, 88.63%and 73.44%to Acacia melanoxylon,Acacia melanoxylon,and Acacia mangiun,respectively.The annual soil respiration of non-root in Acacia melanoxylon,Acacia melanoxylon,and Acacia mangiun was 5.21,5.05 and 5.24tC·ha~(-1)·a~(-1),respectively.The annual release amount of root respiration was highest in the schima superba, which was 1.47,1.51 and 1.23 times to Acacia melanoxylon,Acacia melanoxylon and Acacia mangiun, respectively.Higher litter respiration was found in Acacia melanoxylon than the other stands.
     (15)The annual net storage amount of carbon in the Acacia melanoxylon,Acacia melanoxylon and Acacia mangiun was 14.01,10.31 and 11.57t·hm~(-2)·a~(-1),respectively,Of these,the C storage amount in the tree layer was 4.98,4.06 and 3.03 t·hm~(-2)·a~(-2),respectively,and the annual C returns amount in litters was 8.63,6.08 and 7.48 t·hm~(-2)·a~(-1),respectively.The annual C accumulation was about 40%and C return was about 60%.The net biomass productions of Acacia melanoxylon,Acacia melanoxylon,and Acacia mangiun in ecosystem were 4.46,3.62 and 3.59 t·hm~(-2)·a~(-1),which was called "carbon sequestration functions".It means equal to fix CO_2 16.36,13.27 and 13.15 t·hm~(-2).a~(-1)every year for Acacia melanoxylon,Acacia melanoxylon and Acacia mangiun,respectively.
引文
[1]董智勇主编.世界林业发展道路[M].北京:中国林业出版社.1992:3-23.
    [2]温远光,刘世荣,陈放.桉树工业人工林的生态问题与可持续经营[J].广西科学院学报,2005,21(1):13-18.
    [3]中国林学会森林林生态学分会编著.人工林地力衰退研究[M].北京:中国科学技术出版社,1992.
    [4]盛炜彤,范少辉.人工林长期生产力保持机制研究的背景、现状和趋势[J].林业科学研究,2004,(1):106-115.
    [5]陆道调,吴保国,王希群等.相思树种研究发展综述[J].福建林学院学报,2004,21(1):92-96.
    [6]江进.银荆等相思树种引种试验初报[J].安徽林业科技,2004,3:16-17.
    [7]刘发茂,黄家彬,谢福光等.台湾相思、杨梅在湿地松人工混交林中的供氮效应的研究[J].福建林业科技,1991.18(4):20-24.
    [8]黎盛隆.聚乙烯醇渗调对台湾相思树种子活力的影响[J].华南农业大学学报,1992,13(1):87-92.
    [9]林榕庚.10个相思树种的生长比较与评价[J].广西林业科学,1995,24(1):18-20.
    [10]杨民权.主要热带相思在华南地区的生长及适应性探讨[J].林业科学研究,1990,3(2):155-161.
    [11]任海,彭少麟.大叶相思的生态生物学特征[J].广西植物,1998,18(2):146-152.
    [12]韩金发.厚荚相思对风沙地土壤性状的改良[J].福建林学院学报,2001,21(3):253-256.
    [13]潘志刚,游应天.厚荚相思的引种及种源试验[J].林业科学研究,1994,7(5):498-505.
    [14]潘志刚,潘永言.马占相思种源试验[J].林业科学研究,1989,2(4):351-356.
    [15]符近,尤瑞麟,顾增辉等.马占相思种子休眠的研究[J].北京大学学报(自然科学版),1997,33(6):756-762.
    [16]王豁然,江泽平,阎洪等.论澳大利亚植被与中国林木引种的关系[J].热带地理,1994,14(1):73-82.
    [17]韦增建,丘小军,莫钊志.相思类树种种质资源收集保存研究[J].广西林业科学,1996,25(4):188-205
    [18]郑文国.闽南山地引种3种相思树生长效果及适应性评价[J].福建林业科技,2000,27(S1):37-38.
    [19]蔡伟烈,周纪刚,徐平.马占相思、肯氏相思、纹荚相思、厚荚相思造林生长比较试验[J].惠州学院学报(自然科学版),2002,22(3):59-62.
    [20]刘发茂,黄家彬,谢福光等.几种固氮树种凋落物分析研究[J].福建林业科技,1991,18(4):33-36.
    [21]丁明懋,蚁伟民,廖玉兰等.生态条件对马占相思结瘤固氮肥的影响[J].热带亚热带植物学报,1994,2(2):15-21.
    [22]李跃林,彭少麟,刘运笑等.鹤山重建植被的几种优势种叶解剖学研究[J].生态科学,2002,21(1):41-44.
    [23]赵博生.马占相思下胚轴脱分化过程中的蛋白质变化[J].山东教育学院学报,2001,16(5):86-88.
    [24]伏香香,李淑娴,隋爱敏.不同处理对几种硬实性种子活力的影响[J].种子,2001,(2):32-34.
    [25]马焕成,吴延熊,JackA.McConckie.元谋干热河谷几种外来树种在旱季的光合特点[J].浙江林学院学报.2001,18(1):46-49.
    [26]李昆,曾觉民.金沙江干热河谷主要造林树种蒸腾作用研究[J].林业科学研究,1999,12(3):244-250.
    [27]王华芳,尹伟伦,张建华等.侧柏和大叶相思超微弱发光土壤干旱的生理反应[J].林业科学,2000,36(1):2-8.
    [28]巫光宏,詹福建,罗焕亮等.几种保护酶活性变化与马占相思树对低温胁迫的抵抗性的关系研究[J].植物研究,2002,22(1):42-45.
    [29]李纪元,郑学为.两个温带相思属树种的耐寒性评估[J].林业科学研究,1999,12(1):87-91.
    [30]Niknam.S.R,McComb.J.Salt tolerance screening of selected Australian woody species-areview[J].Forest ecology and management,2000,139(1-3):1-19.
    [31]林永标,任海,彭少麟等.鹤山马占相思人工林的能量现存量及能量流动[J].生态科学,2000,19(2):1-6.
    [32]高洁,傅美芬,刘成康等.干热河谷主要造林树种水分生理生态学特点[J].西南林学院学报.1997,17(2):30-35.
    [33]蒋云东,匡玉兰,李思广等.云南热区几种人工林土壤变化研究[J].土壤与环境,2000,9(2):110-113.
    [34]闫俊华,周国逸,申卫军.用灰色关联法分析森林生态系统植被状况对地表径流系数的影响[J].应用与环境生物学报,2000,6(3):197-200.
    [35]申卫军,周国逸.南亚热带鹤山5种生态系统的地表径流[J].热带亚热带植物学报,1999,7(4):273-281
    [36]林康銮,林钦满.水土流失地区的相思栽培技术[J].广东林业科技,1996,12(2):39-44.
    [37]李志安,林永标,彭少麟.华南人工林凋落物养分及其转移[J].应用生态学报,2000,11(3):321-326.
    [38]杨玉盛,何宗明,陈光水等.不同生物治理措施对赤红壤抗蚀性影响的研究[J].土壤学报,1999,36(4):528-534.
    [39]国家林业局.森林土壤分析方法[M].北京:中国标准出版社,1999.
    [40]黄永芳,徐英宝.大叶相思立地类型的研究[J].华南农业大学学报,1990,11(1):94-99.
    [41]郑海水,翁启杰,周再知等.大叶相思材积和生物量表的编制[J].林业科学研究,1994,7(4):408-413.
