多针对板电晕微观特性及降低其有害副产物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室内空气污染物具有复杂、多样、长期性和低浓度等特点,等离子体空气净化可快速、高效降低室内多种污染物。采用的主要等离子体发生技术为电晕放电,但电晕放电会同时产生少量的有害产物包括03和N02,形成二次污染。在实验室前期研究基础上,本文系统分析多针对板电晕放电电离区的微观特性;利用光学发射光谱(OES)法,对放电产生OH自由基进行优化研究,为后续以针阵列对板电晕放电为核心技术的空气净化单元研制提供设计依据。然后以降低放电产生的有害产物为研究目标,实验研究有害副产物N02与03产生,并采用Mn02催化剂催化降低N02及03。通过封闭空间内实验研究和应用试验,获知放电产生N02与O3相关规律及其去除规律,并确定室内空气净化装置的设计依据和运行参数。
     首先,根据发射光谱法(OES)对多针对板电晕放电的测量结果,对相应的实验数据进行统计、拟合和理论分析。得到高压针电极周围N2第二正带跃迁谱峰(ISPB)光强分布的等光强线曲线方程;获知电离区ISPB的分布,从而确定电离区内ISPB×S、电子平均速度、电流密度等微观电参数的变化关系,系统分析多针对板正、负电晕放电电离区和迁移区中微观物理特性。
     然后,以激发态OH自由基为研究对象,利用OES技术分别研究正、负电晕放电中,放电功率、电极间距和相对湿度等放电电参数对产生激发态OH自由基的影响。在稳定放电条件下,获知产生激发态OH自由基的优化运行参数,确定宏观参数与OH自由基之间的相关规律。
     为了使针阵列对板电晕放电适用于室内空气净化,本论文重点考虑放电产生有害副产物带来的安全问题。首先研究放电产生NO2的相关规律,主要包括放电功率、放电极性、电极间距和相对湿度等参数对NO2产生量的作用,并得到一些参数设计依据和定性运行依据。在此基础上,采用MnO2作为活性成分、SiO2-活性碳做载体的催化剂对放电产生的NO2进行去除实验研究。在不同放电功率P、不同相对湿度RH和不同放电极性等放电条件下,研究Mn02催化剂用量与NO2去除效率的关系。获知采用MnO2催化剂有效降低NO2的方法及其运行规律。
     其次进行针阵列对板电晕放电产生O3及催化降低O3的研究。在不同放电极性下,通过观测封闭小室内电晕放电产生的有害副产物O3浓度变化,总结出电晕放电产生O3的相关规律。采用MnO2作为活性成分、SiO2-活性碳做载体的催化剂对放电产生的O3进行去除实验。在不同放电功率P和不同放电极性等放电条件下,研究MnO2催化剂用量与O3去除效率的关系。获知MnO2催化剂作用下O3去除的相关规律。
     最后,在前述研究基础上,在体积为84m3的封闭试验室,将不同放电极性的针阵列对板电晕放电应用于实际空气净化中,放电反应器出口加设MnO2催化剂,研究降低放电产生有害副产物NO2和O3的效果,并通过催化剂分析,研究作用规律。最终获知满足《室内空气质量标准》(GB/T18883—2002)中NO2和O3浓度标准值的设计依据和运行条件,为室内空气净化的实际应用提供技术支持。
Indoor air pollutants are characterized by their mutil-components, long period, low concentrations, and etc. Most pollutants can be effectively and rapidly removed by plasma air cleaning. Although corona discharge is adopted as a main plasma technology in indoor air cleaning, some harmful byproducts such as ozone and NOx are generated, and the corresponding secondary pollution is formed. Based on the laboratory earlier work, this thesis analyzes the properties in ionization region of multi-needle-to plate corona discharge systematically, and well studies the optimization of Excited state OH radical yield in the corona discharge by OES, which will provide design principles for needle matrix to plate DC corona discharge as the core technology of indoor air cleaning device. Taking the removal of harmful byproducts generated by corona discharge as the research goal, the generation of NO2 and O3 in corona discharge as well as their decomposition by MnO2 is studied experimentally. The relative roles of generation and removal of the byproducts are abtained by bench-scale experiements in a closed chamber and application tests. Meanwhile, the design principles and running parameters of the air cleaning device have been determined.