    [42]陈先仁,谭国琛,刘毓敏等.广州地区马占相思二元立木材积表和一元立木材积表的编制[J].广东林业科技,1997,13(2):17-20.
    [43]曾杰,郑海水,翁启杰等.大叶相思树冠生长、树干特征与密度的关系[J].林业科学研究,1999,12(6):577-580.
    [44]钟铭隆,黄开勇.影响马占相思造林效果的几个因素[J].广西林业科学,2001,30(3):142-144.
    [45]黄世能.不同伐桩直径及高度对马占相思萌芽更新影响[J].林业科学研究,1990,3(3):242-249.
    [46]龙定建.广西短周期工业原料林发展前景与效益分析[J].广西林业科学,2000,29(1):22-27.
    [47]Mackensen J and Folster H.Cost-analysis for a sustainable nutrient management of fast growing-tree plantations in East-Kalimantan,Indonesia[J].Forest ecology and management,2000,131(1-3):239-253.
    [48]翁启杰,郑海水.马占相思短轮伐期人工林生长的研究[J].林业科技通讯,1993(4):10-12.
    [49]黄锋.木麻黄与大叶相思混交造林试验初报[J].广东林业科技,1991(4):39-41.
    [50]翁启杰,郑海水,黄世能等.尾叶桉和大叶相思或肯氏相思混交试验[J].林业科技通讯,1994(12):13-15.
    [51]吴锡麟.厚荚相思木麻黄混交林分结构与生物量研究[J].福建林学院学报,2003,23(3):236-239.
    [52]徐大平,杨曾奖,何其轩等.马占相思中龄林地上部分生物量及养分循环的研究[J].林业科学研究,1998,11(6):31-37.
    [53]秦武明,何斌,余浩光.马占相思人工林不同年龄阶段的生物生产力[J].东北林业大学学报,2007,35(1):22-24.
    [54]林秀兰.栲胶新原料——马占相思树皮[J].福建林学院学报,1990,10(3):283-287.
    [55]赵绍文,梁伟克,秦武明等.栲胶原料新品种——马占相思树皮利用研究[J].经济林研究,2001,19(4):38-40.
    [56]张方秋,白嘉雨,杨瑞华等.粤东发展相思木片基地的若干问题[J].广东林业科技,1998,(3):13-17.
    [57]廖军,王新根.森林凋落量研究概述[J].江西林业科技,2000(1):31-34.
    [58]王凤友.森林凋落量研究综述[J].生态学进展,1989,6(2):82-89.
    [59]周存宇.凋落物在森林生态系统中的作用及其进展[J].湖北农学院学报,2003,23(2):140-145.
    [60]吴承祯,洪伟,姜志林等.我国森林凋落物的研究进展[J].江西农业大学学报,2000,23(3):405-410.
    [61]Embermayer E.Die gesampte Lehre der Waldstreumit Rucksicht suf die chemisched static des Waldbaues[M].BerIin.Julius Spinger,1876.116.
    [62]Bray JR,Gorham E.Litter production in forest of the world[J].Adv.Ecol Res.1964,2:101-157.
    [63]黄建辉,陈灵芝,韩兴国.植物科学研究进展(第一卷):森林生态系统凋落物分解的研究进展[M].北京:高等教育出版社,1998.
    [64]程煜.中亚热带木荷马尾松林恢复过程的群落及凋落物特征研究[D].福建农林大学博士学位论文,2006.
    [65]刘洋.巨桉人工林凋落物养分归还、转移及分解动态的研究[D].四川农业大学硕士学位论文,2006.
    [66]林波.川西亚高山人工针叶林与天然林凋落物的比较研究[D].中国科学院成都生物研究所硕士学位论文,2002.
    [67]田大伦,宁晓波.不同龄组马尾松林凋落物量及养分归还量研究[J].中南林学院学报,1995,15(2):163-169.
    [68]张家武,序利平,李锦芳.马尾松火力楠混交林凋落物动态及其对土壤养分的影响[J].应用生态学报,1993,4(4):359-363.
    [69]史振华,何宗明,谢建闽等.5~7年生杉木幼林凋落物数量与月动态[J].福建农林大学学报(自然科学版),2006,35(3):278-281.
    [70]Reiners WA.,Lang GE.Changes in litterfall along a gradient in altitude[J].Journal of Ecology.1987,75:629-638.
    [71]Cotrufo MF,Raschi A,Lanini M,et al.Decomposition and nutrient dynamics of Quercus pubescens leaf litter in a naturally enriched CO_2 mediterranean ecosystem[J].Function Ecology.1999,13(3):343-351.
    [72]Melin E.Biological decomposition of some types litter from North American forests.Ecology.1930,11:72-101.
    [73]Olson J S.Energy storage and the balance of producer sand decomposers in ecological system[J].Ecology,1963,44:322-331.
    [74]Swift M J.,Heal O W.,Anderson J M.Decomposition in terrestrial ecosystem.Oxford:Blackwell Scientific Publication,1979,56-57.
    [75]McClaugherty C A.,Pastor J.,Aber J D.,et al.Forest litter decomposition in relation to soil nitrogen dynamics and litter quality[J].Ecology.1985,66(1):266-275.
    [76]廖利平.国外林木养分内循环研究[J].生态学杂志.1994,13(6):34-38.
    [77]黄石竹,张彦汞,王政权.树木细根养分内循环[J].生态学杂志.2006,25(11):1395-1399.
    [78]Killingbeck K T.Nutrient in senesced leaves:keys to the search for potential resorption and resorption proficiency[J].Ecology.1996,77:1716-1727.
    [79]沈善敏,宇万太,张璐等.杨树主要营养元素内循环及外循环的研究Ⅰ:落叶前后各部位养分浓度变化及养分贮量变化[J].应用生态学报,1992,3(4):296-301.
    [80]宇万太,陈欣,张璐等.不同施肥杨树主要营养元素内外循环比较研究Ⅰ.施肥对杨树生物量及落叶前后N内外循环的影响[J].应用生态学报,1995,6(4):341-345.
    [81]张秀娟,谷家存,李真顺.落叶松人工林凋落物分解及其N、P、K养分归还[J].吉林林业科技,2006,35(2):15-18.
    [82]刘增文,李雅素,吕月玲等.刺槐主要养分元素内循环及外循环研究[J].南京林业大学学报,1997,21(4):6-10.
    [83]徐福余,王力华,李培芝等.若干北方落叶树木叶片养分的内外迁移[J].应用生态学报,1997,8(1):1-6.
    [84]魏晶,吴钢,邓红兵.长白山高山冻原生态系统凋落物养分归还功能[J].生态学报,2004,24(10):2211-2216.
    [85]曾德慧,陈广生,陈伏生等.不同林龄樟子松叶片养分含量及其再吸收效率[J].林业科学,2005,41(5):21-27.
    [86]李志安,邹碧,曹裕松等.华南两种豆科人工林体内养分转移特性[J].生态学报,2003,23(7):1369-1402.
    [87]薛立,罗山.常绿和落叶阔叶树叶片中N、P变化及转移[J].林业科学研究,2003,16(2):166-170.
    [88]薛立,徐燕,吴敏等.4种阔叶树种叶中氮和磷的季节动态及其转移(英文)[J].生态学报,2005,25(3):520-526.
    [89]李雪峰,张岩,牛丽君等.长白山白桦(Betula platyphlla)纯林和白桦山杨(Populus davidiana)混交林凋落物的分解[J].生态学报,2007,27(5):1782-1790.
    [90]陈爱玲.杉木连栽地轮栽柳杉和闽楠后养分及铝分布与迁移动态[D].福建农林大学博士学位论文,2007.
    [91]覃世赢.厚荚相思人工幼林生物量与生产力和养分循环的研究[D].广西大学硕士学位论文,2006.
    [92]徐大平,杨民权,曾育田等.马占相思幼林地上部分净生产力和养分循环的研究[J].广东林业科技,1994,(04):11-16.
    [93]何斌,秦武明,余浩光等.不同年龄阶段马占相思(Acacia mangium)人工林营养元素的生物循环[J].生态学报,2007,27(12):5158-5167.
    [94]黄石德.侵蚀退化红壤区植被重建对土壤呼吸的影响[D].福建农林大学硕士学位论文,2007.
    [95]陈国荣.闽南山地相思人工林生物量及生产力分析[D].福建农林大学硕士学位论文,2007.
    [96]彭小勇.闽北杉木人工林生物量模型的研究[D].福建农林大学硕士学位论文,2007.
    [97]Berrien.M and Brasewell.B.H.The metabolism of the earth understand the eabon cycle[J].AMBIO(人类环境杂志),1994,23:4-12.
    [98]Houghton R and Skole D et al.The earth as transformed by human action[M].Cambridge University Press,1990,393-408.
    [99]Hamilton J G,Delucia E H,George K et al.Forest carbon balance under elevated CO_2[J].Oecologia,2002,131:250-260.
    [100]Post W M,W.R Emanuel,P.J Zinke et al.Soil carbon pools and world life zones[J].Nature,1982,298:156-159.
    [101]周玉荣,于振良,赵于洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    [102]肖复明,张群,范少辉.中国森林生态系统碳平衡研究[J].世界林业研究,2006,19(1):53-57.
    [103]沈方清,马钦彦,刘允芬等.森林生态系统碳收支状况研究进展[J].江西农业大学学报,2006,28(2):312-317.
    [104]Leith.H,Whittaker R.H著,王业蓬等译.生物圈第一性生产力[M].北京:科学出版社,1985:6-13.
    [105]佐藤大七郎,堤利夫.陆地植物群落的物质生产[M].北京:科学出版社,1986:21-47.
    [106]Ebermeyr,E.Die gesamte Lechr der Waldstreu mit Rucksicht auf die ehemische Statik des Waldbaues[M].Belin:J.Springer,1876.
    [107]LeithHRH,Whittaker.Primary Productivity of Biosphere[M].Berlin:SpfingerVerlag,1975.
    [108]方精云.全球生态学—气候变化与生态响应[M].北京:高等教育出版社,2000.
    [109]潘维俦,田大伦,高正衡.杉木人工林生态系统中的生物产量及其生产力的研究[J].中南林业科技,1978,(2):2-14.
    [110]俞新妥,陈存及,林思祖.福建杉木人工林生态系统生物产量的初步研究[J].南平:福建林学院学报,1979(1):46-48.
    [111]冯宗炜,陈楚莹,张家武等.不同自然地带杉木林的生物生产力[J].植物生态学与地植物学丛刊,1983,8(2):93-100.
    [112]叶镜中,姜志林.苏南丘陵杉木林地上部分生物量的研究[J].南京林产工业学院学报,1982,(3):109-115.
    [113]冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134.
    [114]李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源,1978,(1):71-92.
    [115]冯林等.兴安落叶松原始林三种林型生物产量的研究[J].林业科学,1985,21(1):86-92.
    [116]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究,1981,(试刊):34-50.
    [117]项文化,田大伦,闫文德.森林生物量与生产力研究综述[J].中南林业调查规划,2003,(3):57-60.
    [118]丁贵杰.马尾松人工林生物量及生产力的变化规律Ⅲ 不同立地生物量及生产力变化[J],山地农业生物学报,2000,19(6):411-417.
    [119]彭在清,刘建斌.福建永春毛竹种群生物量和能量研究[J].厦门大学学报,2002,41(5):579-583.
    [120]林益明,林鹏,李振基等.武夷山甜槠群落的生物量和生产力[J].厦门大学学报(自然科学版),1996,(2):269-275.
    [121]陈章和,王伯荪,张宏达.南亚热带常绿阔叶林生产力研究现状与展望[J].生态科学,1996,(1):84-91.
    [122]任海,彭少麟,向言词.鹤山马占相思人工林的生物量和净初级生产力[J].植物生态学报,2000,24(1):18-21.
    [123]Andersson F O.,Agren G I.,Fuhrer E.Sustainable tree biomass production[J].Forest Ecology and Management,2000(132):51-62.
    [124]Mitchell,C.P.,Zsuffa,F.Andersson,S.,Stevens,D.J.Forestry,Forest biomass and biomass conversion:the IEA bio-energy agreement(1986—1989)summary report[C].Elsevier Science Publishers LTD,1990.
    [125]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    [126]罗辑,杨忠,杨清伟.贡嘎山森林生物量和生产力的研究[J].植物生态学报,2000,24(2):191-196.
    [127]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    [128]薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288.
    [129]张佳华,符斌.生物量估测模型中遥感信息与植物光合作用数的关系研究[J].测绘学报,1999,28(2):128-132.
    [130]李意德,曾庆波,吴仲民.尖峰岭热带山地雨林生物量的初步研究[J].植物生态与地植物学报,1992,16(4):293-300.
    [131]田大伦,项文化,闫文德.马尾松与湿地松人工林生物量动态及养分循环特征[J].生态学报,2004,24(10):2204-2210.
    [132]田大伦.杉木林生态系统功能过程[M].北京:科学出版社,2005.
    [133]陈仁华.武夷山甜槠林群落凋落物养分循环研究[J].江西农业大学学报,2005,27(2):195-199.
    [134]刘增文,高文俊,潘开文等.枯落物分解研究方法和模型讨论[J].生态学报,2006,26(6):1993-2000.
    [135]王金叶,车克钧,蒋志荣等.祁连山青海云杉林碳平衡研究[J].西北林学院学报,2000,15(1):9-14.
    [136]方精云,刘国华,朱彪等.北京东灵山温带森林生态系统的碳循环[J].中国科学(D辑地球科学),2006,36(6):533-543.
    [137]方晰,田大伦,项文化等.杉木人工林凋落物量及其分解过程中碳的释放率[J].中南林学院学报,2005,25(6):12-16.
    [138]毛子军.森林生态系统碳平衡估测方法及其研究进展[J].植物生态学报.2002,26(6):731-738.
    [139]何宗明,陈光水,刘剑斌等.杉木林凋落物产量、分解率与储量的关系[J].应用与环境生物学报,2003,9(4):352-357.
    [140]王彦辉,Pcter Rademacher,Horst Folster.环境因子对挪威云杉林土壤有机质分解过程中重量和碳的气态损失影响及模型[J].生态学报,1999,19(5):641-646.
    [141]陈四清,崔骁勇,周广胜等.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO_2排放速率研究[J].植物学报,1999,41(6):645-650.
    [142]黄承才,张信娣,沈军全等.浙江省马尾松(Pinus massoniana)林凋落物量及土壤碳库的初步研究[J].绍兴文理学院学报,2000,20(6):61-64.
    [143]蒋延玲,周广胜.兴安落叶松林碳平衡及管理活动影响研究(英文)[J].植物生态学报,2002,26(3):317-322.