     Firstly, according to the measured experimenatal results of multi-needle-to-plate corona discharge by OES, the statistics, fitting and theoretical analyses are carried out. The isophote equations of N2 second positive band intensity (ISPB) are obtained. The distribution of ISPB and the variation of micro electrical parameters including ISPB×S, the average speed of electrons and current density in ionization region have been known. The micro physical properties in ionization and drift regions of multi-needle-to-plate positive-negative corona discharge are analysed systematically.
     Secondly, taking excited state OH radical as study object, the influences of discharge parameters including discharge power, electrode gap and relative humidity on OH generation in the corona discharge by OES are well studied. Under stable discharge condition, the optimized running parameters of excited OH yield have been abtained, and the relative roles between macro parameters and OH radical have been determined.
     In this thesis, in order to make the technology of needle matrix to plate corona discharge suitable for indoor air cleaning, safety problem caused by harmful byproducts generated in corona discharge is considered in detail. The relative roles of NO2 generated by the corona discharge are studied, especially on the influences of discharge power, discharge polarity, electrode gap and relative humidity on NO2 generation. Some principles of the parameter design as well as of qualitative running conditions have been obtained. On this basis, removal experiments of NO2 with catalyst containing MnO2 as active ingredients and SiO2-active Carbon as vector have been conducted. The relationship between MnO2 content and NO2 removal efficiency is studied under different discharge conditions such as discharge power P, relative humidity RH, discharge polarity, and etc. The method of effective removal of NO2 by MnO2 and relative running roles have been obtained.
     The generation of O3 and its removal with catalyst in needle matrix to plate corona discharge are also studied. The generation roles of O3 have been summarized by observing concentration variation of O3 in a closed chamber. Removal experiments of O3 with catalyst containing MnO2 as active ingredients and SiO2-active Carbon as vector have been conducted. The relationship between MnO2 content and O3 removal efficiency is studied under different discharge conditions including discharge power P and discharge polarity. The roles of O3 removal by MnO2 catalyst have been obtained.
     Finally, on the basis of the above work, the application tests of the noval air cleaning device with needle matrix to plate corona discharge have been conducted under different discharge polarities in a closed room of 84m3. MnO2 catalyst is set on the exit of the discharge reactor to study the removal effects of harmful byproducts of NO2 and O3 generated by the discharge. Meanwhile, the catalyst functional pattern is also studied by catalyst analysis. In the end, it has been known that the values of concentrations of NO2 and O3 generated by the corona discharge satisfy the demand of Standard of Indoor Air Quality(GB/T18883-2002). Hence, this work has provided powerful technology support for practical application of indoor air cleaning.
引文
[1]程琰,尹华强,刘勇军,等.多孔炭材料在室内空气污染控制中的应用.林产化学与工业,2004,24(2):92-97.
    [2]侯一宁,于安,王燕.二氧化钛—活性炭纤维混合材料净化室内甲醛污染.四川大学学报(工程科学版),2004,36(4):41-44.
    [3]丁照兵,李娟,李波.室内空气净化技术研究综述.微量元素与健康研究,2008,25(2):63-65.
    [4]陈烈贤.室内空气净化器现状及发展.中国卫生工程学杂志,1996,5(1):1-3.
    [5]孟宪谦,薛友祥.TiO2光触媒担载多孔陶瓷室内空气净化元件的研究.现代技术陶瓷,2004,25(2):16-18.
    [6]刘凡新,郭志岩.掺铈纳米TiO2薄膜制备及光催化降解甲醛甲苯.分子催化,2003,17(4):297-301.
    [7]张彭义,李昭,田地.二氧化钦涂覆材料对甲苯的光催化降解作用.上海环境科学,2002,21(12):709-711.
    [8]李辉,孔庆源.室内空气净化技术的研究与探讨.林业机械与木工设备,2010,38(5):31-33.
    [9]邢协淼,唐明德,易义珍,等.低浓度臭氧对室内空气中部分污染物的影响.中国公共卫生,1997,13(3):182.
    [10]徐江兴,姜安玺,王琨.臭氧引起的室内化学污染.哈尔滨建筑科技大学学报,1999,32(6):74-77.
    [11]徐庆华,何文胜.不同消毒方法对空气消毒净化效果评价.中国消毒学杂志,2003,20(1):23-26.
    [12]唐启明,石闻洲.我国室内空气污染及净化产品市调查和预测.环境保护,2001,11:365-369.
    [13]菅井秀郎.离子体电子工程学.北京:科学出版社,2002.
    [14]Ogata A, Shintani N, Mizuno K, et al. Decomposition of Benzene using non-thermal plasma reactor packed with ferroelectric pellet. IEEE industry Application Conference Thirty-Second IAS Annual Meeting, New Orleans, LA,1997,3:1975-1982.
    [15]Toshiaki Y. VOC Decomposition by Nonthermal Plasma Processing-A New Approach. Journal of Electrostatics,1997,42 (1-2):227-238.
    [16]康颖.人l:环境下氧化性自由基对气态污染物的作用机理及应用(博十学位论文).杭州:浙江大学,2008.
    [17]李洁,李坚,金毓岑,等.低温等离子体技术处理挥发性有机物.环境污染治理技术与设备,2006,7(6):101-105.
    [18]左莉,侯立安.介质阻挡放电与脉冲电晕放电净化气态污染物的试验研究.洁净与空调技术,2003,(3):43-45.
    [19]Ed Cichanowicz. Selective catalytic reduction controls NOx in Europe. Power Engineering,1997,92 (8):36-38.
    [20]Takaki K, Shimizu M, Mukaigawa S, et al. Effect of electrode shape in dielectric barrier discharge plasma reactor for NOx removal. IEEE Transactions on Plasma Science, 2004,32 (1):32-38.
    [21]P Wagner, P E G Cook. SCR succeeds at Logan generating plant. Power Engineering, 1997,101 (1):28.
    [22]C Tendero, C Tixier, P Tristant, et al. Atmospheric pressure plasmas:A review. Spectrochimica Acta Part B:Atomic Spectroscopy,2006,61 (1):2-30.
    [23]尹淑慧.电晕放电与介质阻挡放电等离子体简介.现代物理知识,2006,18(2):21-22.
    [24]Ohtani B. Preparing articles on photocatalysis-beyond the illusions misconceptions and speculation. Chemistry letters,2008,37 (2):217-229.
    [25]Eujishima A, Honda K. Electrochemical Photolysis of Water at a semiconductor Electrode. Nature,1972,238 (5358):37-38.
    [26]Hodgson A T, Destaillats H, Sullivan D P, et al. Performance of ultraviolet photocatalytic oxidation for indoor air application. Indoor Air,2007,17 (4):305-316.
    [27]Connor R C, Heithaus M R. Approach by great white shark elicits flight response in bottlenose dolphins. Marine Mammal Science,1996,12 (4):602-606.
    [28]Khali 1 L B, Mourad W E, Rohoael M W. Photocatalytic reduction of environmental pollutant Cr(VI)over some semiconductors under UV/visible-light illumination. App. Catal.B:Environ,1998,17 (3):267-273.
    [29]Yamashita H, Ichihashi Y, Anpo M. Photocatalytic Decomposition of NO at 275 K on Titanium Oxides Included within Y-Zeolite Cavities:The Structure and Role of the Active Sites. J. Phys. Chem,1996,100 (40):16041-16044.
    [30]Park D R, Zhang J L, Ikeue K, et al. Photocatalytic oxidation of ethylene to CO2 and H2O on Ultrafing powdered TiO2 photocatalysts in the presence of O2 and H2O. Journal of Catalysis,1999,185 (1):114-119.
    [31]Peral J, Domenech X, Ollis D F. Heterogeneous photocatalysis for purification, decontamination and deodorization of air. Journal of Chemical Technology and Biotechnology,1997,70 (2):117-140.
    [32]Hoffman M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis. Chemical Reviews,1995,95 (1):69-96.
    [33]Fujishima A, Zhang X T. Titanium dioxide photocatalysis:present situation and future approaches. Comptes Rendus Chimie,2006,9 (5-6):750-760.
    [34]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. Photochemistry and Photobiology C:Photochemistry Reviews,2000,1 (1):1-21.
    [35]周真一.TiO2光催化剂的研究进展及其应用.山东陶瓷,2010,33(3):17-19.
    [36]徐薇,徐江兴,廖飞凤,等.室内丙酮气体的Ti02/UV光催化氧化.哈尔滨工业大学学报,2003,35(12):1449-1451.
    [37]刘洋,尚静,王忠.TiO2纳米粒子光催化降解室内挥发性有机污染物苯的研究.环境污染治理技术与设备,2006,7(10):43-46.