    [144]方运霆,莫江明,黄忠良等.鼎湖山马尾松、荷木混交林生态系统碳素积累和分配特征[J].热带亚热带植物学报,2003,11(1):47-52.
    [145]方运霆,莫江明,彭少麟等.森林演替在南亚热带森林生态系统碳吸存中的作用[J].生态学报,2003,23(9):1685-1694.
    [146]李志安,邹碧,丁永祯等.森林凋落物分解重要影响因子及其研究进展[J].生态学杂志,2004,23(6):77-83.
    [147]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24(1):50-54.
    [148]赵先丽,周广胜,周莉等.盘锦芦苇湿地凋落物土壤微生物量碳研究[J].农业环境科学学报,2007,26(B03):127-131.
    [149]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    [150]Jenkinso D S,Adaros D E,Wild A.Model estimates of CO_2 emission from soil in response to global warming[J].Nature,1991,351:304-305.
    [151]Schlesinger W H,Andrews J A.Soil respiration and the global carbon cysle[J].Biogeochemistry,20OO,48:7-20.
    [152]Salimaon C I,Davidson E A,Victorala R L.CO_2 flux from soil in pastures and forests in southwestern Amazonia[J].Global Change Biology,2004,10:833-843.
    [153]Cisneros-Dozal L M,Trumbore S,Hanson P J.Partitioning sources of soil-respired CO_2 and their seasonal variation using a unique radiocarbon tracer[J].Global Change Biology,2006,12:194-204.
    [154]Boone R D,Nadelhoffer K J,Canary J D.Roots exert a strong influence on the temperature on the temperature sensitivity of soil respiration[J].Nature,1998,396:570-572.
    [155]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17(5):470-471.
    [156]Gaumont-Guay D,Black T A,Griffis T J.Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand[J].Agricultural and Forest Meteorology,2006,140:220-235.
    [157]福建农业资源与区划[M].福建科学技术出版社.1989.
    [158]Baldoechi D,Falge E.1998.A report from the Poison FLUXNET workshop.FLUXNET workshop.Polson Montana.1998.
    [159]易志刚,蚁伟民.森林生态系统中土壤呼吸研究进展[J].生态环境,2003,12(3):361-365.
    [160]周存宇,周国逸,王迎红等.鼎湖山针阔叶混交林土壤呼吸的研究[J].北京林业大学学报,2005,27(4):23-27.
    [161]刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸[J].植物生态学报,1998,22(2):119-126.
    [162]Risk D,Kellman L,Beltrami H.Carbon dioxide in soil profiles:Production and temperature dependence[J].Geophysical Research Letters,2002.29(6):11-14.
    [163]Pekka Vanhala.Seasonal variation in the soil respiration rate in coniferous forest soils[J].Soil Biology and Biochemistry,2002,34:1375-1379.
    [164]杨玉盛,董彬,谢锦升等.森林土壤呼吸及其对全球变化的响应[J]。生态学报,2004,24(3):583-591.
    [165]栾军伟,向成华,骆宗诗等.森林土壤呼吸研究进展[J].应用生态学报,2006,17(12):2451-2456.
    [166]Tang J W,Misson L,Gershenson A.Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains[J].Agricultural and Forest Meteorology,2005,132:212-227.
    [167]Kolari P,Pumpanen J,Rannik U.Carbon balance of different aged Scots pine forests in Southern Finland[J].Global Change Biology,2004,10:1106-1119.
    [168]Bekku Y,Koizumi,Oikawa T.Examination of four methods for measuring soil respiration[J].Applied Soil Ecology,1997,5:247-257.
    [169]Wayson C A,Randolph J C,Hanson P J.Comparison of soil respiration methods in a mid-latitude deciduous forest[J].Biogeochemistry,2006,80:173-189.
    [170]谢锦升.植被恢复对退化红壤易变碳及土壤呼吸的影响[D].北京林业大学博士学位论文,2005.
    [171]潘辉,洪伟,黄石德等.森林土壤呼吸研究概况[J].江西农业大学学报,2007,29(增刊):1-9.
    [172]Raich J W,Tufekcioglu A.Vegetation and soil respiration:Correlations and controls[J].Biogeochemistry,2000,48:71-90.
    [173]Luyssasrt S.,Inglima I.,Richardson A D.,et al.CO_2 balance of boreal,temperate,and tropical forests derived from a global database[J].Global Change Biology.2007,13:2509-2537.
    [174]Malhi Y.,Baldocchi and Jarvis P G.The carbon balance of tropical,temperate and boreal forests[J].Plant,Cell and Environment.1999,22:715-740.
    [175]Moncrieff.Estimates of the annual net carbonand water exchange of forests:The EuroFlux Methodology.Advances in Ecological Research,1999,30:113-175.
    [176]Baldocchi D.Measuring and modeling carbon dioxide and water vapour exchange over a temperate broad-leaved forests during the 1995 summer drought[J].Plant,Cell and Environment.1997,20:1108-1122.
    [177]Jarvis P G,Massheder J M.,and Hale S E.,et al.Seasonal variation of carbon dioxide,water vapor and energy exchanges of a boreal black spruce forest[J].Journal of Geophysical Research.1997,102:28953-28966.
    [178]Malhi Y.,Nobre A D.,Grace J.,et al.Carbon dioxide transfer over a Central Amzzonian rain forest[J].Journal of Geophysical Research.1998,D24:31593-31612.
    [179]Granier A.,Cesehia E.,Damesin C.,et al.The carbon balance of a young Beech forest[J].Functional Ecology.2000,14:312-325.
    [180]Phillips O L.,Malhi Y.,Higuchi N.,et al.Changes in the Carbon Balance of Tropical Forests:Evidence From Long-Term Plots[J].Science.1998,282(16):439-442.
    [181]Moncrieff J B.,Malhi Y and Leuning R.The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water[J].Global Change Biology.1996,2:231-240.
    [182]Goulden M L.,Munger J M.,Fan S -M.,et al.Measurements of carbon sequestration by long-term eddy covariance:methods and a critical evaluation of accuracy[J].Global Change Biology.1996,169-182.
    [183]Grace J.,Malhi Y.,Lloyd J.The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest[J].1996,2:209-218.
    [184]Carvalho J A.,Higuchi J.,Araujo T M.,et al.Combustion completeness in a rainforest clearing experiment in Manaus,Brazil.Journal of Geophysical Research-Atmospheres[J].1998,103:13195-13199.
    [185]Dixon R K.,Brown S.,Houghton R A.,et al.Carbon pools and flux of global forest ecosystems[J].Science.1994,90:791-800.
    [186]Wang S.,Chen J M.,Ju W M.,et al.Carbon sinks and sources in China's forests during 1901-2001[J].Journal of Environmental Management 2007,85:524-537.
    [187]Rice A H.,Pyle E H.,Saleska S R et al.Carbon balance and vegetation dynamics in an old-growth Amazonian forest[J].Ecological Applications Supplement 2004,14(4):S55-S71.
    [188]Dunn AL.,Barford C C.,Wofsy S C.,et al.Along-term record of carbon exchange in a boreal black spruce forest:means,responses to interannual variability,and decadal trends[J].Global Change Biology 2007,13:577-590.
    [189]杨玉盛,陈光水,王义祥等.格氏栲人工林和杉木人工林碳吸存与碳平衡[J].林业科学.2007,43(3):113-117.
    [190]Valentini R.,Matteucci G,Dolman A J.,et al.2000.Respiration as the main determinant of carbon balance in European forests.Nature,2000,404:861-865.
    [191]Medlyn B E.,Berbigier P.,Clement R.,et al.Carbon balance of coniferous forests growing in contrasting climates:Model-based analysis[J].Agricultural and Forest Meteorology.2005,131:97-124.
    [192]Law B E.,Falge E.,Gu L.,et al.Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation[J].Agriculture Forestry Meteorology.2002,113:97-120.
    [193]Barr A G.,Griffis T J.,Black T A.,et al.Comparing the carbon budgets of boreal and temperate deciduous forest stands[J].Canada Journal Forestry Research.2002,32:813-822.
    [194]Pilegaard K.,Hummelshφj P.,Jensen N O.,et al.2001.Two years of continuous CO_2 eddy-flux measurements over a Danish beech forest[J].Agriculture Forestry Meteorology.2001,107:29-41.
    [195]Arain M A.,Black T A.,Barr A G.,et al.Effects of seasonal and interannual climate variability on net ecosystem productivity of boreal deciduous and conifer forests[J].2002,Canada Journal Forestry Research.2002,32:878-891.
    [196]洪伟,吴承祯编著.试验设计与分析[M].北京:中国林业出版社,2004.
    [197]洪伟编著.林业试验设计技术与方法[M].北京:北京科学技术出版社,1993.
    [198]陈华豪等编著.林业应用数理统计[M].大连:大连海运学院出版社,1988.
    [199]李景文主编.森林生态学[M].北京:中国林业出版社,1992.
    [200]白云庆,赦文康等编.测树学[M].哈尔滨:东北林业大学出版社,1987.
    [201]刘世荣,温远光等著.杉木生产力生态学[M].北京:气象出版社,2005.
    [202]何斌,贾黎明,金大刚等.广西南宁马占相思人工林土壤肥力变化的研究[J].林业科学,2007,43(5):10-16.
    [203]黄传伟.沿海丘陵马尾松马占相思混交林生产力和改土效果研究[J].防护林科技,2004,61(4):8-10.
    [204]陈本学,林思祖,丁国昌等.相思类树种外植体繁殖研究进展[J].中国农学通报,2007,23(4):127-130.
    [205]宗亦臣,郑勇奇,张川红等.外来树种马占相思自然繁殖更新研究[J].林业科学,2006,42(7):16-20.
    [206]彭龙福35年生楠木人工林生物量及生产力的研究[J].福建林学院学报,2003,23(2):128-131.
    [207]邸道生,廖涵宗,张春能等.木荚红豆人工林生态系统生产力和林木生长规律的研究[J].南京林业大学学报,1991,15(3):60-65.
    [208]姚迎九,康文星,田大伦.18年生樟树人工林生物量的结构与分布[J].中南林学院学报,2003,23(1):1-5.
    [209]洪伟主编.闽江流域森林生态研究[M].厦门:厦门大学出版社,1999.
    [210]彭少麟,周厚诚,陈天杏等.广东森林群落的组成结构数量特征[J].植物生态学与地植物学学报,1989,13(1):10-17.
    [211]Jaccard.P.Contribution au probleme de Immigration post glaciaire de la flora alpine[J].Bull.Soe.Vaudoise Sci.Nat.1900,36:732-739.
    [212]王伯荪,彭少麟.鼎湖山雨林群落分析Ⅳ:相似性与聚类分析[J].中山大学学报,1985,(1):31-38.
    [213]洪伟,吴承祯编著.马尾松人工林经营模式及其应用[M].北京:中国林业出版社,1999.
    [214]大隅真一等著.于璞和等译.森林计测学[M].北京:中国林业出版社,1981.
    [215]孟宪宇主编.测树学[M].北京:中国林业出版社,1996:45-65,128-132.
    [216]邹春静.长白松人工林群落生物量和生产力的研究[J].应用生态学报,1995,6(2):123-127.
    [217]木村允,姜恕等译.陆地植物群落生物量的测定法[M].北京:科学出版社,1981:59-105.
    [218]Semmartin M.,Aguiar M R.,Distel R A.,et al.Litter quality and nutrient cycling affected by grazing-induced species replacements along a precipitation gradient[J].OIKOS,2004,107:148-160.
    [219]Tripathi S K.,Singh K P.Nutrient immobilization and release patterns during plant decomposition in a dry tropical bamboo savanna,India[J].Biology Fertility Soils 1992,14:191-199.
    [220]Tripathi S K.,Singh K P.Litter dynamics of recently harvested and mature bamboo savannas in a dry tropical region in India[J].Journal Tropical Ecology.1995,11:403-417.
    [221]Singh KP,Singh P K,Tripathi SK(1999)Litterfall,litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli,India[J].Biology Fertility Soils.1999,29:371-378.
    [222]Fioretto A.,Papa S.,Fuggi A.Litterfall and litter decomposition in a low Mediterranean shrubland[J].Biology Fertility Soils.2003,39:37-44.
    [223]Tripathi S K.,Sumida A.,Shibata H.,et al.Leaf litterfall and decomposition of different above- and belowground parts of birch(Betula ermanii)trees and dwarf bamboo(Sasa kurilensis)shrubs in a young secondary forest in Northern Japan[J].Biology Fertilization Soils.2006,43:237-246.
    [224]Facelli J M and Pickett S TA.Plant litter,its dynamics and effects on plant community structure[J].Botany Revegetation.1991,257:1-32.
    [225]Sariyildiz T.,Anderson J M.,Kucuk M.Effects of tree species and topograph on soil chemistry,litter quality,and decomposition in Northeast Turkey[J].Soil Biology Biochemistry.2005,37:1695-1706.
    [226]Zheng Z.,Shanmughavel P.,Sha L.,et al.Litter Decomposition and Nutrient Release in a Tropical Seasonal Rain Forest of Xishuangbanna,Southwest China[J].Biotropica 2006,38(3):342-347.
    [227]杨玉盛,郭剑芬,陈银秀等.福建柏和杉木人工林凋落物分解及养分动态的比较[J].林业科学.2004,40(3):19-25.
    [228]Pandey R R.,Sharma G.,Tripathi S K.,et al.Litterfall,litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India[J].Forest Ecology and Management.2007,240:96-104.
    [229]Didham R K.Altered leaf-litter decomposition rates in tropical forest fragments[J].Oecologia.1998,116:397-406.
    [230]Jorgensen J R.,Wells C G.,Metz L J.The nutrient cycle Key to continuous forest production[J].Journal Forestry.1975,73,400-403.
    [231]Maurice R.,Ignacio S R.,Mereedes R et al.,Biomass,nutrient content,litterfall and nutrient return to the soil in Mediterranean oak forests[J].Forest Ecology and Management.1999,119:39-49.
    [232]Victor A K.,Dimistrios A.,Alexandros T et al.,Litterfall,litter accumulation and litter decomposition rates in four ecosystems in northern Greece[J].Forest Ecology and Management.2001,144:113-127.
    [233]Barlow J.,Gardner T A.,Ferreira L V et al.,Litter fall and decomposition in primary,secondary and plantation forests in the Brazilian Amazon[J].Forest Ecology and Management.2007,247:91-97.
    [234]Vasconcelos,H.L.,Luizao,F.J.Litter production and litter nutrient concentrations in a fragmented极人臣Amazonian landscape.Ecology Application.2004,14:884-892.
    [235]邹碧,李志安,丁永祯等.南亚热带4种人工林凋落物动态特征[J].生态学报.2006,26(3):715-721.