    [38]黄婉霞,孙作凤,吴建春,等.纳米二氧化钛光催化作用降解甲醛的研究.稀有金属,2005,29(1):34-38.
    [39]杨瑞,莫金汉,张寅平.TiO2/丝光沸石光催化降解甲醛特性研究.工程热物理学报,2005,26(3):474-476.
    [40]Irokawa Y, Morikawa T Aoki K, et al. Photodegradation of toluene over TiO2-xNx under visible light irradiation. Physical Chemistry Chemical Physics,2006, 8:1116-1121.
    [41]Wu Z B, Gu Z L, Zhao W R, et al. Photocatalytic oxidation of gaseous benzene over nanosized TiO2 prepared by solvothermal method. Chinese Science Bulletin,2006, 52:3061-3067.
    [42]Agrios A G, Pichat P. State of the art and perspectives on materials and applications of Photocatalysis over TiO2. Journal of Applied Electrochemistry,2005, 35 (7):655-663.
    [43]张政委,陈志祥,赖小林,等.改性二氧化钛对苯的光催化氧化作用及其结构研究.新疆化工,2006,4:15-19.
    [44]Kamat P V, Meisel D. Nanoparticles in advanced oxidation processes. Current Opinion in Colloid & Interface Science,2002,7 (5-6):282-287.
    [45]李英柳,胡将军.纳米TiO2负载于活性炭纤维吸附一光催化氧化室内挥发性有机气体甲醛的研究:(硕士毕业论文).武汉:武汉大学,2004.
    [46]王文春,吴彦,李学初.(SO2,N2)气体中脉冲放电SO发射光谱测量实验研究.分子科学学报,1999,15(1):1-5.
    [47]吴忠标.室内空气污染及净化技术.北京:化学工业出版社,2005.
    [48]杨武,荣命哲.低温等离子体空气净化原理及应用.电工技术杂志,2000,3:31-32.
    [49]Kim H H, Lee Y H, Ogata A, et al. Plasma driven catalyst processing packed with photocatalyst for gas-phase benzene decomposition. Catalysis Communications,2003, 4 (7):347-351.
    [50]Misook Kang, Bum Joon Kim, Sung M Cho, et al. Decompositon of toluene using an atmospheric pressure plasma/TiO2 catalytic system. Journal of Molecular Catalysis A:Chemical,2002,180 (1-2):125-132.
    [51]T Zhu, J Li, Y Jin, et al. Decomposition of benzene by non-thermal plasma processing:Photocatalyst and ozone effect. J Environ. Sci. Tech,2008,5 (3):375-384.
    [52]侯立安,吴祖国,王佑君,等.离子、光催化耦合空气净化装置的设计与研究.机电产品开发与创新,2009,22(4):16-18.
    [53]B Lu, X Zhang, X Yu, et al. Catalytic oxidation of benzene using DBD corona discharge. Journal of Hazardous Materials B,2006,137:633-667.
    [54]K Sekiguchi, A Sanada, K Sakamoto. Degradation of toluene with a ozone-decomposition catalyst in the presence of ozone and the combined effect of TiO2 addition. Catal. Commun,2003,4 (5):247-252.
    [55]Lee B Y, Park S H, Lee S C, et al. Decomposition of benzene by using a discharge plasma- photocatalyst hybrid system. Catalysis Today,2004,93-95:769-776.
    [56]梁亚红,张鹏,党小庆,等.气体放电条件下负载光催化剂陶瓷的实验研究.西安建筑科技大学学报,2004,22(2):46-48.
    [57]Li Duan, D Yakushiji, S Kanazawa, et al. Decomposition of Tolunene by Streamer corona Discharge with Catalyst. Journal of Electrostatics,2002,55:311-319.
    [58]F Thevenet,0 Guaitella, E Puzenat, et al. Influence of water vapour on plasma/ photocatalytic oxidation efficiency of acetylene. J Applied Catalysis B: Environmental,2008,84 (3-4):813-820.
    [59]F Thevenet,O Guaitella, E Puzenat, et al. Oxidation of acetylene by photocatalysis coupled with dielectric barrier discharge. Catalysis Today,2007,122 (1-2):186-194.
    [60]H H Kim, K Tsunoda, S Katsura, et al. A novel plasma reactor for NOx control using photocatalyst and hydrogen peroxide injection. IEEE Trans. Ind. Applicat.,1999,35 (6):1306-1310.
    [61]Katamoto A, Doi T, Kogoshi S. Efficient NOx Removal Using Silent Discharges and TiO2 Photocatalyst Simultaneously. The 30th International Conference on Plasma Science, Jeju Korea,2003,:284.
    [62]J V Durme, J Dewult, W Sysmans, et al. Efficient toluene abatenment in indoor air by a plasma catalytic hybrid system. Applied catalysis B:Enviromental,2007,74 (1-2):161-169.
    [63]S Iwasaki, Y Murata, I Daisuke, et al. Improvement of NOx Removal Rate Using Discharge, Photocatalyst and UV Rays. IEEJ Transactionson Fundamentals and Materials, 2004,124 (10):909-914.
    [64]P Y Sung, B R Deshwal, H M Seung. NOx removal from the flue gas of oil-fired boiler using a multistage plasma-catalyst hybrid system. Fuel Processing Technology,2008, 89 (5):540-548.
    [65]Zhu Y M, Kong X P, Liu T, et al. Preliminary study of synergetic effect of non-thermal plasma and photocatalysis coupling on pollutant gases purification. J. Adv. Oxid. Technol.,2007,10 (1):189-192.
    [66]P Y Zhang, F Y Liang, G Yu, et al. A comparative study on de-composition of gaseous toluene by O3/UV, TiO2/UV and 03/TiO2/UV. Journal of Photochemistry and Photobiology A:Chemistry,2003,156:189-194.
    [67]L P Huang, Q H Wang, S Yang, et al. Removal of NO2 produced by corona discharge in indoor air cleaning. Adv. Oxid. Technol.,2009,12 (2):238-241.
    [68]H Einaga, T Ibusuki, S Futamura. Performance evaluation of hybrid systems comprising silent discharge plasma and catalysts for VOC control. Conference Record of the 2000 IEEE Industry Applications Conference,2000,2:858-863.
    [69]杨学昌,杨锐,夏天,等.纳米TiO2等离子体放电催化空气净化研究.高压电器,2004,40(1):3-8.
    [70]Sjon S Y, Hong Y K, Lee S H, et al. Study on Performance of Photocatalyst Plasma for Air Clean. Proceeding of the 4th International Symposium on Heating, Ventilating and Air Conditioning, Beijing,2003,1-2:37-43.
    [71]Yan N Q, Wu Z C, Tan T E. Modeling of Formaldehyde Destruction under Pulsed Discharge Plasma. Journal of Environmental Science and Health,2000,35A (10):1951-1964.
    [72]T Fujii, Y Aoki, Naoki Yoshioka, et al. Removal of NOx by DC Corona Reactor with Water. Journal of Electrostatics,2001,51:8-14.
    [73]徐江兴,姜安玺,王琨.臭氧引起的室内化学污染.哈尔滨建筑大学学报,1999,32(6):74-77.
    [74]Destaillats H, Lunden M M, Singer B C, et al. Indoor secondary pollutants from household product emissions in the presence of ozone:a bench-scale chamber study. Environmental Science & Technology,2006,40 (14):4421-4426.
    [75]Hubbard H F, Coleman B K, Sarwar G, et al. Effects of an ozone-generating air purifier on indoor secondary particles in three residential dwellings. Indoor Air, 2005,15 (6):432-444.
    [76]C J Weschler, A T Hodgson, J D Wooley. Indoor chemistry:ozone, volatile organic compounds and carpets. Environmental Science & Technology,1992,26 (12):2371-2377.
    [77]G C Morrison, W W Nazaroff. Ozone interactions with carpet:secondary emissions of aldehydes. Environmental Science & Technology,2002,36 (10):2185-2192.
    [78]E Uhde, T Salthammer. Impact of reaction products from building materials and furnishings on indoor air quality-A review of recent advances in indoor chemistry. Atmospheric Environment,2007,41 (15):3111-3128.
    [79]Martinez P, Brandvold D K. Laboratory and field measurements of NOx produced from corona discharge. Atmos. Environ.,1996,30 (24):4177-4182.
    [80]Rehbein N, Cooray V. NOx generation in spark and corona discharges. Journal of Electrostatics,2001,51-52:333-339.
    [81]I Paluch, S Mckeen, Lenschow R, et al. Evolution of the subtropical marine boundary layer:photochemical ozone loss. Journal of the Atmoospheric Sciences,1995, 52 (16):2967-2976.