    [236]Forrester D I.,Bauhus J.,Khanna P K.Growth dynamics in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii[J].Forest Ecology and Management.2004,193:81-95.
    [237]官丽莉,周国逸,张德强等.鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究[J].植物生态学报.2004,28(4):449-456.
    [238]刘东霞.万木林主要群落凋落物的动态研究[D].福建农林大学硕士学位论文.2004.
    [239]王敏英,刘强,高静.海南岛中部丘陵地区受台风侵袭影响的4种植物群落凋落物动态[J].海南师范大学学报.2007,20(2):156-160.
    [240]郭剑芬,陈光水,钱伟等.万木林自然保护区2种天然林及杉木人工林凋落量及养分归还[J].生态学报.2006,26(12):4091-4098.
    [241]俞新妥.杉术栽培学[M].福州:福建科学技术出版社,1996.
    [242]屠梦照,姚文华,翁轰等.鼎湖山南亚热带常绿阔叶林凋落物的特征[J].土壤学报.1993,30(1):34-41.
    [243]刘洋,张健,冯茂松.巨桉人工林凋落物数量、养分归还量及分解动态[J].林业科学.2006,42(7):1-10.
    [244]杨玉盛,林鹏,郭剑芬等.格氏栲天然林与人工林凋落物数量、养分归还及凋落叶分解[J].生态学报.2003,23(7):1278-1289.
    [245]林益明,何建源,杨志伟等.武夷山甜槠群落凋落物的产量及其动态[J].厦门大学学报(自然科学版).1999,38(2):280-286.
    [246]Wang Q.,Wang S.,Fang B.Litter production,leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China:effect of planting conifers with broadleaved species[J].Plant Soil.2007,297:201-211.
    [247]杨智杰.杉木、木荷人工林碳吸存与碳平衡研究[D].福建农林大学硕士学位论文.2007.
    [248]Jobaggy E G,Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation[J].Ecology Application.2000,10(2):423-436.
    [249]Borken W.,Davidson E A.,Savage K,et al.Drying and Wetting Effects on Carbon Dioxide Release from Organic Horizons[J].Soil Science Society of America.2003,67:1888-1896.
    [250]Kirschbaum MU F.The temperature dependence of organic-matter decomposition-still a topic of debate[J].Soil Biology & Biochemistry.2006,38:2510-2518.
    [251]Davidson E A,Savage K,Bolstad P et al.Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements.Agricultural and Forest Meteorology,2002.113:39-51
    [252]杨玉盛,郭剑芬,林鹏等.格氏栲天然林与人工林枯枝落叶层碳库及养分库[J].生态学报,2004.24(2):359-367.
    [253]Liu W Y,Fox J E D and Xu Z F.Biomass and nutrient accumulation in montane evergreen broadleaved forest (Lithocarpus xylocarpus type)in Ailao Mountains,SW China[J].Forestry Ecology Management.2002,158:223-235.
    [254]Birdsey R A and Heath L S.1995.Carbon changes in U S forests.In:L.A.Joyce(ed).Productivity of America's forests and climate change.Gen.Tech.Rep.RM-271.USDA Forest Service,Rocky Mountain Forest and Range Experiment Station.Fort Collins,CO:56-70.
    [255]Prescott C E.Do rotes of litter decomposition tell us anything we really need to know?[J].Forest Ecology and Management.2005,220:66-74.
    [256]Aerts R.Climate,leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems:a triangular relationship[J].1997,Oikos.79:439-449.
    [257]Vaieretti M V.,Perez-Harguindeguy N.,Gurvich D E.,et al.2005.Decomposition dynamics and physico-chemical leaf quality of abundant species in a montane woodland in central Argentina[J].Plant Soil.2005,278:223-234.
    [258]Isaac S R.,Nair M A.Biodegradation of leaf litter in the warm humid tropics of Kerala,India[J].Soil Biology Biochemistry.2005,37:1656-1664.
    [259]Martinez-Yrizar A.,Nunez S.,Burquez A.Leaf litter decomposition in a southern Sonoran Desert ecosystem,northweatern Mexico:Effects of habitat and litter quality[J].Acta oecologica.2007,1-10
    [260]李海涛,于贵瑞,李家永等.井冈山森林凋落物分解动态及磷、钾释放速率[J].应用生态学报.2007,18(2):233-340.
    [261]屠梦照,姚文华,翁轰等.樟子松人工林下针阔叶凋落物的特征[J].土壤学报.1993,30(1):35-41.
    [262]Polyakova O and Billor N.Impact of deciduous tree species on litterfall quality,decomposition rotes and nutrient circulation in pine stands[J].Forest Ecology and Management.2007.In Press.
    [263]Wang Q.,Wang S.,Fang B.Litter production,leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China:effect of planting conifers with broadleaved species[J].Plant Soil.2007,297:201-211.
    [264]Weerakkody J and Parkinson D.Leaf litter decomposition in an upper montane rainforest in Sri Lanka[J].Pedobiologia.2006,50:387-395.
    [265]Quideau S A.,Graham R C.,Oh S W et al.Leaf litter decomposition in a chaparral ecosystem,Southern California[J].Soil Biology & Biochemistry.2005,37:1988-1998.
    [266]Xu X.,Hirata E.Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest:N and P dynamics.Plant Soil.2005,273:279-289.
    [267]Coleman DC and Crossley DA.(1996)Fundamentals of soil ecology.Academic,San Diego
    [268]周存宇,蚁伟民.几种树种落叶分解的研究[J].湖北民族学院学报(自然科学版).2003,21(1):71-75.
    [269]沈海龙,丁宝永,沈国舫等.樟子松人工林下针阔叶凋落物分解动态[J].林业科学,1996,32(5):393-402.
    [270]Brofas G.Stamatelos G.Litterfall,litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece[J].Forestry Ecology Management.2001,144:113-127.
    [271]Caldentey J.,Ibrarra M.,Hemandez J.Litter fluxes and decomposition in Nothofagus pumilio stands in the region of Magallanes[J].Chile.Forestry Ecology Management.2001,148:145-157.
    [272]Pedersen L B.,Hansen J B.A comparison of littefall and element fluxes in even aged Norway spruce,sitka spruce and beech stands in Denmark[J].Forestry Ecology Management.1999,114:55-70.
    [273]Bubb K A.,Xu Z H.,Simpson J A.Some nutrient dynamics associated with litterfall and litter decomposition in hoop pine plantations of southern Quensland,Australia[J].Forestry Ecology Management.1998,110:343-352.
    [274]Louzada J N C.,Sohoereder J H,Marco P D.Litter decomposition in semideciduousforest and Eucalyptus spp.Crop in Brazil:a comparison[J].Forestry Ecology Management.1997.94:31-36
    [275]许晓静,张凯,刘波等.森林凋落物分解研究进展[J].中国水土保持科学.2007,5(4):108-114.
    [276]Dutta R K and Agrawal M.Litterfall,litter decomposition and nutrient release in five exotic plant species planted on coal mine spoils[J].Pedobiologia.2001,45:298-312.
    [277]杨玉盛,陈光水,王小国,等.皆伐对杉木人工林土壤呼吸的影响[J].土壤学报,2005,42(4):584-590.
    [278]方晰,田大伦,项文化等.第二代杉木中幼林生态系统碳动态与平衡[J].中南林学院学报.2002,22(1):1-6.