    [82]Y Takeuchi, T Itoh. Removal of ozone from air by activated carbon treatment. Separations Technology,1993,3 (3):168-175.
    [83]C Heisig, W M Zhang, S T Oyama. Decomposition of ozone using carbon-supported metal oxide catalysts. Applied Catalysis B:Environmental,1997,14 (1-2):117-129.
    [84]刘荣琼,赵敏,汪瑞峰.负载型金属氧化物催化剂分解臭氧研究.江苏环境科技,2008,21(3):12-14.
    [85]W Li, S T Oyama. Mechanism of Ozone Decomposition on a Manganese Oxide Catalyst. 2. Steady-state and Transient Kinetic Studies. J Am Chem Soc,1998,120 (35):9047-9052.
    [86]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1992.
    [87]张晓明,黄碧纯,叶代启.低温等离子体光催化净化空气污染物技术研究进展.化工进展,2005,24(9):964-967.
    [88]Yamamoto T, Ramanathan K, Lawless P A, et al. Control of Volatile Organic Compounds by an Ac Energized Ferroelectrics Pellet Reactor and a Pulsed corona Reactor. IEEE Trans. on Ind. Appl.,1992,28 (3):528-534.
    [89]晏乃强,吴祖成,施耀.电晕-催化技术治理甲苯废气的实验研究.环境科学,1999,20(1):11-14.
    [90]黄立维,谭天恩,施耀.高压脉冲电晕法治理有机废气的实验研究.环境污染与防治,1998,20(1):4-7.
    [91]王银生,季学李,羌宁.脉冲电晕等离子体净化有机污染物甲苯的实验研究.同济大学学报,2000,28(6):699-701.
    [92]郑雷,姜玄珍.脉冲电晕放电降解CH2Cl2的初步研究.环境科学,1997,18(5):62-64.
    [93]梁文俊,李依丽,王艳磊,等.低温等离子体法去除苯和甲苯废气性能研究.环境污染治理技术与设备,2005,6(5):51-55.
    [94]Schmid S, Jecklin M C, Jecklin Zenobi R. Degradation of volatile organic compounds in a non-thermal plasma air purifier. Chemosphere,2010,79 (2):124-130.
    [95]袁学远,陶冶,刘培英.直流电晕放电降解甲苯的特性研究.环境污染治理技术与设备,2006,7(8):120-123.
    [96]Van Durme J, Dewulf J, Sysmans W, et al. Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere,2007, 68(10):1821-1829.
    [97]王莲芬,何俊发,李育新,等.阵列电极流光放电分解苯系有机物.仪器仪表学报,2004,25(4):37-39.
    [98]Miyamoto T. Corona-discharge air purification apparatus. Jpn. Kokai Tokkyo Koho(1999), JP 11342350 A2.
    [99]Kuroki T, Okubo M, Fukumoto H, et al. Development of new electric air cleaner for controlling particulates and odors. Earozoru Kenkyu,2000,15 (2):116-123.
    [100]王晓明,史文祥,赵莹,等.等离子体室内空气净化技术研究进展.高电压技术,2004,30(1):48-51.
    [101]郭治明,许德玄,孙英浩,等.雾化电晕放电静电除尘的实验研究.北京理工大学学报,2005,25:145-148.
    [102]朱益民,孔祥鹏,陈海丰,等.针阵列对板电晕放电捕集微粒研究.北京理工大学学报,2005,128(25):137-140.
    [103]Chen H F, Su P H, Yang S, et al. Study on particles trapping of indoor air using needle matrix bipolar corona discharge. Progress in Enviromental Science and Technology,2007,1:576-579.
    [104]刘芳,黄海涛,黄绍松,等.电晕放电等离子体杀菌的实验研究.工业安全与环保,2009,35(8):1-3.
    [105]J 0 Noyce, J F Hughes. Bactericidal effects of negative and positive ions generated in nitrogen on Escherichia coli. Journal of Electrostatics,2002,54 (2):179-187.
    [106]A H Sari, F Fadaee. Effect of corona discharge on decontamination of Pseudomonas aeruginosa and E-coli. Surface &Coatings Technology,2010,205:385-390.
    [107]朱益民,孔祥鹏,张卓然,等.针阵列对板电晕放电对副流感病毒灭活的研究.北京理工大学学报,2005,128(25):165-168.
    [108]Y H Lee, W S Jung, Y R Choi. Application of pulsed induced plasma chemical procesto an industrial incinerator. Environ. Sci. Technol.,2003,37 (11):2563-2567.
    [109]J S Chang, K Urashima, Y X Tong, et al. Simultaneous removal of NOx and SO2 from coal boiler flue gases by DC corona discharge ammonia radical shower systems:pilot plant tests. Electrostatics,2003,57 (3-4):313-323.
    [110]吴祖良,高翔,李济吾,等.电晕放电自由基簇射同时脱硫脱硝反应特性研究.高校化学工程学报,2008,22(2):325-331.
    [111]王学海,方向晨.烟气同时脱硫脱硝的研究进展.当代化工,2008,37(2):197-199.
    [112]林和健,林云琴.低温等离子体技术在环境工程中的研究进展.环境技术,2005,1:21-24.
    [113]W Mists, R Kacprzyk. Decomposition of toluene using non-thermal plasma reactor at room temperature. Catalysis Today,2008,137 (2-4):345-349.
    [114]魏长宽,李靖,朱天乐,等.能量注入对放电等离子体去除气相苯系物的影响.环境工程学报,2008,2(2):239-242.
    [115]冉振亚,夏刚,吴海淘,等.非平衡等离子体净化发动机尾气的研究.车用发动机,2007,168(2):62-64.
    [116]王伟,杜传进,徐翔.等离子体净化柴油车尾气的能耗研究.武汉理工大学学报,2005,27(12):93-95.
    [117]M Okubo, T Yamamoto, T Kuroki, et al. Electric air cleaner composed of non-thermal plasma reactor and electrostatic precipitator. IEEE Traps on IA,2001, 37 (5):1505-1511.
    [118]王晓明,史文祥,赵莹,等.等离子体室内空气净化技术研究进展.高电压技术,2004,30(1):48-51.
    [119]Y M Zhu, X C Wang, M X Zhang, et al. Formaldehyde Oxidation by Needle Matrix to Plate Corona Discharge. Advanced Oxidation Technologies,2005,8 (1):112-115.
    [120]朱益民,杨树,黄丽萍,等.电晕放电及催化法净化室内空气.环境科学与技术,2010,33(6E):86-88.
    [121]F Massines, A Rabehi, P Decomps, et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. Appl. Phys., 1998,83 (6):2950-2957.
    [122]王艳辉,王德真.介质阻挡均匀大气压辉光放电数值模拟研究.物理学报,2003,52(7):1694-1700.
    [123]Landers E U. Distribution of electrons and ions in a corona discharge. Proc Inst Electr Eng (London),1978,125 (10):1069-1073.
    [124]Aliat A, Hung C T, Tsai C J, et al. Implementation of Fuchs'model of ion diffusion charging of nanoparticles considering the electron contribution in dc-corona chargers in high charge densities. Journal of Physics D:Applied Physics, 2009,42 (12):1-10.
    [125]宿鹏浩,朱益民,陈海丰.多针对板负电晕放电电离区形貌确定.光谱学与光谱分析,2007,27(11):2171-2174.
    [126]SU Penghao, Zhu YiMin, Yang Shu. Using OES to measure distribution of energetic electron in multi-needle-to-plate corona discharge. Journal of Electrostatics,2008, 66 (3-4):193-196.
    [127]宿鹏浩,朱益民,陈海丰.发射光谱研究多针对板正电晕放电形貌.光谱学与光谱分析,2008,28(9):1998-2002.
    [128]李廷钧.发射光谱分析.北京:原子能出版社,1983.
    [129]李谦,李劲.脉冲电晕烟气脱硫脱硝的化学动力学分析.环境科学学报,1998,18(3):236-241.
    [130]Lowke J J, Morrow R. Theoretical Analysis of Removal of Oxides of Sulphur and Nitrogen in Pulsed Operation of Electrostatic Precipitators. IEEE Trans Plasma Sci, 1995,23 (4):661-671.
    [131]Mok Y S, Ham S W, Nam In-Sik. Mathematical analysis of positive pulsed corona discharge process employed for removal of nitrogen oxides. IEEE Trans Plasma Sci, 1998,26 (5):1566-1574.