    [279]杨玉盛,陈光水,王义祥,等.格氏栲人工林和杉木人工林碳库及分配.林业科学.2006,42(10):43-47.
    [280]钟羡芳.连栽对杉木人工林碳贮量及土壤贮量及易变碳的影响[D].福建师范大学硕士学位论文.2007.
    [281]肖复明,范少辉,汪思龙等毛竹(Phyllostachy pubescens)、杉木(Cunninghamia lanceolata)人工林生态系统碳贮量及其分配特征[J].生态学报.2007,27(7):2794-2801.
    [282]吴仲民,李意德,曾庆波等.尖峰岭热带山地雨林C素库及皆伐影响的初步研究[J].应用生态学报.1998,9(4):341-344.
    [283]尉海东和马祥庆.不同发育阶段马尾松人工林生态系统碳贮量研究[J].西北农林科技大学学报(自然科学版).2007,35 17(1):1-174
    [284]Ueda T..Treatment of domestic sewage from rural settlements by a membrance bioreaetor.Water Science Technology.1996,34(9):189-196.
    [285]Peiehl M.,Arain A..Above-and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests.Agricultural and Forest Meteorology.2006,140:51-63.
    [286]汪业勖,赵士洞 中国森林生态系统区域碳循环研究[D].中国科学院自然资源综合考察委员会1999博士学位论文.
    [287]Kuzyakov Y.,Cheng W.Photosynthesis controls of rhizosphere respiration and organic matter decomposition[J].Soil Biology and Biochemistry.2001,33:1915-1925.
    [288]Gaumont-Guay D.,Black T A.,Griffis T J.Influence of temperature and drought on seasonal and interannual variations of soil,bole and ecosystem respiration in a boreal aspen stand[J].Special issue of Agricultural and Forest Meteorology(Fluxnet Canada Research Network).2006,140:203-219.
    [289]Kellman L.,Beltrami H.,Risk D.Change in seasonal soil respiration with pasture conversion to forest in Atlantic Canada[J].Biogeochemistry.2006.In Press.
    [290]Shibstova O.,Lloyd J.,Evarafova S.Seasonal and spatial variability in soil CO_2 efflux rotes for a central siberian Pinus sylvestris forest[J].Tellus.2002,54B:552-567.
    [291]Lee M.,Nakane K.,Nakatsubo T.Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest[J].Plant and Soil.2003,255:311-318.
    [292]牟守国.温带阔叶林、针叶林和针阔混交林土壤呼吸的比较研究[J].土壤学报.2004,41(4):564-570.
    [293]杨玉盛,陈光水,王小国等.中国亚热带森林转换对土壤呼吸及通量的影响[J].生态学报.2005,25(7):1684-1690.
    [294]易志刚,蚁伟民,周国逸等.鼎湖山三种主要植被类型土壤碳释放研究[J].生态学报.2003,23(8):1673-1678.
    [295]陈全胜,李凌浩,韩兴国等.水热条件对锡林河流域典型草原退化群落土壤呼吸的影响[J].2003,27(2):202-209.
    [296]沙丽清,郑征,唐建维等.西双版纳热带季节雨林的土壤呼吸研究[J].中国科学D辑 地球科学.2004,34(增刊Ⅱ):167-174.
    [297]吴琴,曹广民,胡启武等.矮嵩草草甸植被-土壤系统CO_2的释放特征[J].资源科学.2005,27(2):96-102
    [298]Yan J.,Wang Y.,Zhou G,et al.Estimates of soil respiration and net primary production of three forests at different succession stages in South China[J].Global Change Biology.2006,12:810-821.
    [299]Mo W.,Lee M.,Uchida M.Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan[J].Agricultural and Forest Meteorology.2005,134:81-94.
    [300]Chen H and Tian H-Q.Does a General Temperature-Dependent Q_(10)Model of Soil Respiration Exist at Biome and Global Scale?[J].Journal of Integrative Plant Biology.2005,47(11):1288-1302.
    [301]Moren A-S,Lindroth A.CO_2 exchange at the floor of a boreal forest[J].Agricultural and Forest Meteorology.2000,101:1-14.
    [302]Davidson E A.,Belk E.,Boone R D.Soil water content and ternperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J].Global Change Biology.1998,4:217-227.
    [303]Tjoelker M G.,Oleksyn J.,Reich P B.Modelling respiration of vegetation:evidence for a general temperature-dependent Q_(10)[J].Global Change Biology.2001,7:223-230.
    [304]Badcr N E.,Cheng W.Rhizosphere priming effect of Populus fremontii obscures the temperature sensitivity of soil organic carbon respiration[J].Soil Biology and Biochemistry.2007,In Press.
    [305]Rey A.,Pegoraro E.,Tedeschi V.Annual variation in soil respiration and its components in a coppice oak forest in Central Italy[J].Global Change Biology.2002,8:851-866.
    [306]Atkin O K.,Tjoelker M G.Theramal acclimation and the dynamic response of plant respiration to temperature[J].Trends Plant Science.2003,8(7):343-351.
    [307]Masako D,Development of an automatic chamber system for long-term measurement of CO_2 flux from roots[J].Tellus.2006,58B:502-512
    [308]Kominami Y.,Miyama T.,Tamai K.,et al.Characteristics of CO_2 flux over a forest on complex topography[J].2003,Tellus.55B:313-321.
    [309]Savage K.,Davidson E A.Interannual variation of soil respiration in two New England Forests[J].Global Biogeochemistry Cycles.2001,15:337-350.
    [310]Borken W.,Xu Y J.,Davidson E A.et al.Site and temporal variation of soil respiration in European beech,Norway spruce,and Scot pine forests[J].Global Change Biology.2002,8:1205-1216.
    [311]盛浩.中亚热带常绿阔叶林碳储量和地下碳平衡[D].福建师范大学硕士学位论文.2007.
    [312]Lloyd J,Taylor J A.On the temperature dependence of soil respiration[J].Functional Ecology,1994,8:315-323.
    [313]Thierron V,Laudelout H.Contribution of root respiration to total CO_2 efflux from the soil of a deciduous forest[J].Canadian Journal of Forest Research,1996,26:1142-1148.
    [314]King J S,Hanson P J,Bernhardt E.A multiyear synthesis of soil respiration responses to elevated atmospheric CO_2 from four forest FACE experiments[J].Global Change Biology,2004,10:1027-1042.
    [315]Andrews J A,Schlesinger W H.Soil CO_2 dynamics,acidification,and chemical weathering in a temperate forest with experimental CO_2 enrichment[J].Global Biogeoehemical Cycles,2001,15:149-162.
    [316]周玉梅,韩士杰,辛丽花等.CO_2浓度升高对红松和长白松土壤呼吸作用的影响[J].应用生态学报,2006,17(9):1757-1760.
    [317]Wiseman P E,Seiler J R.Soil CO_2 effiux across four age classes of plantation loblolly pine(Pinus taeda L.)on the Virginia Piedmont[J].Forest Ecology and Management,2004,192:297-311.
    [318]Saiz G,Byrne K A.Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland[J].Global Change Biology,2006,12:1-14.
    [319]Irvine J,Law B E.Contasting soil respiation in young and old-growth ponderosa pine forests[j].Global Change Biology,2002,8:1183-1194.
    [320]李营.不同年龄杉木林土壤呼吸及其影响因素研究[D].福建师范大学硕士学位论文,2007.
    [321]肖胜生.滨海沙地木麻黄人工林生态系统的土壤呼吸与碳平衡研究[D].福建农林大学硕士学位论文,2007.