    [132]Gentile A C, Kushner M J. Reaction chemistry and optimization of plasma remediation of NxOy from gas streams. Journal of Applied Physics,1995,78 (3):2074-2087.
    [133]Chang J S. The role of H2O and NH3 on the formation of NH4NO3 aerosol particlesand De-N0x under the corona discharge treatment of combustion flue gases. J. Aerosol Sci, 1989,20 (8):1087-1090.
    [134]Mizuno A, Matsuoka T, Furuta S. NO, Removal Proeess Using Pulsed Discharge Plasma. IEEE transaction on Industry applications,1995,31 (5):957-962.
    [135]Wu Y, Li J, Wang N H. Study on increasing the SO2 removal efficiency with the radicals produced by H2O in pulse discharge plasma process. Jpn. J. Appl. Phys. Part2, 2001,40 (8A):838-840.
    [136]P M Selzer, C C WANG. Quenching rates and fluorescence efficiency in the Alpha-2Sigma state of OH. J. Chem.Phys,1979,71 (9):3786-3791.
    [137]K R German. Direct measurment of radiative lifetimes of a Sigma-2+(V'=O) states of OH and OD. J. Chem. Phys.,1975,62 (7):2584-2587.
    [138]高翔,余权,吴祖良,等.喷嘴-平板直流电晕放电中的OH(A2∑-→X2П,0-0)光谱研究.强激光与粒子束,2007,19(4):700-703.
    [139]王文春,刘峰,张家良,等.利用发射光谱研究脉冲电晕放电中的自由基.光谱学与光谱分析,2004,24:1288-1292.
    [140]Liu F, Wang W C, Wang S, et al. Diagnosis of OH radical by optical emission spectroscopy in a wire-plate bi-directional pulsed corona discharge. Journal of Electrostatics,2007,65 (7):445-451.
    [141]Liu F, Wang W C, Zheng W, et al. Investigation of spatially resolved spectra of OH and N2+ in N2 and H2O mixture wire-plate positive pulsed streamer discharge. Spectrochimica Acta Part A,2008,69 (3):776-781.
    [142]孙明,吴彦,张家良,等.空气电晕放电中的OH自由基发射光谱.光谱学与光谱分析,2005,25(1):108-112.
    [143]Falkenstein Z. The influence of ultraviolet illumination on OH formation in dielectric barrier discharges of Ar/Oz/H2O:The Joshi effect. J. Appl. Phys.,1997, 81:7158-7162.
    [144]G.赫兹堡.分子光谱与分子结构.北京:科学出版社,1983.
    [145]宿鹏浩,朱益民,陈海丰.多针对板负电晕放电电离区形貌确定.光谱学与光谱分析,2007,27(11):2171-2174.
    [146]杨树,张零零,葛辉,等.多针对板正电晕放电电场强度及电流密度理论分析.中国科技论文在线,2010,5:377-381.
    [147]S Futamura, A Zhang, T Yamamoto. Behavior of N2 and nitrogen oxides in non-thermal plasma chemical processing of hazardous air pollutants. IEEE Trans. Ind. Appl.,2000,36 (6):1507-1514.
    [148]F Pontiga, C Soria, A Castellanos. Ozone generation in coaxial corona discharge using different material electrodes. IEEE annual conference report on electrical and dielectric phenomena,2004,568-571.
    [149]A Ogata, D Ito, Mizuno K. Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE Trans. Ind. Appl.,2001,37 (4):959-964.
    [150]H Einaga, T Ibusuki, S Futamura. Performance evaluation of a hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene decomposition. IEEE Trans. Ind. Appl.,2001,37 (5):1476-1482.
    [151]R N Li, X Liu. Main fundamental gas reaction in renitrification and desulfurization from flue gas by non-thermal plasma. Chemical Engineering Science, 2000,55 (13):2491-2506.
    [152]T Ibusuki, K Takeuchi. Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis. J. Mol. Catal.,1994,88 (1):93-102.
    [153]Nakamura I, Negishi N, Kutsuna S, et al. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J. Mol. Catal A:Chemical,2000,161 (1):205-212.
    [154]徐江兴,姜安玺,王琨.臭氧引起的室内化学污染.哈尔滨建筑大学学报,1999,32(6):74-77
    [155]Li W, Gibbs G V, Oyama S T. Mechanism of ozone decomposition on a manganese oxide catalyst. Am Chem Soc,1998,120 (35):9041-9046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700