    [322]Klopatek J M.Belowground carbon pools and processes in different age stands of Douglas-fir[J].Tree Physiology,2002,22:197-204.
    [323]Bond-Lamberty B.Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence[J].Global Change Biology,2004,10:473-487.
    [324]Hoberg P,Nordgren A,Buchmann N.Large-scale forest girdling shows that current photosynthesis drives soil respiration[J].Nature,2001,411:789-792.
    [325]Tang J,Dennis D,Baldocci.Tree photosynthesis modulates soil respiration on a diurnal time scale[J].Global Change Biology,2005,11:1298-1304.
    [326]Raich J W,Nadelhoffer K J.Belowground carbon allocation in forest ecosystems:Global trends[J].Ecology.1989.70:1346-1354.
    [327]Nago J.,Epron D.,Brechet C.Estimating the contribution of leaf litter decomposition to soil CO2 effiux in beech forest using 13C-depleted litter[J].Global Change Biology.2005,11:1768-1776.
    [328]Subke J A.,Reichstein M.,Tenhunen J.D.Explaining temporal variation in soil CO_2 effiux in a mature spruce forest in Southern Germany[J].Soil Biology and Biochemistry.2003,35:1467-1483.
    [329]Lee M S.,Nakane K.,Nakatsubo T.The importance of root respiration in annual soil carbon fluxes in a cool-temperate deciduous forest[J].Agricultural and Forest Meteorology[J].2005,134:95-101.
    [330]Wu J.,Guan D.,Wang M.Year-round soil and ecosystem respiration in a temperate broad-leaved Korean Pine forest[J].Forest Ecology and Management.2006,223:35-44.
    [331]冉景丞,何师意,曹建华等.亚热带喀斯特森林土壤CO_2排放量动态研究[J].贵州科学.2002,20(2):42-47.
    [332]黄承才,葛滢,常杰等.中亚热带东部三种主要木本群落土壤呼吸的研究[J].生态学报.1999,19(3):324-328.
    [333]周志田,成升魁,刘允芬等.中国亚热带红壤丘陵区不同土地利用方式下土壤CO_2排放规律初探[J].资源科学.2002,24(2):83-87.
    [334]Adachi M.,Bekku Y S.,Konuma A.Required sample size for estimating soil respiration rates in large areas of two trophical forests and of two types of plantation in Malaysia[J].Forest Ecology and Management.2005,210:455-459.
    [335]Hashimoto S.,Tonaka N.,Suzuki M.Soil respiration and soil CO_2 concentration in a trophical forest,Thailand[J].Journal Forestry Resarch.2004,9:75-79.
    [336]Davidson E A.,Verchot L V.,Cattanio J H.Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia[J].Biogeochemistry.2000,48:53-69.
    [337]Hanson P J,Edwards N T,Garten C T.Separating root and soil microbial contributions to soil respiration:a review of methods and observations[J].Biogeochemistry.2000,48:115-146.
    [338]Killham K.,Yeomans C.Rhizosphere carbon flow measurement and implications:from isotopes to reporter genes[J].Plant and Soil.2001,232:91-96.
    [339]Raich,J.W.and W.H.Schlesinger.1992.The global dioxide flux in soil respiration and its relationship to vegetation and climate[J].Tellus.1992,44B:81-99.
    [340]Bowden R D.,Nadelhoffer K J.,Boone RD.Contributions of aboveground litter,belowground litter,and root respiration to total soil respiration in a temperate mixed hardwood forest[J].Canadian Journal of Forestry Research.1993,23:1402-1407.
    [341]Epron D.,Farque L.,Lucot E.Soil CO_2 efflux in a beech forest:the contribution of root respiration[J].Annual Forest Science.1999,56:289-295.
    [342]陈光水,杨玉盛,王小国等.格氏栲天然林与人工林根系呼吸季节动态及影响因素[J].生态学报.2005,25(8):1941-1947.
    [343]Kelting D L.,Burger J A.,Edwards G S.Estimating root respiration,microbial respiration in the rhizosphere,and root-free soil respiration in forest soils[J].Soil Biology and Biochemistry.1998,30:961-968.
    [344]Bhupinderpal-Singh.,Nordgren A.,Ottosson L M.Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest:extending observations beyond the first year.Plant Cell Environment.2003,26:1287-1296.
    [345]Ohashi M.,Gyokusen K.,Saito A.Contribution of root respiration to total soil respiration in a Japanese cedar(Cryptomeria japonica D.Don)artificial forest[J].Ecological Research.2000,15:323-333.
    [346]Maier C A.,Kress L W.Soil CO_2 evolution and root respiration in 11 year-old loblolly pine(Pinus taeda)plantations as affected by moisture and nutrient availability[J].Canadian Journal of Forest Research.2000,30:347-359.
    [347]Scotta E D.,Veldkamp E.,Guimaraes B R.Landscape and climatic controls on spatial and temporal variation in soil CO_2 efflux in an Eastern Amazonian Rainforest,Caxiuana,Brazil[J].Forest Ecology and Management.2006,237:57-64.
    [348]褚金翔,张小全.川西亚高山林区三种土地利用方式下土壤呼吸动态及组分区分[J].生态学报,2006,26(6):1693-1700.
    [349]邓琦,刘世忠,刘菊秀等.南亚热带森林凋落物对土壤呼吸的贡献及其影响因素[J].地球科学进展.2007,22(9):976-986.
    [350]Gill R A,Jackson R B.Global patterns of root turnover for terrestrial ecosystems.New Phytol,2000,147:13-31.
    [351]Liao L P,Deng S J,Yu X J,et al.Growth,distribution and exudation of fine roots of Chinese fir trees grown in continuously cropped plantations..Aeta Ecologica Sinica,2001,21(4):569-573.
    [352]陈光水,何宗明,谢锦升等.福建柏和杉木人工林细根生产力、分布及周转的比较[J].林业科学.2004,40(4):15-21.
    [353]杨玉盛,陈光水,林鹏等.格氏栲天然林与人工林细根生物量、季节动态及净生产力[J].生态学报.2003,23(9):1719-1730.
    [354]Grace J.,J Lloyd.,A C Miranda.,et al.Carbon dioxide uptake by an undisturbed tropical rain forest in South-West Amazonia 1992-1993[J].Science.1995,270:778-780.
    [355]Miranda AC,Miranda H S.,Lloyd J.,et al.Fluxes of carbon,water and energy over a Brazilian cerrado:an analysis using eddy covariance ad stable isotopes Plant Cell Environment.1997,20:315-328
    [356]李意德,方精云.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报.1998,8(4):371-378.
    [357]蒋延玲,周广胜.兴安落叶松林碳平衡和全球变化影响研究[J].应用生态学报.2001,12(4):481-484.
    [358]Yamarnoto S N.,Saigusa S.,Murayama.,et al.Long-term results of flux measurement from a temperate deciduous forest site(Takeyama).In:Proceedings of International Work-shop for Advanced Flux Network and Flux Evaluation.Sapporo:ASAHI Printing CO.Ltd.2001,5-10.
    [359]Wirth C.,Czimczik C I.,Schulze E-D.Beyond annual budgets:carbon flux at different temporal scales in fire-prone Siberian Scots pine forests[J].Tellus.2002,54B:611-630.
    [360]Chen X.,Hutley L B and Eamus D.Carbon balance of a tropical savanna of northern Australia[J].Oecologia.2003,137:405-416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700